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Abstract

Distinguishing progressive mild cognitive impairment (pMCI) from stable mild cognitive 

impairment (sMCI) is critical for identification of patients who are at-risk for Alzheimer’s disease 

(AD), so that early treatment can be administered. In this paper, we propose a pMCI/sMCI 

classification framework that harnesses information available in longitudinal magnetic resonance 

imaging (MRI) data, which could be incomplete, to improve diagnostic accuracy. Volumetric 

features were first extracted from the baseline MRI scan and subsequent scans acquired after 6, 12, 

and 18 months. Dynamic features were then obtained by using the 18th-month scan as the 

reference and computing the ratios of feature differences for the earlier scans. Features that are 

linearly or non-linearly correlated with diagnostic labels are then selected using two elastic net 

sparse learning algorithms. Missing feature values due to the incomplete longitudinal data are 

imputed using a low-rank matrix completion method. Finally, based on the completed feature 

matrix, we build a multi-kernel support vector machine (mkSVM) to predict the diagnostic label of 

samples with unknown diagnostic statuses. Our evaluation indicates that a diagnosis accuracy as 

high as 78.2% can be achieved when information from the longitudinal scans is used – 6.6% 

higher than the case using only the reference time point image. In other words, information 

provided by the longitudinal history of the disease improves diagnosis accuracy.
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1. Introduction

Mild cognitive impairment (MCI) is a brain disorder characterized by noticeable impairment 

of cognitive functions, such as memory loss, beyond the decline due to normal aging, but not 

to the extent of significantly affecting activities of daily life. MCI is caused by 

neurodegeneration (loss or death of brain neuron cell), and is generally known as a 

transitional stage between normal aging and Alzheimer’s disease (AD). Studies suggest that 

3% to 19% of adults older than 65 years may be affected by MCI (Gauthier et al., 2006). 

Although some MCI patients recover over time, more than half will progress to dementia 

within 5 years (Gauthier et al., 2006). To identify patients who need to receive early 

treatment, it is vital to distinguish between progressive MCI (pMCI) patients, who will 

eventually progress to AD, from stable MCI (sMCI) patients, whose conditions will cease to 

deteriorate.

In the past few decades, a lot of studies have been focused on identifying possible 

biomarkers for AD/MCI diagnosis using neuroimaging data acquired with magnetic 

resonance imaging (MRI) (Weiner et al., 2013). MRI is a noninvasive technology that can be 

used to quantify gray and white matter integrity of the brain with high reproducibility 

(Haacke et al., 1999; Jack et al., 2008). MRI-based studies indicate that AD/MCI subjects 

are normally associated with cortical thinning and brain atrophy in the temporal lobe, 

parietal lobe, frontal cortex, and other brain regions (Jack et al., 2002; Stefan J et al., 2006; 

Whitwell et al., 2008). Based on these findings, different types of MRI-based measures, e.g., 

region-of-interest (ROI) based volumetric measures (Jack et al., 1999; Zhou et al., 2011; Li 

et al., 2015), cortical thickness measures (Querbes et al., 2009; Wee et al., 2013), 

morphometric measures (Ashburner and Friston, 2000; Hua et al., 2008), functional 

measures Wee et al. (2012a, 2014); ?); ?, and diffusion measures Wee et al. (2011, 2012b) 

have been proposed for AD/MCI diagnosis. In addition to MRI, other modalities such as 

positron emission topography (PET), cerebrospinal fluid (CSF), and genetic data have also 

been used (Kohannim et al., 2010; Hinrichs et al., 2009; Huang et al., 2011; Wang et al., 

2012; Zhang and Shen, 2012a). Compared with other modalities, structural MRI offers 

important advantages such as non-invasiveness, rapid acquisition, lower acquisition cost, and 

greater data availability. In this study, we focus our analysis on MRI data, even though our 

framework can be generalized and extended to include other modalities.

There are two broad categories of AD studies: cross-sectional and longitudinal. In cross-

sectional studies, only data from one time point are involved. Most studies using the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI)1 dataset employ only the baseline 

data (i.e., the first screening data) and therefore belong to this category (Davatzikos et al., 

2011; Hinrichs et al., 2011; Weiner et al., 2013). The preference for cross-sectional studies is 

partly due to the completeness of the baseline data, both in terms of the number of subjects 

in different cohorts (i.e., AD, MCI and NC) and the number of modalities (i.e., MRI, PET 

and CSF) when compared with the data collected at subsequent time points. Due to greater 

data availability in the baseline, cross-sectional studies using the baseline data might benefit 

from greater statistical power. Moreover, complementary data from multiple modalities, 

1http://www.adni-info.org/
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which are most complete at the baseline, can be employed for more accurate AD/MCI 

analysis (Wang et al., 2012; Zhang and Shen, 2012a; Thung et al., 2014; Liu et al., 2014; ?; 

Huang et al., 2015; Zhu et al., 2015; Thung et al., 2015; Adeli-Mosabbeb et al., 2015). 

However, cross-sectional studies can only provide information on a single biological and 

neuropsychological state of the disease and is hence insufficient for characterizing the 

temporal evolution of the disease.

In longitudinal studies, data collected at multiple time points are involved (Zhang and Shen, 

2012b; Liu et al., 2013; Weiner et al., 2013). In contrast to data from a single time point, 

longitudinal data capture temporal dynamics, such as the rate of deterioration, of disease 

progression. For example, we can quantify pathological changes using MRI-based 

measurements from multiple time points to determine whether an MCI patient is progressing 

toward AD. However, due to various practical issues (e.g., subject drop-outs, image quality 

issues, etc.), longitudinal data are quite often incomplete. The easiest way to deal with this 

problem, as done in most studies, is by discarding samples with missing data (Liu et al., 

2013; Weiner et al., 2013) and performing analysis only using data that are complete. By 

doing so, sample size is inevitably reduced and hence statistical power is sacrificed (van der 

Heijden et al., 2006; MacCallum et al., 1996). An alternative to dealing with missing data is 

to perform data imputation, using methods such as k-nearest neighbor (KNN) (Speed, 2003; 

Troyanskaya et al., 2001), expectation maximization (EM) (Schneider, 2001), and low rank 

matrix completion (Candès and Recht, 2009; Goldberg et al., 2010; Sanroma et al., 2014).

In this study, we utilize longitudinal MRI data, with explicit consideration of missing data, 

for pMCI/sMCI classification. We hypothesize that pMCI patients undergo a trajectory of 

brain structural changes that is different from sMCI patients. This trajectory, which is 

reflected by the longitudinal MRI data, can be used to improve pMCI/sMCI classification. 

Our main contributions and findings are as follows:

1. We developed a pMCI identification framework using longitudinal 

incomplete data. Unlike longitudinal studies that discard incomplete data, 

we impute missing feature values and diagnostic labels of a testing sample 

simultaneously by utilizing all available samples.

2. We developed a feature selection method for incomplete longitudinal data, 

extracting, at each time point, features that are correlated linearly and 

nonlinearly with the class labels.

3. We found that dense temporal sampling is not always necessary for 

improving pMCI identification. Our investigation shows that scans that are 

appropriately spaced out in time is often sufficient.

Our framework uses both static and dynamic features to predict the diagnostic label of a 

sample. The static features are the gray matter volumes of 93 ROIs extracted from each MR 

image in the longitudinal series. The dynamic features are the volumetric change ratios 

computed between the image at a reference time point and images at other time points. By 

concatenating the static and dynamic features, each sample can be represented as a feature 

vector. All the feature vectors are stacked to form a feature matrix. Instead of performing 

imputation based on the whole matrix, we apply feature selection to reduce the matrix to 
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contain only discriminative features so that imputation can be carried out more effectively. 

More specifically, features that show linear and nonlinear relationships with clinical 

diagnostic labels are selected via least-squares and logistic elastic net regressions (Liu et al., 

2009). Missing feature values in the reduced feature matrix are then imputed using a label 

guided low rank matrix completion method (Goldberg et al., 2010). Lastly, we will build a 

classifier by using multiple kernel SVM (Rakotomamonjy et al., 2008), which combines a 

set of linear, Gaussian, and polynomial kernels. Experimental results show that our 

framework improves identification accuracy when longitudinal MRI data with dynamic 

features are used.

2. Materials and Data Processing

2.1. ADNI Background

Data used in the preparation of this article were obtained from the ADNI database 

(adni.loni.ucla.edu). The ADNI was launched in 2003 by the National Institute on Aging 

(NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food 

and Drug Administration (FDA), private pharmaceutical companies and non-profit 

organizations, as a $60 million, 5-year public-private partnership. The primary goal of ADNI 

has been to test whether serial MRI, PET, other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of MCI and 

early AD. Determination of sensitive and specific markers of very early AD progression is 

intended to aid researchers and clinicians to develop new treatments and monitor their 

effectiveness, as well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center 

and University of California - San Francisco. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and private corporations, and 

subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal 

of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and 

ADNI-2. To date, these three protocols have recruited over 1500 adults, ages 55 to 90, to 

participate in the research, consisting of cognitively normal older individuals, people with 

early or late MCI, and people with early AD. The follow up duration of each group is 

specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited 

for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-date 

information, see www.adni-info.org.

2.2. Materials

In the ADNI dataset, there are about 400 MCI subjects scanned at screening time (i.e., the 

baseline). After the baseline scan, follow-up scans were acquired every 6 or 12 months for 

up to 84 months. MCI subjects who progressed to AD after some period of time were 

retrospectively labelled as pMCI subjects. Following this convention, the labelling of pMCI/

sMCI is affected by the reference time point and the time period in which the patients are 

monitored for conversion to AD. We chose the 18th month as the reference and 30 months 

as the time period to monitor for conversion, so that there is a sufficient number of earlier 

scans (i.e., baseline, 6th, and 12th month) in each cohort (i.e., pMCI and sMCI). Thus, 
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patients who converted to AD within the 18th to 48th month (a duration of 30 months) are 

labelled as pMCI patients, and those whose conditions do not deteriorate are labelled as 

sMCI patients. Patients who converted to AD prior to the 18th month were excluded from 

the study because they were no longer MCI patients at the reference time point. Patients who 

converted to AD after the 48th month were also excluded to avoid labelling uncertainty. 

Based on the criteria mentioned above, a total of 60 pMCI and 53 sMCI subjects were 

available for this study. The associated demographic information is shown in Table 1. Using 

the data at and before the 18th month, we investigated whether longitudinal MRI scans are 

conducive to improving pMCI/sMCI classification.

2.3. MR Image Processing

A maximum of 4 time points were used – baseline, 6th month, 12th month, and 18th month. 

The processing steps involved are described as follows. Each MRI T1-weighted image was 

first anterior commissure (AC) – posterior commissure (PC) corrected using MIPAV2, 

intensity inhomogeneity corrected using the N3 algorithm (Sled et al., 1998), skull stripped 

(Wang et al., 2011) with manual editing, and cerebellum-removed (Wang et al., 2014). We 

then used FAST (Zhang et al., 2001) in the FSL package3 to segment the image into gray 

matter (GM), white matter (WM), and cerebrospinal fluid (CSF), and used HAMMER (Shen 

and Davatzikos, 2002) to register the images to a common space. GM volumes obtained 

from 93 ROIs defined in (Kabani, 1998), normalized by the total intracranial volume, were 

extracted as features.

3. pMCI/sMCI Classification Framework

3.1. Image Features

Let {Tt ∈ ℝn×r, t = 1, …, 4} denote the matrices containing the r = 93 ROI volumetric 

features of n subject samples at baseline (t = 1), 6th month, 12th month, and 18th month (t = 

4), respectively. Additional dynamic features are computed as the volumetric change ratios 

between 18th month (reference time point) and earlier time points, i.e., {Dt = (Tt − T4) · /(T4 

+ c), t = 1, …, 3}, where ·/ denotes element-wise division, and c is a small constant to avoid 

division by zero. Since the ADNI longitudinal data were not acquired exactly at the design 

time points, we normalize the dynamic features using the following method. The normalizer 

for the j-th row (i.e., j-th subject) of Dt is denoted as

(1)

The corrected dynamic features is given by

2http://mipav.cit.nih.gov
3http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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(2)

where Wt = diag(wt,1, wt,2, ···, wt,j, ···, wt,n).

For simplicity, we concatenate all the volumetric and dynamic features into a matrix X = 

[X(1) ··· X(i) ··· X(m)] ∈ ℝn×d, where d = r × m is the total number of features for one subject 

sample, and m is the total number of feature submatrices. Depending on the number of time 

points and the feature combination used in the experiments, each feature submatrix X(i) 

represents either Tt or Dt. For example, if all volumetric and dynamic features from all 4 

time points are used, there are m = 7 submatrices: X(i) = T5–i for i = {1, 2, 3, 4}, X(i) = D8–i 

for i = {5, 6, 7}, and X = [X(1) ··· X(i) ··· X(m)] = [T4 T3 T2 T1 D3 D2 D1]. Denoting y ∈ 
ℝn×1 as the target label vector (1 for pMCI, −1 for sMCI), our objective is to predict Y given 

X.

3.2. Framework Overview

The proposed framework (see Figure 1) consists of three components: feature selection, data 

imputation using matrix completion, and classification using multi-kernel support vector 

machine (mkSVM). We partitioned the feature matrix into training and testing samples: 

. Our model was trained with Xtrn ∈ ℝntrn×d, and was tested with Xtst ∈ 
ℝntst×d. The corresponding target label vectors for the training and testing data are denoted 

as Ytrn ∈ ℝntrn×1 and Ytst ∈ ℝntst×1, respectively. Since some feature values are possibly 

missing in X due to the incomplete dataset, data imputation is needed before it can be used 

to train a classifier. To reduce the number of values that need to be imputed and also to 

restrict imputation to only discriminative features, we first reduce the size of Xtrn via feature 

selection.

3.3. Feature Selection

Sparse feature selection methods such as least absolute shrinkage and selection operator 

(Lasso) (Tibshirani, 1996) and its variants (Zou and Hastie, 2005; Friedman et al., 2010; 

Simon et al., 2013; Zhou et al., 2012; Zhang et al., 2012) have been shown to be effective in 

dealing with high-dimensional data. However, these feature selection methods can only be 

applied to complete data with no missing values. One workaround for this problem is to 

apply feature selection on complete subset(s) of the data. Three methods can be used to 

extract such subsets, as shown in Figure 2. Each feature submatrix in the figure represents 

data from one time point (volumetric or dynamic features), and each color box in the figure 

represents the subset of data. For simplicity, we use an example of incomplete data with only 

three feature submatrices. The first method (Figure 2(a)), which is widely used, discards 

samples with missing values and retains only complete samples, thus throwing away a 

significant amount of useful information. The second and third methods (Figure 2(b) and 

(c)) avoid this problem by using multiple complete subsets. Specifically, the second method 

defines subsets according to feature submatrices, while the third method defines subsets 
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according to combinations of features. To maximize the number of samples for each subset, 

the third method allows overlaps among subsets. In this study, the second method was used.

In longitudinal data, the volumetric features vary gradually over time and are highly 

correlated. Based on our experience, if sparse method such as Lasso is used for feature 

selection on data from two or more time points, similar but not necessarily redundant 

features will be removed. We avoid this problem by performing elastic net feature selection 

for each submatrix , i.e., second method in Figure 2(b). In addition, we use two types of 

elastic net regressions, least-squares and logistic regressions both with elastic net regularizer 

(Liu et al., 2009), to select features that are linearly and non-linearly correlated with the 

target labels (see feature selection component in Figure 1). The problems associated with the 

two sparse regressions are given as

(3)

(4)

where  is the j-th samples in , yj is the corresponding j-th output label, ||·||1 is 

the l1-norm, ||·||2 is the l2-norm, and λ1 to λ4 are the regularization parameters. Elastic net 

enforces l1-norm and l2-norm penalization on the weight vector β(i) ∈ ℝr×1, combining the 

advantages of both Lasso and ridge regressions. In particular, the l1-norm in the above 

equations causes weight vectors and  to be sparse, while the l2-norm helps to retain 

highly correlated features. Features corresponding to the rows with non-zero values in 

matrix  were selected from { , i = 1, 2, …}. This implies that the 

same set of features will be selected for all feature submatrices in Xtrn. Features found 

discriminant at one time point will also be selected at other time points.

3.4. Matrix Completion

After feature selection, we obtain feature-reduced matrices Ztrn and Ztst, which are possibly 

incomplete due to missing data. While there are a number of existing data imputation 

methods (Schneider, 2001; Goldberg et al., 2010; Ma et al., 2011; Troyanskaya et al., 2001), 

we chose to use a label guided low rank matrix completion algorithm (Goldberg et al., 2010; 

Thung et al., 2014). This is because the longitudinal data are highly correlated and each 

column of  could potentially be represented by a linear combination of other 

columns in Z, satisfying the low rank assumption of low rank matrix completion algorithm. 

Following (Goldberg et al., 2010), we augmented Z with the target label vector before 

performing matrix completion. More specifically, matrix completion is performed on an 
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augmented matrix , where Ytst is unknown and will be imputed (Thung 

et al., 2014). The imputed or completed matrix is denoted as , where Ŷtrn 

is same as Ytrn as there is no missing label in the training set. The imputation optimization 

problem is given as:

(5)

where ΩZ and ΩY denote the set of indices of the observed non-missing values in Z and the 

label vector Y, respectively, |.| denotes the cardinality of a set, ||.||* denotes the trace norm, qij 

and q̂ij denote the original and the predicted values, respectively. The first term in the above 

equation is to ensure that the predicted matrix Q̂ is low rank. The second term is the squared 

loss term L1(u, v) = 1/2(u − v)2, which accounts for errors in feature imputation. The final 

term is a logistic loss term L2(u, v) = log(1+exp(−uv)), which accounts for errors in label 

imputation. λm and μ are the positive-valued tuning parameters. The imputed label vector 

Ytst can be taken as the predicted labels without explicitly building a classifier. To improve 

the prediction accuracy, we detail in the following how classifiers can be constructed based 

on the completed feature matrix.

3.5. Classification

Various classifiers can be constructed based on the completed feature matrix Ẑtrn to predict 

the class label vector Y. First, we applied least-squares elastic nets, logistic elastic net, linear 

kernel SVM, and Gaussian kernel SVM on Ẑtrn as a whole for prediction. Second, we used 

the kernel trick to combine different feature submatrices into a single matrix for prediction. 

Specifically, we built one or more kernels for each feature submatrix, and combined them 

into a single kernel by using either multiple kernel learning algorithms, such as multi kernel 

SVM (mkSVM) or averaging algorithms, such as mean multi-kernel SVM (mean-mkSVM).

3.5.1. Least-Square Sparse Regression Elastic Net (leastR)—We learn a sparse 

weight β that, when mapped by Z, best explains Ytrn. This is achieved by solving a l2-norm 

and l1-norm regularized least-squares problem. That is

(6)

The label vector Ytst is predicted based on Ẑtest and is given by Ẑtestβ.

3.5.2. Logistic Sparse Regression Elastic Net (logisticR)—This is similar to leastR 

classifier, but with the least-squares function replaced by the logistic loss function. That is
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(7)

The label vector Ytst is given by Ẑtestβ + c.

3.5.3. Support Vector Machine (SVM)—The dual formulation of SVM (Chang and Lin, 

2011) is given as

(8)

where  is a vector of dual variables, C is the 

regularization parameter, K(Ẑj, Ẑk) is the kernel that indicates the similarity between sample 

Ẑj ∈ ℝ1×nf and Ẑk ∈ ℝ1×nf in Ẑtrn, and nf is the number of features for each sample. We built 

linear kernel (Klinear (Ẑj, Ẑk) = 〈Ẑj, Ẑk〉) and Gaussian kernel 

( ) using Ẑtrn for the prediction of Ytst.

3.5.4. Multi-Kernel SVM (mkSVM)—Combining multiple kernels (Gönen and Alpaydin, 

2011) has been shown to improve classification performance. Thus, instead of using a single 

kernel, we combined multiple kernels using multi-kernel support vector machine (mkSVM). 

Specifically, we built multiple kernels (i.e., linear, Gaussian and polynomial kernels with 

different parameters) for each submatrix in Ẑtrn, and then used multiple kernel learning 

(MKL) to estimate the kernel combination weights.

The dual formulation of mkSVM (Rakotomamonjy et al., 2008) is given as

(9)

where  is a vector of dual variables,  is the kernel weight matrix, C is the 

regularization parameter, Q is the total number of kernels, and  is the q-th 

kernel between sample  and  in . We used three types of kernels: 

linear kernel Klinear(Ẑj, Ẑk) = 〈Ẑj, Ẑk〉, Gaussian kernel 

( , and polynomial kernel (Kpolynomial(Ẑj, Ẑk) = (〈Ẑj, 
Ẑk〉+1)p). We employed 5 values for s and 3 values for p. Thus, each submatrix in Ẑtrn 
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corresponds to a total of Q = 9 kernels, and for m submatrices, we have a total of 9m 
kernels. These kernels were combined by using the learned weight matrix η in 

. The equality constraint  in (9), which is 

similar to l1-norm, causes η to be sparse, and only the most discriminative kernels were 

selected. After obtaining α and η from the training data, the class label for a test sample Ẑtst 

was estimated by , where b is the bias term 

obtained from the support vectors. For more detail on mkSVM, please refer to (Gönen and 

Alpaydin, 2011).

3.5.5. Mean Multi-Kernel SVM (mean-mkSVM)—Mean-mkSVM is similar to 

mkSVM, but instead of learning the kernel weights, the kernels are combined by simple 

averaging and therefore all kernels are combined with equal weighting. Since nonlinear 

kernel is very sensitive to parameter selection, only the linear kernel is used for mean-

mkSVM, similar to (Zhang and Shen, 2012b).

4. Results and Discussions

4.1. Performance Measure

We used accuracy, sensitivity, and specificity to evaluate the performance of the proposed 

classification framework. In addition, the Receiver Operating Characteristic (ROC) curve 

was used to summarize the classifier performance over a range of tradeoffs between true 

positive and false positive error rates (Swets, 1988). The Area Under the ROC Curve (AUC) 

(Lee, 2000; Duda et al., 2012; Bradley, 1997), used as the fourth measure, is independent to 

the decision criterion used and is less sensitive to data imbalance. Thus, AUC is the most 

representative performance measure in this study. All the results reported in this paper are 

the average of 10 repetitions in 10-fold cross validation.

4.2. Parameter Selection

We evaluated our framework using different classifiers, including leastR, logisticR, linear-

kernel SVM (SVMlin), Gaussian-kernel SVM (SVMrbf), mkSVM, and mean-mkSVM. All 

the hyperparameters (e.g., λ, C, and s) used for the classifiers (and the feature selections) are 

determined through 5-fold cross validation, using only the training data. Also included are 

the classification results obtained using low rank label imputation technique (LRMC), as 

described in our previous work (Thung et al., 2014, 2013). The parameters λm and μ of 

LRMC are set at 0.1 and 10−5, respectively, based on our previous work (Thung et al., 

2014).

4.3. Feature Combinations

Three feature combinations were tested in this study (see Figure 3), i.e., FT – volumetric 

features only; FTD – volumetric and all the corresponding dynamic features; FT4D – 

volumetric features from the fourth (18 month) time point and all the corresponding 

dynamic features. The number of dynamic features used was determined by the number of 

time points used in the experimental study. For example, if time point 4 and time point 3 are 
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used, there is only 1 type of dynamic feature, i.e., D3; while if all the time point are used, 

there are 3 types of dynamic features, i.e., D3, D2 and D1. In the following subsections, we 

report the results for our framework using different combinations of time points, 

combinations of features, feature selection methods, and classifiers.

4.4. Evaluation – Effect of Increasing the Number of Time Points

Figures 4 and 5 show the effect of the number of time points on accuracy and AUC using 

different combinations of features. The first row of both figures indicates that, without 

dynamic features (i.e., FT), there is no significance difference in performance even using 

data from more than one time point. In contrary, feature combinations that utilize dynamic 

features, i.e., FTD and FT4D, perform significantly better. With dynamic features, there is a 

trend of increasing performance (both in term of accuracy and AUC) when using data from 

more earlier time points. The plots in Figure 4 and Figure 5 also indicate that the 

performance of the framework is not always improved when using data from more than one 

time point. For example, when compared with time point 4 (reference or “latest” time point), 

the performance of the proposed classifier (i.e., mkSVM) drops slightly when including 

additional data from time point 3, but increases afterward when using additional data from 

time points 2 and 1. Similar trend is observed using other classifiers (e.g., leastR, SVMlin, 

LRMC, mean-mkSVM), but with a much significant drop in performance using the dynamic 

features from time points 4 and 3. This is potentially due to the relatively smaller time 

separation between time points 4 and 3 (only 6 months apart). The images are hence 

relatively similar and do not offer much additional information, and also the dynamic 

features could be noisy. Nevertheless, unlike other classifiers, the proposed mkSVM, which 

assigns different weights to the kernels derived from different data, can avoid this issue 

effectively.

4.5. Evaluation – Effect of Scan Time Interval

We investigate here the effect of scan time interval between two MRI scans on classification 

accuracy. Figure 6 and Figure 7 show the results of pMCI identification using data from the 

reference time point and one additional earlier time point. From the figure, it can be seen 

that when the scanning time interval of the 2 time points increases, so does the classification 

accuracy and the AUC. This trend is seen for all the three feature combinations and for 

almost all the classifiers. The reason behind this observation could be that the brain 

structures of the subjects change more significantly when scan time interval is increased, 

making the dynamic features more useful. pMCI subjects encounters a greater rate of 

neurodegeneration than sMCI subjects. The dynamic features capture this difference from 

the longitudinal data and improve pMCI/sMCI classification accuracy. We also note that the 

improvement gained by using 2 time points is comparable to that using more time points. 

This observation indicates that the time interval between scans is a more important factor in 

pMCI identification than the number of scans.

4.6. Evaluation – Effect of Feature Combination

When comparing the performance difference among FT, FTD, and FT4D, we found that FTD, 

and FT4D, which utilize dynamic features, are significantly better than FT, which uses only 
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MRI ROI-based features. This observation can be seen in Figures 4 to 7. For example, 

considering all time points, the best AUC values are 0.783, 0.823, and 0.829, for FT, FTD, 

and FT4D, respectively. If considering only the first and fourth time points, the best AUCs 

achieved by FT, FTD, and FT4D are 0.793, 0.843, and 0.833, respectively. In other words, 

using FTD and FT4D gives an increase of accuracy of about 4–5 % over FT, when using time 

points 1 and 4, achieved by our proposed classifier (mkSVM).

4.7. Evaluation – Effect of Classifier

The performance of the classifiers depends on the feature combination used. For FT, the 

performances of SVMlin, SVMrbf, LRMC, mean-mkSVM, and mkSVM are comparable, 

while the performances of leastR and logisticR are relatively inferior. For FTD and FT4D, 

mkSVM in overall performs better than other classifiers for all combinations of time points. 

For FTD, the highest AUC value (0.843) is achieved by mkSVM, using data from time points 

1 and 4. This is 6.6% higher than its AUC when using only time point 4. Similar conclusions 

can also be drawn when using FT4D. The complete results in terms of accuracy, sensitivity, 

specificity and AUC are shown in Tables 2 to 5. In term of sensitivity, mkSVM always 

performs the best for all these feature combinations.

4.8. Evaluation – Effect of Feature Selection Methods

We compared the performance when either Eq.(3) (igLeastR) or Eq.(4) (igLogisticR) is 

applied independently. Student’s t-test was also applied for feature selection by removing 

features that are not statistically significantly correlated with the class label (igt-test). We 

also compared our method with least-squares (glLeastR) and logistic (glLogisticR) group 

Lasso regressions (Liu et al., 2009). Specifically, regression is performed using the 

submatrix of complete data extracted from the full feature matrix (Figure 2(a)), and the 

weight matrix is penalized via l2,1-norm. Weights corresponding to features of the same ROI 

from different feature submatrices are grouped using the l2-norm and the different groups 

are associated using the l1-norm. Table 6 shows the average AUC of the proposed mkSVM 

(over 10 repetitions of 10-fold cross validation) using different feature selection methods and 

feature combinations (i.e., FT, FTD, and FT4D). The results show that our proposed feature 

selection method, in most cases, outperforms all other methods in terms of AUC. All feature 

selection methods, except igt-test, always show better AUC values, when using data FTD and 

FTD from all time points or from two well-separated time points (e.g., T4,1). The relatively 

lower performance of group Lasso is probably because 1) group Lasso tends to select ROIs 

that are discriminant for all time points, which possibly removes discriminant features that 

only appeared at certain time points, 2) only samples with a complete feature set are used in 

feature selection. In contrast, the proposed method avoids the weaknesses above by using 

elastic net regression on each feature submatrix. The superior performance of the proposed 

method over leastR and logisticR methods also shows the advantage of combining features 

selected by two elastic net regressions within each feature submatrix while at the same time 

requiring common feature sets across feature submatrices.

4.9. Frequency Map of Selected Features

Figures 8 and 9 shows the frequency map of selected features using the proposed feature 

selection method, for FT and FT4D, respectively. The left and right maps of the figure show 
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the feature selection frequency maps for ROIs from the left hemisphere and right hemisphere 

of the brain, respectively. Each row of the map denotes feature from one ROI, with its name 

shown between the two maps. There are 47 rows in each map, corresponding to 46 ROIs for 

each hemisphere and 1 ROI for the corpus callosum. Each column denotes a combination of 

time points. Comparing Figures 8 and 9, more ROIs are selected due to the existence of 

dynamic features. Some frequently selected ROIs include precuneus, hippocampal 

formation, perrihinal cortex, entorhinal cortex, amygala, middle temporal gyrus, inferior 

temporal gyrus, and lateral occipitotemporal gyrus. These regions are involved in memory 

formation, processing and storing (Burgess et al., 2002; Stanislav et al., 2013; Smith and 

Kosslyn, 2006; Poulin et al., 2011; Ranganath, 2006; Yonelinas et al., 2001). The corpus 

callosum, which is associated with AD and MCI (Di Paola et al., 2010; Wang et al., 2006), is 

also frequently selected.

4.10. Probability Density Function of Dynamic Features

We have suggested previously that the improvement of pMCI identification using 

longitudinal data with longer scan time interval (Figure 6 and Figure 7) is due to the larger 

volumetric differences and hence more significant dynamic features. To evaluate the validity 

of this observation, we used 31 most frequently selected ROIs (Figure 9) and plot the 

distribution of the corresponding volumetric differences (i.e., {Ti – T4}) in Figure 10. The 

results indicate that the distribution of T1 – T4 is the broadest, followed by T2 – T4 and T3 – 

T4. This observation is consistent with our assumption that D1, which represents the 

dynamic features obtained from MRI data with relatively larger scan interval, is able to 

capture the variability between pMCI and sMCI subjects.

5. Conclusion

We have proposed a pMCI/sMCI classification framework that harnesses the additional 

information given by possibly incomplete longitudinal data. The experimental results 

demonstrate that classification performance improves when data from multiple time points 

with sufficient separation in scanning times are used. We also observed that, rather than 

using only static volumetric features, dynamic features can be used to improve classification 

performance. Feature selection using combined elastic net regressions has been shown to be 

more effective than feature selection using these regression techniques independently. The 

proposed classifier (mkSVM) outperforms other state-of-the-art classifiers when dynamic 

features are used. The best classification accuracy using two time points was achieved by 

mkSVM at 78.2%, which is 6.6% more than the accuracy it achieved by using only the 

reference time point. Similarly, the best AUC using two time points was achieved by 

mkSVM at 84.3%, which is 6.6% more than the AUC it achieved by using only the 

reference time point. In the future, we will extend the current framework to work with 

multiple imaging modalities (e.g., PET and CSF) and multiple clinical scores (e.g., MMSE 

(Wechsler, 1945) and ADAS (Doraiswamy et al., 1997)) to further improve classification 

performance.
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Figure 1. 
Overview of the proposed pMCI/sMCI classification framework.
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Figure 2. 
Three ways of handling incomplete data: (a) One subset of complete samples, (b) One 

complete subset for each feature submatrix, and (c) One complete subset for each 

combination of feature submatrices.
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Figure 3. 
Three examples of feature combination: FT, FTD, and FT4D, using data from 2 time points, 

T4 and T3.
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Figure 4. 
Average accuracy (over 10 repetitions of 10-fold cross-validation) of pMCI identification 

using MR data with increasing number of time points. The error bars show the standard 

deviations. The line plots show the changing trend of the proposed mkSVM method with 

increasing time points.
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Figure 5. 
Average AUC of pMCI identification using MR data with increasing number of time points.
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Figure 6. 
Average accuracy of pMCI identification using MR data from two time points of increasing 

scan time interval.
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Figure 7. 
Average AUC of pMCI identification using MR data from two time points of increasing scan 

time interval.
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Figure 8. 
Frequencies of features selected using the proposed feature selection method and FT data, 

under different combinations of time points.
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Figure 9. 
Frequencies of features selected using the proposed feature selection method and FT4D data, 

under different combinations of time points.
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Figure 10. 
Probability density function (pdf) of volumetric differences.
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Table 1

Demographic information of pMCI/sMCI subjects. (Edu.: Education, SD: standard deviation)

Number of subjects Gender Age (years) Edu. (years)

male/female mean ± SD mean ± SD

pMCI 60 36/24 75.2 ± 6.1 15.2 ± 3.4

sMCI 53 30/23 75.7 ± 5.8 15.9 ± 3.2

Total 113 66/47 75.4 ± 5.9 15.5 ± 3.3
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