6 research outputs found

    Robust Feature-Sample Linear Discriminant Analysis for Brain Disorders Diagnosis

    Get PDF
    Abstract A wide spectrum of discriminative methods is increasingly used in diverse applications for classification or regression tasks. However, many existing discriminative methods assume that the input data is nearly noise-free, which limits their applications to solve real-world problems. Particularly for disease diagnosis, the data acquired by the neuroimaging devices are always prone to different sources of noise. Robust discriminative models are somewhat scarce and only a few attempts have been made to make them robust against noise or outliers. These methods focus on detecting either the sample-outliers or feature-noises. Moreover, they usually use unsupervised de-noising procedures, or separately de-noise the training and the testing data. All these factors may induce biases in the learning process, and thus limit its performance. In this paper, we propose a classification method based on the least-squares formulation of linear discriminant analysis, which simultaneously detects the sample-outliers and feature-noises. The proposed method operates under a semi-supervised setting, in which both labeled training and unlabeled testing data are incorporated to form the intrinsic geometry of the sample space. Therefore, the violating samples or feature values are identified as sample-outliers or feature-noises, respectively. We test our algorithm on one synthetic and two brain neurodegenerative databases (particularly for Parkinson's disease and Alzheimer's disease). The results demonstrate that our method outperforms all baseline and state-of-the-art methods, in terms of both accuracy and the area under the ROC curve

    A Hierarchical Feature and Sample Selection Framework and Its Application for Alzheimer’s Disease Diagnosis

    Get PDF
    Classification is one of the most important tasks in machine learning. Due to feature redundancy or outliers in samples, using all available data for training a classifier may be suboptimal. For example, the Alzheimer’s disease (AD) is correlated with certain brain regions or single nucleotide polymorphisms (SNPs), and identification of relevant features is critical for computer-aided diagnosis. Many existing methods first select features from structural magnetic resonance imaging (MRI) or SNPs and then use those features to build the classifier. However, with the presence of many redundant features, the most discriminative features are difficult to be identified in a single step. Thus, we formulate a hierarchical feature and sample selection framework to gradually select informative features and discard ambiguous samples in multiple steps for improved classifier learning. To positively guide the data manifold preservation process, we utilize both labeled and unlabeled data during training, making our method semi-supervised. For validation, we conduct experiments on AD diagnosis by selecting mutually informative features from both MRI and SNP, and using the most discriminative samples for training. The superior classification results demonstrate the effectiveness of our approach, as compared with the rivals

    Kernel-based Joint Feature Selection and Max-Margin Classification for Early Diagnosis of Parkinson’s Disease

    Get PDF
    Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily dependent on the feature selection techniques, like the diagnosis of neurodegenerative diseases. Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which progresses slowly while affects the quality of life dramatically. In this paper, we use the data acquired from multi-modal neuroimaging data to diagnose PD by investigating the brain regions, known to be affected at the early stages. We propose a joint kernel-based feature selection and classification framework. Unlike conventional feature selection techniques that select features based on their performance in the original input feature space, we select features that best benefit the classification scheme in the kernel space. We further propose kernel functions, specifically designed for our non-negative feature types. We use MRI and SPECT data of 538 subjects from the PPMI database, and obtain a diagnosis accuracy of 97.5%, which outperforms all baseline and state-of-the-art methods

    Identification of progressive mild cognitive impairment patients using incomplete longitudinal MRI scans

    Get PDF
    Distinguishing progressive mild cognitive impairment (pMCI) from stable mild cognitive impairment (sMCI) is critical for identification of patients who are at-risk for Alzheimer’s disease (AD), so that early treatment can be administered. In this paper, we propose a pMCI/sMCI classification framework that harnesses information available in longitudinal magnetic resonance imaging (MRI) data, which could be incomplete, to improve diagnostic accuracy. Volumetric features were first extracted from the baseline MRI scan and subsequent scans acquired after 6, 12, and 18 months. Dynamic features were then obtained by using the 18th-month scan as the reference and computing the ratios of feature differences for the earlier scans. Features that are linearly or non-linearly correlated with diagnostic labels are then selected using two elastic net sparse learning algorithms. Missing feature values due to the incomplete longitudinal data are imputed using a low-rank matrix completion method. Finally, based on the completed feature matrix, we build a multi-kernel support vector machine (mkSVM) to predict the diagnostic label of samples with unknown diagnostic statuses. Our evaluation indicates that a diagnosis accuracy as high as 78.2% can be achieved when information from the longitudinal scans is used – 6.6% higher than the case using only the reference time point image. In other words, information provided by the longitudinal history of the disease improves diagnosis accuracy
    corecore