1,657 research outputs found

    STV-based Video Feature Processing for Action Recognition

    Get PDF
    In comparison to still image-based processes, video features can provide rich and intuitive information about dynamic events occurred over a period of time, such as human actions, crowd behaviours, and other subject pattern changes. Although substantial progresses have been made in the last decade on image processing and seen its successful applications in face matching and object recognition, video-based event detection still remains one of the most difficult challenges in computer vision research due to its complex continuous or discrete input signals, arbitrary dynamic feature definitions, and the often ambiguous analytical methods. In this paper, a Spatio-Temporal Volume (STV) and region intersection (RI) based 3D shape-matching method has been proposed to facilitate the definition and recognition of human actions recorded in videos. The distinctive characteristics and the performance gain of the devised approach stemmed from a coefficient factor-boosted 3D region intersection and matching mechanism developed in this research. This paper also reported the investigation into techniques for efficient STV data filtering to reduce the amount of voxels (volumetric-pixels) that need to be processed in each operational cycle in the implemented system. The encouraging features and improvements on the operational performance registered in the experiments have been discussed at the end

    Human-Tool-Interaction-Based Action Recognition Framework for Automatic Construction Operation Monitoring

    Get PDF
    Monitoring activities on a construction jobsite is one of the most important tasks that a construction management team performs every day. Construction management teams monitor activities to ensure that a construction project progresses as scheduled and that the construction crew works properly in a safe working environment. However, site monitoring is often time-consuming. Various automated or semi-automated tracking approaches such as radio frequency identification, Global Positioning System, ultrawide band, barcode, and laser scanning have been introduced to better monitor activities on the construction site. However, deploying and maintaining such techniques require a high level of involvement by very specific well-trained professionals and could be costly. As an alternative way to monitor sites, object recognition and tracking have the advantage of requiring low human involvement and intervention. However, it is still a challenge to recognize construction crew activities with existing methods, which have a high false recognition rate. This research proposes a new approach for recognizing construction personnel activity from still images or video frames. The new approach mimics the human thinking process with the assumption that a construction worker performs a certain activity with a specific body pose using a specific tool. The new approach consists of two recognition tasks, construction worker pose recognition and tool recognition. The two recognition tasks are connected in sequence with an interactive spatial relationship. The proposed method was developed into a computer application using Matlab. It was compared against a benchmark method that only uses construction worker body pose for activity recognition. The benchmark method was also developed into a computer application with Matlab. The proposed method and the benchmark method were tested with the same sample set containing 500 images of over 10 different construction activities. The experimental results show that the proposed framework achieved a higher reliability (precision value), a lower sensitivity (recall value), and an overall better performance (F₁ score) than the benchmark method

    A framework for cardio-pulmonary resuscitation (CPR) scene retrieval from medical simulation videos based on object and activity detection.

    Get PDF
    In this thesis, we propose a framework to detect and retrieve CPR activity scenes from medical simulation videos. Medical simulation is a modern training method for medical students, where an emergency patient condition is simulated on human-like mannequins and the students act upon. These simulation sessions are recorded by the physician, for later debriefing. With the increasing number of simulation videos, automatic detection and retrieval of specific scenes became necessary. The proposed framework for CPR scene retrieval, would eliminate the conventional approach of using shot detection and frame segmentation techniques. Firstly, our work explores the application of Histogram of Oriented Gradients in three dimensions (HOG3D) to retrieve the scenes containing CPR activity. Secondly, we investigate the use of Local Binary Patterns in Three Orthogonal Planes (LBPTOP), which is the three dimensional extension of the popular Local Binary Patterns. This technique is a robust feature that can detect specific activities from scenes containing multiple actors and activities. Thirdly, we propose an improvement to the above mentioned methods by a combination of HOG3D and LBP-TOP. We use decision level fusion techniques to combine the features. We prove experimentally that the proposed techniques and their combination out-perform the existing system for CPR scene retrieval. Finally, we devise a method to detect and retrieve the scenes containing the breathing bag activity, from the medical simulation videos. The proposed framework is tested and validated using eight medical simulation videos and the results are presented

    Human Action Localization And Recognition In Unconstrained Videos

    Get PDF
    As imaging systems become ubiquitous, the ability to recognize human actions is becoming increasingly important. Just as in the object detection and recognition literature, action recognition can be roughly divided into classification tasks, where the goal is to classify a video according to the action depicted in the video, and detection tasks, where the goal is to detect and localize a human performing a particular action. A growing literature is demonstrating the benefits of localizing discriminative sub-regions of images and videos when performing recognition tasks. In this thesis, we address the action detection and recognition problems. Action detection in video is a particularly difficult problem because actions must not only be recognized correctly, but must also be localized in the 3D spatio-temporal volume. We introduce a technique that transforms the 3D localization problem into a series of 2D detection tasks. This is accomplished by dividing the video into overlapping segments, then representing each segment with a 2D video projection. The advantage of the 2D projection is that it makes it convenient to apply the best techniques from object detection to the action detection problem. We also introduce a novel, straightforward method for searching the 2D projections to localize actions, termed TwoPoint Subwindow Search (TPSS). Finally, we show how to connect the local detections in time using a chaining algorithm to identify the entire extent of the action. Our experiments show that video projection outperforms the latest results on action detection in a direct comparison. Second, we present a probabilistic model learning to identify discriminative regions in videos from weakly-supervised data where each video clip is only assigned a label describing what action is present in the frame or clip. While our first system requires every action to be manually outlined in every frame of the video, this second system only requires that the video be given a single highlevel tag. From this data, the system is able to identify discriminative regions that correspond well iii to the regions containing the actual actions. Our experiments on both the MSR Action Dataset II and UCF Sports Dataset show that the localizations produced by this weakly supervised system are comparable in quality to localizations produced by systems that require each frame to be manually annotated. This system is able to detect actions in both 1) non-temporally segmented action videos and 2) recognition tasks where a single label is assigned to the clip. We also demonstrate the action recognition performance of our method on two complex datasets, i.e. HMDB and UCF101. Third, we extend our weakly-supervised framework by replacing the recognition stage with a twostage neural network and apply dropout for preventing overfitting of the parameters on the training data. Dropout technique has been recently introduced to prevent overfitting of the parameters in deep neural networks and it has been applied successfully to object recognition problem. To our knowledge, this is the first system using dropout for action recognition problem. We demonstrate that using dropout improves the action recognition accuracies on HMDB and UCF101 datasets

    Spontaneous Subtle Expression Detection and Recognition based on Facial Strain

    Full text link
    Optical strain is an extension of optical flow that is capable of quantifying subtle changes on faces and representing the minute facial motion intensities at the pixel level. This is computationally essential for the relatively new field of spontaneous micro-expression, where subtle expressions can be technically challenging to pinpoint. In this paper, we present a novel method for detecting and recognizing micro-expressions by utilizing facial optical strain magnitudes to construct optical strain features and optical strain weighted features. The two sets of features are then concatenated to form the resultant feature histogram. Experiments were performed on the CASME II and SMIC databases. We demonstrate on both databases, the usefulness of optical strain information and more importantly, that our best approaches are able to outperform the original baseline results for both detection and recognition tasks. A comparison of the proposed method with other existing spatio-temporal feature extraction approaches is also presented.Comment: 21 pages (including references), single column format, accepted to Signal Processing: Image Communication journa
    corecore