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A Hierarchical Feature and Sample 
Selection Framework and Its 
Application for Alzheimer’s Disease 
Diagnosis
Le An1, Ehsan Adeli1, Mingxia Liu1, Jun Zhang1, Seong-Whan Lee2 & Dinggang Shen1,2

Classification is one of the most important tasks in machine learning. Due to feature redundancy or 
outliers in samples, using all available data for training a classifier may be suboptimal. For example, the 
Alzheimer’s disease (AD) is correlated with certain brain regions or single nucleotide polymorphisms 
(SNPs), and identification of relevant features is critical for computer-aided diagnosis. Many existing 
methods first select features from structural magnetic resonance imaging (MRI) or SNPs and then use 
those features to build the classifier. However, with the presence of many redundant features, the most 
discriminative features are difficult to be identified in a single step. Thus, we formulate a hierarchical 
feature and sample selection framework to gradually select informative features and discard ambiguous 
samples in multiple steps for improved classifier learning. To positively guide the data manifold 
preservation process, we utilize both labeled and unlabeled data during training, making our method 
semi-supervised. For validation, we conduct experiments on AD diagnosis by selecting mutually 
informative features from both MRI and SNP, and using the most discriminative samples for training. 
The superior classification results demonstrate the effectiveness of our approach, as compared with the 
rivals.

Computer-aided diagnosis often involves decision making using computer algorithms1. For example, disease can 
be identified by machine learning tools, such as classification models2. Design of automated classification algo-
rithms is highly imperative, in order to provide physicians with a second opinion for more accurate diagnosis. The 
quality of computer-aided diagnosis relies on the trained classifiers. To learn such classifiers, annotated samples, 
each of which contains a number of features, are utilized in the training process. Ideally, only informative features 
and discriminative samples shall be used for effective learning.

For a concrete example, as one of the most common neurodegenerative diseases found in elderly, Alzheimer’s 
disease (AD) accounts for up to 70% of dementia cases3. As AD is a progressive disease which affects memory 
and other important mental functions, its symptoms gradually deteriorate over time. With increased human 
life expectancy, growing numbers of elderly are likely to suffer from dementia. It is estimated that by 2050, one 
new case of AD will occur every 33 seconds, and the total population affected is expected to reach 13.8 million4. 
Unfortunately, thus far, there is no effective cure for AD5. The early stage of AD is commonly referred to as mild 
cognitive impairment (MCI). During disease progression, a healthy normal control (NC) may first develop MCI, 
and then worsening symptoms result in AD. A previous study indicated that MCI patients progressed to AD 
at a yearly rate of 10% to 15%6. Since there is no clear rule to discern AD, NC, and MCI, accurate AD and early 
stage MCI diagnoses are very challenging obstacles. Nevertheless, once AD or MCI is diagnosed, early treatment 
including medications and management strategies could help improve symptoms7,8. Therefore, timely and accu-
rate diagnoses of AD and MCI are highly desirable.

Among various diagnosis tools, brain imaging modalities, such as structural magnetic resonance imaging 
(MRI), have been extensively utilized due to their accurate measurements of brain structures, especially in the 
hippocampus and other AD related regions9–16. Based on differences in brain shape and neuroanatomical con-
figuration, brain imaging techniques help identify abnormal brain structures in those with AD or MCI. When 
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multiple atlases or templates are available, the classification performance can be further improved17,18. Besides 
structural MRI, other imaging modalities such as functional MRI can also be used in AD/MCI diagnosis19–23, as 
they provide additional functional information about hypometabolism and specific protein quantification, which 
can be beneficial in disease diagnosis.

Besides imaging data that provide tissue level information to help AD diagnosis, genetic variants, which 
are related to AD, have also been shown to be valuable for AD diagnosis24,25. Genome-wide association studies 
(GWAS) were conducted to discover the association between the single nucleotide polymorphism (SNP) and the 
imaging data26. The SNP reveals molecular level information, which is complementary to the tissue level informa-
tion in the imaging data. In ref. 27, the associations between SNPs and MRI-derived measures with the presence 
of AD were explored and the informative SNPs were identified to guide the disease interpretation. To date, most 
previous works have focused on analyzing the correlation between imaging and genetic data28, yet using both 
types of data for AD/MCI diagnosis has received very limited attention29.

Computer-aided diagnoses, including those for AD/MCI, often encounter a challenge that the data dimen-
sionality is usually much higher than the number of available samples for model training30. This imbalance 
between feature number and sample size may affect the learning of a classification model for disease prediction, 
or a regression model for clinical score prediction. Furthermore, feature redundancy exists in both imaging and 
genetic data in terms of specific diseases. For example, in MRI-based diagnosis, features are usually generated by 
segmenting a brain into different regions-of-interest (ROIs)29. As some of the ROIs may be irrelevant to AD/MCI, 
feature selection can be conducted to identify the most relevant brain regions in order to learn the classification 
model more effectively. Similarly, only a small number of SNPs from a large pool are associated with AD/MCI29. 
Therefore, it is preferable to use only the most discriminative features from both MRI and SNPs for classification 
model training.

For AD diagnosis, various feature selection schemes, either unsupervised or supervised, have been proposed. 
Typical feature selection methods include t-test31, Fisher score32, Laplacian score33, and Pearson correlation34. 
Recently, sparse feature learning, e.g., the LASSO-based sparse feature learning35, has become a popular choice for 
feature selection. Besides using the 1-norm based sparsity constraint for feature selection, the grouping or rela-
tional information embedded in data has also been introduced for improving feature selection procedures17,36. It 
is also important to mention that the unsupervised methods often consider certain data distributions or manifold 
structures, while the association between features and the corresponding class labels are overlooked. On the other 
hand, the supervised feature selection methods can be more effective by utilizing the label information in the 
learning process. In practice, unlabeled data may also be available but unusable by the supervised methods. In 
addition, while most of the previous works focused on feature selection, they did not consider discarding poor 
samples. Those unwanted samples may have been contaminated by noise, or may be outliers. Including poor 
samples can affect the model learning, thus degrading the diagnosis accuracy37.

In this paper, we propose a joint feature and sample selection framework which takes advantage of all labeled 
data along with unlabeled ones, in order to find the most informative features for classifier training. Specifically, 
a semi-supervised hierarchical feature and sample selection (ss-HMFSS) framework is introduced, which simul-
taneously selects discriminative features and samples from multimodal data. Besides a sparse constraint, we also 
impose a manifold term, which regularize on both labeled and unlabeled data. This regularization term pre-
serves the neighborhood structures during the mapping from the original feature space to the label space. In our 
semi-supervised setting, we are able to exploit useful information from both labeled and unlabeled data, wherein 
the latter of which may be abundant in clinical practice.

Since the redundant features and poor samples may not be scarce, instead of achieving feature and sample 
selection in one single step, we perform feature and sample selection in a hierarchical manner, i.e., in multiple 
steps. Moreover, the feature coefficients learned in one hierarchy are used not only to discard unimportant fea-
tures but also to weight the remaining features. The updated features and pruned sample set from each current 
hierarchy are supplied to the next round to further identify a smaller subset with even more discriminative fea-
tures and samples. In this way, we gradually refine the feature and sample sets step-by-step, undermining the 
effect of non-discriminative data.

To validate our methodology, we conduct experiment on AD diagnosis. Structural MRI and SNPs are jointly 
used to improve the diagnosis accuracy, as data from both modalities are mutually informative measures in 
understanding disease prognosis26. The final selected features and samples by our method are used to train clas-
sifiers (in our case we use a Support Vector Machine (SVM)). The experimental data include 737 subjects from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. In different classification tasks, i.e., AD versus 
NC, MCI versus NC, and progressive MCI (pMCI) versus stable MCI (sMCI), our method demonstrates superior 
results, as compared with other competing methods.

Results
Experimental Settings. We consider three binary classification tasks in the experiments, namely AD vs. 
NC, MCI vs. NC, and pMCI vs. sMCI. We adopt a cross-validation strategy (10-fold) in order to examine the 
classification performance. In detail, the data are randomly divided into ten roughly equal portions, and in each 
fold, the subjects in one fold are used as testing data, while the rest subjects are used as training data. Such process 
is executed ten times to alleviate bias in random partitioning. For the unlabeled data in our method, we choose 
the irrelevant subjects with respect to the current classification task, e.g., when we classify AD and NC, the data 
from MCI subjects are used as unlabeled data. The dimensionality of the SNP features is reduced to that of the 
MRI features before our joint feature and sample learning.

The parameters in feature and sample selection for each classification task are selected by grid search on the 
training data. The parameters λ1 and λ2 in Eq. 7 for regularization purpose are searched from the range {210, 
2−9, … , 20}. After each hierarchy, 5% samples are discarded, and the features whose coefficients in w are smaller 
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than 10−3 are removed. The neighborhood size K in Eqs (5) and (6) is set to 20, as we empirically find that this 
is a reasonable choice to allow sufficient neighbors to assign a reliable soft label to unlabeled samples. To train 
the classifier, we use the implementation of LibSVM38 for linear SVM model training with the default parameter 
C =  1, since we observe that the results are not sensitive to the changes in this parameter. To validate the statistical 
significance of our method, we perform paired-sample t-test to compare our method with the other benchmark 
methods.

Effects of Hierarchical Structure. To examine the effectiveness of the proposed hierarchical framework, 
Fig. 1 compares the classification accuracy (ACC) and area under the receiver operating characteristic (ROC) 
curve (AUC) under different settings of number of hierarchies. It is observed that the use of more hierarchies 
benefits the classification performance in all tasks, although the improvement becomes marginal after three hier-
archies. Especially for the task of pMCI vs. sMCI classification, where the training data are not abundant, keeping 
discarding samples and features in a sequence of hierarchies may result in insufficient classification model learn-
ing. Therefore, we set the number of hierarchies to three in the following experiments. After this iterative process, 
on average, about 40% of the features are selected for training the classification models. It is also worth mention-
ing that compared to AD vs. NC classification, MCI vs. NC and pMCI vs. sMCI classifications are also critical in 
early diagnosis and possible therapeutic interventions, and these tasks can be more difficult, as demonstrated by 
lower values in ACC and AUC.

Effects of Multimodal Features. In our method, both MRI and SNP features are used. To study the con-
tribution of individual feature modality, the ROC curves of the classification results using single feature modality 
are compared with those using both modalities in Fig. 2, and the values of ACC and AUC are listed in Table 1. As 
observed, using both modalities, i.e., MRI and SNP, better classification performances are achieved as compared 
with the use of a single feature modality in different classification tasks. This suggests that our method can effec-
tively utilize the information from both modalities, and therefore produces better overall performance. For AD 
vs. NC classification, MRI features are more discriminative than the SNPs, while the opposite is observed in MCI 
vs. NC and pMCI vs. sMCI classifications. This suggests that the SNP features are more helpful in discerning the 
subtle differences in the possible presence of MCI.

Effects of Feature and Sample Selection. In our method, we select both discriminative features and 
samples to help build better classification models. To verify the individual contribution of feature and sample 

Figure 1. Effects of using different numbers of hierarchies. (a) AD vs. NC. (b) MCI vs. NC. (c) pMCI vs. 
sMCI.

Figure 2. ROC curves of using different feature modality. (a) AD vs. NC. (b) MCI vs. NC. (c) pMCI vs. sMCI.
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selection, we compare the ACC and AUC values of the proposed method with both feature and sample selection, 
to using only sample or feature selection. The outcomes are shown in Table 2. We can observe that when using 
sample selection or feature selection only, the classification performance is inferior to the proposed method with 
both sample and feature selection. The contribution of feature selection is more significant than that of sample 
selection. This suggests that removing feature redundancy is more imperative. It is worthwhile to mention that 
while discarding samples is helpful, excessively doing so may be less effective or even counterproductive, due to 
the small sample size for training as a result.

Comparison with Other Methods. For a more comprehensive comparison, the proposed method 
(ss-HMFSS) is compared with some popular and advanced methods for AD related diagnosis. Specifically, the 
methods being compared are the following:

•	 No feature selection (no FS), using MRI features only.
•	 No feature selection, using SNP features only.
•	 No feature selection, using both MRI and SNP features.
•	 Laplacian score33.
•	 Pearson correlation34.
•	 t-test31.
•	 Fisher score32.
•	 LASSO-based sparse feature learning35.
•	 Feature selection by relationship induced multi-template learning (RIML)17.
•	 Proposed method without unlabeled data (HMFSS).
•	 Proposed method with unlabeled data (ss-HMFSS).

For all methods, linear SVM is used as the classifier. To more thoroughly compare performances, besides 
ACC and AUC, we also report sensitivity (SEN) and specificity (SPE). The sensitivity is defined by SEN =  TP/
(TP +  FN) and the specificity is defined by SPE =  TN/(TN +  FP), in which TP denotes true positive, FN denotes 
false negative, TN denotes true negative, and FP denotes false positive. SEN measures the classification accuracy 
for the positive samples, and SPE measures the classification accuracy for the negative samples.

The average classification results from the 10-fold cross-validation are reported in Table 3. Regarding the over-
all performance, AD vs. NC classification is relatively easier for different methods, as compared with MCI vs. NC 
and pMCI vs. sMCI classifications, as evidenced by higher performances in AD vs. NC classification. Regarding 
feature modality, MRI is more discriminative than SNP in distinguishing AD from NC, while for MCI vs. NC and 
pMCI vs. NC classifications, SNP is more useful.

Directly combining features from two different modalities may not necessarily improve classification per-
formance. For example, in AD vs. NC, simply concatenating MRI and SNP features decreases the classification 
accuracy to 87.5%, as compared to an accuracy of 88.3% by using only MRI features. This is because SNP fea-
tures are less discriminative for this classification task, and simply adding them affects the classification model 
learning. When features from both modalities are combined, a feature selection step is helpful, as indicated by 
the improved results using different feature selection methods. Compared with unsupervised feature selection 
method such as Laplacian score33, the supervised ones, i.e., Fisher score32 and LASSO35 perform better.

The RIML method17 is a recently proposed multimodal feature selection method, representing the 
state-of-the-art in feature selection for AD and MCI diagnosis. It considers the relationships among samples and 
different feature modalities when performing feature selection in a single step. On the contrary, we improve the 
effectiveness of feature selection by employing a hierarchical framework to keep only the most discriminative 

Modality

AD vs. NC MCI vs. NC pMCI vs. sMCI

ACC AUC ACC AUC ACC AUC

MRI 88.2† 93.6† 68.0† 73.4† 69.6† 74.2†

SNP 77.6† 85.5† 73.3† 83.1† 79.4* 86.3†

MRI +  SNP 92.4 97.4 80.1 87.2 80.8 88.3

Table 1.  Comparison of classification performance with different feature modalities using the proposed 
method (in %). Symbol † indicates p <  0.01 in the t-test as compared to the proposed method, and * means 
p <  0.05.

Selection

AD vs. NC MCI vs. NC pMCI vs. sMCI

ACC AUC ACC AUC ACC AUC

Sample only 88.9† 95.1† 74.9† 80.7† 76.2† 84.5†

Feature only 91.3* 96.4* 77.3† 85.0† 78.1† 85.9†

Sample +  Feature 92.4 97.4 80.1 87.2 80.8 88.3

Table 2.  Comparison of classification performance of feature and sample selection (in %). Symbol † 
indicates p <  0.01 in the t-test as compared to the proposed method, and * means p <  0.05.
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features and samples for training classification models. Even without unlabeled data, our method (i.e., HMFSS) 
outperforms RIML17, with the accuracy improvements being 1.4%, 2.0% and 1.3% respectively for the three 
classification tasks. When unlabeled data are incorporated to facilitate the learning process, our method (i.e., 
ss-HMFSS) obtains even further improved results in terms of all different measures.

Analysis of Selected Features. Selected MRI Features. In Fig. 3, we show the top 10 most discriminative 
ROIs for AD-related diagnosis in our method. Namely, those ROIs are (1) hippocampal formation left, (2) hip-
pocampal formation right, (3) parahippocampal gyrus left, (4) parahippocampal gyrus right, (5) middle temporal 
gyrus left, (6) precuneus right, (7) entorhinal cortex left, (8) entorhinal cortex right, (9) medial occipitotemporal 
gyrus right, and (10) amygdala right. The features extracted from those ROIs are selected in the hierarchical 
process as most informative ones. Note that in previous studies, regions including hippocampal formation, 

Method

AD vs. NC MCI vs. NC pMCI vs. sMCI

ACC SPE SEN AUC ACC SPE SEN AUC ACC SPE SEN AUC

no FS (MRI only) 88.3† 81.9† 92.2† 94.1† 72.5† 80.7† 42.9† 72.0† 68.4† 59.4† 75.9† 73.2†

no FS (SNP only) 77.3† 75.3† 80.6† 85.3† 74.8† 83.2† 36.1† 74.1† 73.1† 67.7† 80.8† 79.2†

no FS (MRI +  SNP) 87.5† 81.6† 90.3† 95.6† 73.8† 85.1† 53.6† 80.6† 74.7† 64.5† 78.8† 83.4†

Laplacian score33 87.7† 83.3† 90.9† 94.3† 73.9† 85.1† 53.0† 81.4† 76.6† 65.2† 78.8† 77.6†

Pearson correlation34 87.8† 84.9† 89.7† 94.6† 73.7† 83.6† 53.3† 79.1† 77.1† 66.9† 82.5† 78.6†

t-test31 87.8† 84.5† 90.3† 94.2† 73.1† 84.4† 53.1† 80.4† 76.0† 65.5† 78.3† 78.1†

Fisher score32 88.8† 85.9* 91.4† 94.9† 73.6† 84.9† 57.4† 82.1† 76.7† 68.0† 83.8† 78.4†

LASSO35 89.2† 83.6† 90.7† 95.8† 74.7† 87.3 57.6 83.2† 76.3† 68.1† 83.0† 77.9†

RIML17 89.4† 85.0* 90.2† 94.9† 75.6† 85.2† 56.4† 83.9† 77.0† 68.6† 84.4* 84.9†

HMFSS 90.8† 84.1† 94.3† 97.1* 77.9* 84.0† 65.9† 85.4† 78.6† 69.2* 84.9* 85.7†

ss-HMFSS 92.4 86.0 95.9 97.4 80.1 85.5* 67.7 87.2 80.8 71.5 85.4 88.3

Table 3.  Comparison of classification performance by six different methods (in %). Symbol † indicates 
p <  0.01 in the t-test as compared to the best method, and * means p <  0.05.

Figure 3. Top 10 most selected ROIs for AD diagnosis. These regions are (1) hippocampal formation left, 
(2) hippocampal formation right, (3) parahippocampal gyrus left, (4) parahippocampal gyrus right, (5) middle 
temporal gyrus left, (6) precuneus right, (7) entorhinal cortex left, (8) entorhinal cortex right, (9) medial 
occipitotemporal gyrus right, and (10) amygdala right.
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parahippocampal gyrus, middle temporal gyrus, and precuneus, have been shown to be related to AD39–41. The 
selections of ROIs by our method are congruent with those from previous works.

Selected SNP Features. The most frequently selected SNP features and their gene origins are listed in Table 4. 
These genes have also been reported to be related to AD in previous works29,42–44. For example, the CTNNA3 
gene, which is a protein-coding gene, is a top candidate gene for AD29. The SNPs in SORL1, DAPK1 and SORCS1 
genes have shown significant association with hippocampal volume change, which is related to AD progres-
sion42. The VEGFA gene is associated with an increased risk of developing AD, as well as an accelerated cognitive 
decline43. The SNPs in APOE have also been related to neuroimaging measures in brain disorders such as MCI 
and AD44. The discovery of those SNPs by our method suggests that our method is able to identify the most rele-
vant SNPs for AD diagnosis.

Discussion
To sum up, we have presented a semi-supervised hierarchical feature and sample selection (ss-HMFSS) frame-
work, in which both labeled and unlabeled data can be utilized to preserve the data manifold in the learning pro-
cess. To validate the effectiveness of our method, we conducted experiments on AD diagnosis with both imaging 
and genetic data from ADNI cohort. Results showed that the proposed hierarchical scheme was able to gradually 
refine the feature and sample set in multiple steps, therefore leading to superior performances in AD vs. NC, MCI 
vs. NC, and pMCI vs. sMCI classifications.

In clinical applications, differentiating pMCI and sMCI is of great interest and importance. The results on 
pMCI vs. sMCI classification by our method in Table 3 indicate that the classification ability of our algorithm on 
this task is on par with that for MCI vs. NC classification (with an accuracy of 80.8% as compared to that of 80.1% 
for MCI vs. NC classification). Although the performance itself may not warrant highly accurate computerized 
diagnosis, we believe that the results by our method can aid physicians by providing a useful second opinion for 
reference.

Different from ROI-based MRI features, the dimensionality of the original SNP features is substantially higher. 
Since only a small set of genetic variants are directly related to AD25, using a prior knowledge from clinical studies 
to select only the most relevant SNPs may result in a more effective classification model learning.

We have use two different modalities, i.e., MRI and SNP, for three binary classification tasks. Although other 
modalities such as PET (positron emission tomography) and CSF (cerebrospinal fluid) are available for some 
subjects in the ADNI-1 dataset, the subjects in our experiment do not have complete data from each modality. 
Note that a subset of the population in our study may contain all data modality, yet the results from a smaller test 
set may be less informative and conclusive. We conjecture that, with the inclusion of more data modalities, the 
predictive performance of the trained diagnostic models can be further improved. Therefore, in future, we plan 
to utilize more data with additional modalities, e.g. PET and CSF, to help further improve diagnosis performance.

When examining the data used in this work, we noticed that the numbers of females and males are not homo-
geneous. Given that the available data are not quite abundant from a machine learning point of view, we decided 
to use all the data to train and validate our algorithm on sample and feature selection. This would help alleviate 
under-fitting in the iterative learning process if more data are needed than available. Regarding the ethnicity, over 
90% of the subjects in this study are white, and the rest are mainly black or Asian. Therefore, this dataset may not 
be the first choice to study the correlation between AD and race. It has been reported that gender45,46 and race47,48 
are important factors in AD studies. Studying the impact of gender or race on AD diagnosis would help further 
improve the algorithm development and diagnosis. For a more comprehensive study, dataset without demo-
graphic bias needs to be collected. In this work, we train a model without taking into account the gender or race 
information, and this is a current limitation. Nevertheless, the goal of this work is to introduce a generic machine 
learning framework, which can be readily applied for AD diagnosis. Future work is expected to address these 
aforementioned aspects. In addition, another limitation of our method is that it requires complete data from dif-
ferent modalities for each subject. Extending our method to handle incomplete data is our current ongoing work.

Methods
Data. The data in our experiments are from the ADNI-1 dataset (http://adni.loni.usc.edu). This dataset enrolls 
subjects who were 55–90 years old with study partners who can provide independent evaluations of functioning. 
The general inclusion/exclusion criteria for the enrolled subjects are the following:

•	 NC subjects: Mini-Mental State Examination (MMSE) scores between 24 and 30 (inclusive), a Clinical 
Dementia Rating (CDR) of 0, non-depressed, non-MCI, and non-demented.

Gene name SNP name

CTNNA3 rs10740220, rs10997232

SORL1 rs2298525, rs4420280

SORCS1 rs11814145

DAPK1 rs913782

VEGFA rs833069

APOE rs429358

Table 4.  Most selected SNP features for AD diagnosis.

http://adni.loni.usc.edu
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•	 MCI subjects: MMSE scores between 24 and 30 (inclusive), a memory complaint, objective memory loss 
measured by education adjusted scores on Wechsler Memory Scale Logical Memory II, a CDR of 0.5, absence 
of significant levels of impairment in other cognitive domains, essentially preserved activities of daily living, 
and an absence of dementia.

•	 AD subjects: MMSE scores between 20 and 26 (inclusive), a CDR of 0.5 or 1.0, and meet the National Institute 
of Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders 
Association (NINCDS/ADRDA) criteria for probable AD.

Specifically, in this study, we use 737 subjects whose MRI and SNP features are both available in the dataset. 
Among these subjects, 171 were diagnosed with AD, 362 were MCI patients, and the rest 204 subjects were NCs. 
Among the MCI patients, 157 of them were labeled as pMCI, and 205 were sMCI. The sMCI subjects were diag-
nosed previously as MCI patients but remained stable all the time, while pMCI refers to the MCI patients who 
converted to AD within a 24 months span. Table 5 summarizes the demographic information of the subjects in 
our experiments.

Preprocessing. The data preprocessing follows the procedures as outlined in ref. 29. Specifically, for MRI 
data, the preprocessing steps included skull stripping49, dura removal, intensity inhomogeneity correction, cer-
ebellum removal, tissue segmentation, and registration. The preprocessed images were then divided into 93 
pre-defined ROIs based on the template in ref. 50, and the gray matter volume in these ROIs were calculated as 
MRI features. Note that the gray matter volumes were corrected for the total intracranial volume of each subject, 
in order to account for the body size variations in the population.

The SNP data were genotyped using the Human 610-Quad BeadChip42. According to the AlzGene database 
(www.alzgene.org), only SNPs that belong to the top AD gene candidates were selected after standard quality 
control (QC). The QC of SNP data included the following steps:

•	 Call rate check per SNP per subject.
•	 Gender check.
•	 Sibling pair identification.
•	 Hardy-Weinberg equilibrium test.
•	 Marker removal by the minor allele frequency.
•	 Population stratification.

After QC, the SNPs were imputed to estimate the missing genotypes, and the Illumina annotation information 
was used to select a subset of SNPs51. The dimensionality of the processed SNP data is 2098. Since this SNP feature 
dimension is much higher than that of MRI, we perform sparse feature learning35 on the training data to reduce 
the number of SNP features to the same dimension as the MRI features.

The framework of the proposed method is illustrated in Fig. 4. After features are extracted and preprocessed 
from the raw SNP and MRI data, we first calculate the graph Laplacian matrix to model the data structure, using 
the concatenated features from both labeled and unlabeled data. This Laplacian matrix is then used in the mani-
fold regularization to jointly learn the feature coefficients and sample weights. In each hierarchy, the features are 
selected and weighted based on the learned coefficients, and the samples are pruned by discarding those with 
smaller sample weights. The updated features and samples are then forwarded to the next hierarchy for further 
selection, following the same process. In such a hierarchical manner, we gradually select the most useful features 
and samples to mitigate the adverse effect of data redundancy in the learning process. Finally, the selected features 
and samples are used to train classification models using SVM for AD/MCI diagnosis tasks. In the following, we 
explain in detail how the joint feature and sample selection works in each hierarchy.

Throughout this section, we use boldface uppercase letters to denote matrices (e.g., X), and boldface lowercase 
letters to denote vectors (e.g., x). All non-bold letters denote scalar variables. x 2

2 and x 1 represent the squared 
Euclidean norm and the 1 norm of x, respectively. The transpose of X is denoted as XΤ.

Suppose we have Nl labeled training subjects with their class labels and the corresponding features from both 
MRI and SNP, denoted by ∈y N l, ∈ ×X N d

MRI
l 1, and ∈ ×X N d

SNP
l 2, respectively. In addition, data from Nul 

unlabeled subjects are also available, denoted as ∈∼ ×X N d
MRI

ul 1, and ∈∼ ×X N d
SNP

ul 2. The goal is to utilize both 
labeled and unlabeled data in a semi-supervised framework, to jointly select the most discriminative samples and 
features for subsequent classification model training and prediction. Let = ∈ × +X X X[ , ] N d d

MRI SNP
( )l 1 2  be the 

concatenated features of the labeled data, = ∈
∼ ∼ ∼ × +X X X[ , ] N d d

MRI SNP
( )ul 1 2  represent features of the unlabeled 

data, and ∈ +w d d1 2 be the feature coefficient vector. Then, the objective function for this joint sample and fea-
ture learning model is given by

Diagnosis # of Subject Age Gender (M/F) Education MMSE

AD 171 75.5 ±  7.7 94/77 14.5 ±  3.7 23.7 ±  1.9

pMCI 157 74.8 ±  7.0 95/62 16.1 ±  2.5 26.9 ±  1.8

sMCI 205 75.1 ±  7.6 137/68 15.8 ±  3.1 27.4 ±  1.6

NC 204 76.1 ±  4.9 112/92 15.9 ±  3.0 29.1 ±  1.0

Table 5.  Demographic information of the 737 subjects used in this work from the ADNI-1 dataset.

http://www.alzgene.org
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= + +
∼y X y X X w w( , ) ( , , , ) ( ), (1)m fF E R R

where y X( , )  is the loss function defined on the labeled data,  ∼y X X w( , , , )m  is the manifold regularization term 
for labeled data as well as unlabeled data. The regularization term is based on the assumption that if two samples 
xp and xq are close to each other in their original feature space, after mapping into the new space (i.e., label space), 
their neighborhood structure should also be maintained, with an illustration given in Fig. 5. =R w w( )f 1 is the 
sparse regularizer for the purpose of feature selection, and only features with non-trivial coefficients in w are 
expected to be discriminative. In the following, we explain in detail how the loss function and the manifold regu-
larization term are defined, and how the sample weights are incorporated.

Loss Function. The loss function y X( , )  considers the weighted loss for each sample, and is given by

 = −y X A y Xw( , ) ( ) , (2)2
2

where ∈ ×A N Nl l is a diagonal matrix, and each diagonal element denotes the weight for a data sample. 
Intuitively, a sample that can be more accurately mapped into the label space with minimal error is more desira-
ble, comparatively, and thus it should contribute more to the classification model. The sample weights in A will be 
learned through optimization and the samples with larger weights will be selected to train the classifier.

Manifold Regularization. The manifold regularization preserves the neighborhood structures for both 
labeled and unlabeled data when they are mapped from feature to label space:

 =
∼ Τˆ ˆˆ ˆw wy X X w X L X( , , , ) (A ) (A ), (3)m

where ∈ + × +
X N N d d( ) ( )l ul 1 2  contains features of both labeled data X and unlabeled data ∼X. The Laplacian matrix 

∈ + × +L N N N N( ) ( )l ul l ul  is given by L =  D −  S, where D is a diagonal matrix such that D(p, p) =  ∑ qS(p, q), and S is 
the affinity matrix with S(p, q) denoting the similarity between samples xp and xq. S(p, q) is defined as

Figure 4. Framework of the proposed semi-supervised hierarchical multimodal feature and sample 
selection (ss-HMFSS) for AD and MCI diagnosis. The data are first preprocessed, and features are extracted 
from MRI and SNP, respectively. The MRI features and the preselected SNP features from both labeled and 
unlabeled data are used to exploit the data manifold via a Laplacian matrix computation. In a joint feature 
and sample selection learning framework, manifold preservation, feature selection, and sample selection are 
achieved. This learning process is performed in a hierarchical manner to gradually identify a set of the most 
discriminative features and samples, which are then used to train the classification model.

Figure 5. Illustration of the manifold regularization such that the neighborhood structures are preserved 
during the mapping from the feature space to the label space. Samples in different classes are denoted by 
different colors. The circles and squares with colored outline denote the neighbors.
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= − | − |p q y yS( , ) 1 , (4)p q

where yp and yq are the labels for xp and xq. For the case of unlabeled data, yp is a soft label for an unlabeled data 
sample xp, defined as

=y
k
K

, (5)p
p
pos

where kp
pos is the number of xp’s neighbors with positive class labels out of its K neighbors in total. Note that for an 

unlabeled sample, the nearest neighbors are searched only in the labeled training data, and the soft label repre-
sents its proximity to a target class. Using such definition, the similarity matrix S encodes relationships among 
both labeled and unlabeled samples.

The diagonal matrix ∈ + × +A N N N N( ) ( )l ul l ul  applies weights on both labeled and unlabeled samples. The ele-
ments in A are different for labeled and unlabeled data:

=










∈

− ∈ + + .
ˆ p p

p p p N
k
K

p N N N
A

A

( , )
( , ), [1, ],

1 2 , [ 1, ]
(6)

l

p
l l ul

pos

By this definition, if an unlabeled sample whose K nearest neighbors are relatively balanced from both positive 
and negative classes (i.e., ≈ .k K/ 0 5p

pos ), it is assigned a smaller weight, since this sample may not be discrimina-
tive enough in terms of class separation. The weights in A for the labeled data are to be learned in the optimization 
process.

Objective Function. Taking into account the loss function, the manifold regularization, as well as the sparse 
regularization on features, the overall objective function is

∑

λ λ− + +

. . = ≥ .

Τ
 

diag diag

A y Xw AXw L AXw w

A A

min ( ) ( ) ( ) ,

s t ( ) 1, ( ) 0 (7)
w,A 2

2
1 2 1

where the elements in A are enforced to be non-negative to assign physically interpretable weights to different 
samples. Also, the diagonal of A should sum to one, which makes the sample weights interpretable as probabili-
ties, and ensures that sample weights will not be all zeros.

Optimization. Since Eq. (7) is biconvex with respect to w and A, we employ an alternating optimization 
strategy to solve this problem, meaning that we split the objective function into two sub-problems and then solve 
them iteratively. When one unknown variable is fixed, the resulting sub-problem would be convex. In such a way, 
the original objective function can converge to the optimal point52. Specifically, we first fix A to find the solution 
of w, and then vice versa. When A is fixed, Eq. (7) becomes

λ λ− + + .Τˆ ˆ ˆ ˆA y Xw AX L AX wmin ( ) ( w) ( w) (8)w 2
2

1 2 1

It is easy to verify that Eq. (8) is non-smooth, although it is convex, because of 1-norm regularizer. One way 
to cope with this problem is to approach the original non-smooth objective function using a function which is 
smooth. Then this smooth objective function can be solved using standard fast algorithms. In this work, we resort 
to the widely used Accelerated Proximal Gradient (APG) method53 to solve Eq. (8).

In the second step, given a fixed w, the objective function in Eq. (7) reduces to

∑

λ− +

. . = ≥ .

Τ

diag diag

A y Xw AXw L AXw

A A

min ( ) ( ) ( ),

s t ( ) 1, ( ) 0 (9)
w A, 2

2
1

Note that since the unlabeled data are irrelevant to the original objective function in Eq. (7), we only 
need to optimize A via Eq. (9). Eq. (9) is convex with respect to A, and can be efficiently solved via quadratic 
programming54.

To this end, the discriminative features are identified by the significant values in w, and the poor samples 
are assigned lower weights in A. Therefore, those less useful features and samples can be discarded based on the 
values in w and A, which leads to a more compact yet effective subset of features and samples as compared with 
the original data. In addition, the learned coefficients in w can be used to weight the features, addressing their 
importance. This completes the first hierarchy. In the next hierarchy, the selected samples and updated feature sets 
are used similarly in the optimization of Eq. (7) to further refine the sample and feature sets. The entire process of 
the proposed method is summarized in Algorithm 1.
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Algorithm 1 Semi-supervised hierarchical feature and sample selection (ss-HMFSS)

Input:

 Labeled and unlabeled data, the number of hierarchies L.

1: Initialize labeled sample weights in A and feature coefficients in w. 

2: for i =  1 to L do

3:  Calculate the data similarity scores in S by Eq. (4).

4:  Calculate the sample weights in A by Eq. (6).

5:  repeat

6:   Fix A and solve w in Eq. (8).

7:   Fix w and solve A in Eq. (9).

8: unitl convergence

9: Discard poor samples and non-discriminative features based on the values in A and w.

10: Weight the remaining features by the coefficients in w.

11: end for

Output:

Subset of samples and features.
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