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ABSTRACT

As imaging systems become ubiquitous, the ability to recognize human actions is becoming in-

creasingly important. Just as in the object detection and recognition literature, action recognition

can be roughly divided into classification tasks, where the goal is to classify a video according

to the action depicted in the video, and detection tasks, where the goal is to detect and localize a

human performing a particular action. A growing literature is demonstrating the benefits of local-

izing discriminative sub-regions of images and videos when performing recognition tasks. In this

thesis, we address the action detection and recognition problems.

Action detection in video is a particularly difficult problem because actions must not only be rec-

ognized correctly, but must also be localized in the 3D spatio-temporal volume. We introduce a

technique that transforms the 3D localization problem into a series of 2D detection tasks. This

is accomplished by dividing the video into overlapping segments, then representing each segment

with a 2D video projection. The advantage of the 2D projection is that it makes it convenient to

apply the best techniques from object detection to the action detection problem. We also introduce

a novel, straightforward method for searching the 2D projections to localize actions, termed Two-

Point Subwindow Search (TPSS). Finally, we show how to connect the local detections in time

using a chaining algorithm to identify the entire extent of the action. Our experiments show that

video projection outperforms the latest results on action detection in a direct comparison.

Second, we present a probabilistic model learning to identify discriminative regions in videos from

weakly-supervised data where each video clip is only assigned a label describing what action is

present in the frame or clip. While our first system requires every action to be manually outlined

in every frame of the video, this second system only requires that the video be given a single high-

level tag. From this data, the system is able to identify discriminative regions that correspond well
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to the regions containing the actual actions. Our experiments on both the MSR Action Dataset II

and UCF Sports Dataset show that the localizations produced by this weakly supervised system are

comparable in quality to localizations produced by systems that require each frame to be manually

annotated. This system is able to detect actions in both 1) non-temporally segmented action videos

and 2) recognition tasks where a single label is assigned to the clip. We also demonstrate the action

recognition performance of our method on two complex datasets, i.e. HMDB and UCF101.

Third, we extend our weakly-supervised framework by replacing the recognition stage with a two-

stage neural network and apply dropout for preventing overfitting of the parameters on the training

data. Dropout technique has been recently introduced to prevent overfitting of the parameters in

deep neural networks and it has been applied successfully to object recognition problem. To our

knowledge, this is the first system using dropout for action recognition problem. We demonstrate

that using dropout improves the action recognition accuracies on HMDB and UCF101 datasets.
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CHAPTER 1: INTRODUCTION

Human action recognition and detection are very popular research areas in computer vision. The

goal of human action recognition is to automatically classify a given video sequence based on the

action performed in the video. In case of action recognition, the video is generally segmented

to contain only one execution of a human action. In more general cases, the video may contain

multiple actions and the goal of action detection is not just to recognize the actions being performed

in the video but also determine the spatio-temporal boundaries of them.

While the terms ‘action’ and ‘activity’ are used interchangeably in the computer vision literature,

the human actions can be considered as simple motion patterns generally performed by a single

person for a short period of time whereas the activities are more complex sequence of actions

performed by several people. Figure 1.1 shows sample human actions from UCF Sports Action

dataset.

1.1 Applications

Applications of human action recognition and detection include content based video analysis and

retrieval, security and surveillance systems, behavioral biometrics, human-computer interactions

and robotics.

As video sharing websites like YouTube become popular, it has become necessary to develop effi-

cient and reliable video indexing and retrieval algorithms to deal with the vast amount of amateur

videos captured by hand-held cameras or cell phones. Indexing and searching the videos based on

the content of the video, instead of user attached keywords, is one of the important applications of

human action recognition.
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Figure 1.1: Sample video frames from UCF Sports Action Dataset.

Automatic recognition of human anomalies is another application of human action recognition

systems. Traditional security and surveillance systems contain a network of video cameras and

human operators need to be aware of the activity in the camera field of view. Vision based solutions

can replace or assist human operators.

Another application of human action recognition is behavioral biometrics. Biometrics refers to

identification of humans by their characteristics. Traditional biometric identification approaches

rely on physiological characteristics of people such as fingerprint, face recognition and palm print.

Most of those methods require cooperation from the subject for collection of the biometric. On the

other hand, behavioral biometric identification methods rely on the behavior of a person such as

gait and do not require cooperation from the subject for collection of the data.

Gesture-based human computer interfaces such as Kinect enable users to control and interact with
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the game consoles without need to touch a physical game controller. Other applications of human

action recognition systems include, but not limited to, monitoring of elderly people and children,

intelligent environments, and sports play analysis.

1.2 Challenges and Datasets

There are several challenges involved with action recognition systems such as variations in appear-

ance of actors performing the actions, background clutter, occlusions, camera motion, different

camera view points, variations in illumination, etc.

Several standard action datasets have been used by computer vision community for developing

robust action recognition and detection algorithms. In earlier datasets such as KTH [1], actions

were performed by different actors and the videos were captured in controlled environments where

there was no background clutter or camera motion. Even though those datasets were helpful to

develop initial action recognition algorithms, they did not provide the challenges necessary to

develop more realistic and robust action recognition algorithms.

In recent years, more challenging datasets have been released such as UCF Sports Action [2], Hu-

man Motion DataBase (HMDB) [3] and UCF101 [4]. The UCF Sports Action dataset consists

of set of actions collected from various sports which are typically featured on broadcast televi-

sion channels. Compared with the KTH dataset, it is more challenging, because the videos were

captured in more realistic environments where there were background clutter and camera motion.

However, there are only 11 action categories and 200 videos contained in UCF Sports Action

dataset which makes it relatively simple dataset for action recognition tasks when compared to

larger datasets such as HMDB and UCF101. The UCF Sports Action dataset is mostly used for

action detection tasks since the ground truth locations of the actions in each frame are provided.
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The HMDB dataset contains 51 action classes and 6849 video clips which were collected from var-

ious sources, mostly from movies, and a small proportion from public databases such as YouTube

and Google videos. The UCF101 is a recently introduced dataset with 13320 videos from 101

action categories. UCF101 gives the largest diversity in terms of actions and with the presence of

large variations in camera motion, object appearance and pose, object scale, viewpoint, cluttered

background, and illumination conditions.

Videos in the above datasets are segmented temporally to contain only one instance of an action and

therefore they are mostly used for action recognition tasks. In contrast with the previous datasets,

the Microsoft Research Action Dataset II (MSR) [5] consists of 54 video sequences recorded in a

crowded environment and each video sequence consists of multiple actions. There are in total 203

action instances and three types of action classes. Since videos contain multiple action instances,

it is commonly used for action detection tasks.

1.3 Our Contributions

In this dissertation, we focus on developing action localization and recognition algorithms which

are efficient for detecting actions, do not rely on ground truth action location, do not require pre-

processing with a human detector, and perform better than the baseline and the state-of-the-art

action recognition algorithms. The major contributions are:

• We propose an efficient action detection algorithm that reduces the 3D action detection prob-

lem into a series of 2D search problems. In this method, each video is represented as a series

of overlapping video chunks and each video chunk is searched independently for actions.

Our novel 2D projection method makes it convenient to apply best techniques from object

detection to action detection problem. Since our method does not rely on the whole video
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content for detecting actions, it can be used in real time applications. If the whole video

content is available, the video chunks can be searched in parallel for a faster action detection

system.

• We introduce a unified, weakly-supervised probabilistic model for recognizing actions through

localizing discriminative regions in video frames that correspond well to the regions con-

taining the actual actions. Unlike our first method and most action localization systems,

this second method does not rely on ground truth action locations during training or any

saliency/human detectors for keeping the system computationally tractable. The localization

and recognition parameters of the system are trained concurrently using a single learning

criteria.

• Finally, we extend our proposed framework by replacing the recognition stage with a two-

stage neural network and apply dropout for preventing overfitting of model parameters on the

training data. To our knowledge, this is the first system to apply dropout in action recognition

problem in order to prevent overfitting.

The following subsections provide a brief introduction to the action localization and recognition

algorithms developed in this dissertation.

1.3.1 Localizing Actions through Sequential 2D Video Projections

As imaging systems become ubiquitous, the ability to recognize human actions is becoming in-

creasingly important. Just as in the object detection and recognition literature, action recognition

can be roughly divided into classification tasks, where the goal is to classify a video according

to the action depicted in the video, and detection tasks, where the goal is to detect and localize a

human performing a particular action.
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The detection task is particularly challenging because the action must be detected and localized in

a spatio-temporal volume. In the worst case, the system must search a six-dimensional space to

locate the video volume. Recent work has built on Lampert et al.’s Efficient Subwindow Search

method (ESS) [6] to make such searches efficient [5, 7]. While successful, these action detection

methods are distinct from the popular techniques currently used for object detection, localization

and classification in images, since the former employ mutual information or generative models

rather than discriminative classifiers over feature descriptors.

In this work, we show that actions can be localized without explicitly searching through time. In

our proposed method, a video sequence is represented as a series of overlapping video chunks and

each video chunk as a collection of features. Actions can be detected by projecting chunks of the

3D spatio-temporal volume into a 2D representation, then performing a 2D search. The advantage

of the proposed approach is that this 2D search can be performed using the same techniques that

have proven successful in object detection. As an example, the Efficient Sub-Window Search algo-

rithm [6] for object detection can be directly applied to action detection using this technique. We

also introduce a novel, straightforward method for searching the 2D projection to localize actions,

termed Two Point Sub-Window Search (TPSS). As shown in the experiments in Section 3.6, this

approach leads to improved results over the ESS algorithm.

Another advantage of our method is that since the video chunks are searched independently for

action segments, it can be used in real-time action detection systems. If the whole video sequence

is available at the time of detection, the video chunks can be searched in parallel making it faster

for action detection. Finally, we introduce a greedy algorithm in Section 3.4 showing how the

action segments detected in different video chunks can be chained together to identify the entire

extent of the action.
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1.3.2 A Weakly-Supervised Probabilistic Model for Action Localization and Recognition

With the recent introduction of large new datasets [3] and continued development of new algo-

rithms [8–12], action recognition continues to attract significant research interest. While action

recognition research tends to focus on whole-clip classification, where the system processes an

entire clip and assigns a single label to the clip, there is growing interest in localizing or detecting

the regions in the video where the action is occuring [8–10, 13]. Several key challenges can be

identified with the recent work on localization:

1. Locating the Actions in Training Data – While recent work has begun exploring weakly-

supervised localization [10], the reliance on object saliency detectors for keeping the system

computationally feasible becomes a bottleneck. Other previous systems have required that

the location of the action at each frame be manually annotated in the training data [8, 9, 14].

This increases the cost and effort required to apply these methods to novel datasets.

2. Incorporating Effective Non-Linear Models – Linear models are convenient because they

facilitate efficient computation, but as pointed out in [8], recognizing actions in sub-regions

can require non-linear classifiers that are better able to discriminate between classes.

3. Efficiently Applying Non-Linear Models – While non-linear models may be necessary to

properly discriminate between classes, finding non-linear models that are both descriptive

and efficient can be difficult. Previous approaches, such as adding latent variables to elimi-

nate certain features [8] or extensions of kernel methods [15], add complexity to inference.

This complexity is compounded by the difficulty of working with multiple frames in the

video.

To address the above concerns, we present a novel approach to learning how to localize discrimi-

native sub-regions in the video from weakly-supervised data, where clips have only been annotated
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with a single tag, as is common in most video datasets. While this approach cannot be guaranteed

to find the region that matches the semantics of the label, we show experiments on two different

datasets, MSR Action II and UCF Sports, demonstrating that this weakly-supervised approach is

able to localize the action as well as methods trained on hand-annotated data. To our knowledge,

this is the first system that learns to localize actions from high-level tags on videos. To incorpo-

rate efficient and effective non-linear models, we use kernel map transformation to approximate

non-linear kernels [16].

While the focus of this work is on creating a localization system, experiments in Section 4.3.3

will also show that our approach produces recognition results on the UCF Sports database that

out-perform previous localization-based methods, such as [8–10, 13]. We also provide recogni-

tion results on HMDB and UCF101 which are much larger datasets when compared to the UCF

Sports and our results are better than or comparable to state-of-the-art recognition systems on those

datasets.

The contribution of this work lies on its ability to harness large amounts of video, labeled with basic

tags, to learn localizers that perform comparably to systems trained from manually annotated data.

While crowd-sourcing has made it possible to manually annotate much larger image datasets, video

poses a particular problem because a full annotation with localization requires manually annotating

every frame. Speaking generally, this means that fully annotating a single, several-second clip in

a video dataset requires annotating hundreds of frames. An effective weakly-supervised algorithm

that can be trained from clip-level tags would significantly reduce the effort in creating training

data and open the possibility to train from larger, more diverse training databases.
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1.3.3 Action Recognition using Neural Networks with Dropout

One common problem with datasets containing large number of classes is the overfitting of the pa-

rameters on the training dataset. Most commonly used approach to avoid overfitting is introducing

a regularization term to the cost function.

A recently introduced technique for feed-forward deep neural networks, called dropout [17], has

been applied successfully to object recognition problem by preventing the overfitting substan-

tially [18]. The dropout procedure can be viewed as a very efficient way of performing model

averaging with neural networks. The overfitting on the data is reduced by setting the output of hid-

den units to zero with a probability of 0.5. Those units that are dropped out do not contribute to the

forward passing and back-propagation. Every time a training input is presented, the architecture of

the network changes, but still sharing the same weights and this prevents complex co-adaptations

on the training data. Even though the success of dropout was demonstrated on large scale object

recognition datasets, to our knowledge it has not been used for action recognition problem.

We extend our action recognition framework introduced in previous section by incorporating a two

stage neural network with dropout into our framework. We provide accuracy results on HMDB and

UCF101 datasets with and without dropout. Our results shows that using neural network instead of

a multinomial logistic regression classifier improves the classification accuracies and incorporating

dropout improves the results further on large datasets.

1.4 Organization of Dissertation

The rest of the dissertation is organized as follows. Chapter 2 provides an overview of the lit-

erature on human action recognition and localization. Chapter 3 introduces the proposed action

detection method using the 2D video projections. Chapter 4 proposes a weakly-supervised prob-
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abilistic model for action recognition and localization in unconstrained videos. Chapter 5 extends

the framework proposed in Chapter 4 by replacing the recognition stage of the framework with a

two-stage neural network and applies dropout for preventing overfitting of the parameters. Finally,

Chapter 6 concludes the dissertation with a summary of contributions and possible future work.
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CHAPTER 2: LITERATURE REVIEW

This dissertation is related to previous work in action recognition, action localization and weakly-

supervised methods in object detection.

2.1 Action Recognition

A large amount of literature on the problem of recognizing actions in videos has developed over

the past decade. Turaga et al. [19], Weinland et al. [20] and Poppe [21] provide good overviews of

various action recognition methods and datasets. A general action recognition system consists of

feature extraction, action learning and classification steps.

• Feature Extraction and Video Representation: Videos contain massive amount of raw

pixel data and most of this data is not directly relevant to the actions. In feature extraction

step, the appearance and motion cues that are discriminative with respect to human actions

are extracted from raw pixels and those features are used to construct higher level repre-

sentations for videos. It is important that the selected features are invariant with respect to

scaling, rotation, different illuminations, etc.

• Action Learning and Classification: During action learning, statistical models are learned

using the features extracted from training data and during action classification, learned mod-

els are used to classify the new observations. Support vector machines (SVM) are supervised

learning models that are commonly used in action recognition problems.

In [21], Poppe classifies the action recognition approaches into two groups based on the video

representation: global and local representations.
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2.1.1 Global Representation

In global representation, a person is localized first in each video frame using background sub-

traction or tracking and the region of interest (ROI) around the person is encoded as a whole

to construct the feature representation. Global representations can be extracted from silhouettes,

shape counters or optical flow.

Bobick and Davis [22] use background subtracted blobs to construct a 2D temporal template. In

their method, they first extract the blobs in each frame using background subtraction and then

aggregate them into a single image. They propose two different approaches for aggregation. In

the first approach, all blobs are equally weighted and the resulting image is called Motion Energy

Image (MEI). In the second approach, the higher weights are given to new frames and the resulting

image is called Motion History Image (MHI) (see Figure 2.1(a)). Hu-moments are extracted from

those templates and used for action recognition. This method would not work well for complex

actions since the motion history would be overwritten.

Instead of using a 2D template, Yilmaz and Shah [23] represent actions as 3D objects by stack-

ing together the shape counters detected in each frame as shown in Figure 2.1(b). Sequence of

counters with respect to time generate spatio-temporal volume (STV) in (x, y, t). The STV can

be treated as a 3D object and the descriptors are extracted from the objects surface corresponding

to geometric features such as peaks, valleys, and ridges. One drawback of this method is that the

point correspondence needs to be computed between each frame.

Blank et al. [24] use background subtracted blobs instead of counters to represent actions. Blobs

are stacked together to create a binary space-time volume and shape descriptors are extracted from

the 3D template as shown in Figure 2.1(c).
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(a) (b)

(c)

Figure 2.1: Examples of global action representations. (a) Motion Energy and Motion History
Images for handwaving action (figure is taken from [22]). (b) A sequence of tracked object con-
tours for falling action and STV for falling action generated by applying the point correspondence
method (figure is taken from [23]). (c) Spacetime volume of stacked silhouettes and corresponding
solutions to the Poisson equation on space-time shapes (figure is taken from [24])

Ke et al. [25] consider a video as a collection of sub-volumes of arbitrary shape. The sub-volumes

are extracted by clustering the pixels based on appearance and spatial proximity. Actions are classi-

fied by correlating the action templates with the volumes using shape and flow features (volumetric

region matching). Different from previous methods, it does not require background subtraction for

silhouette extraction.
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2.1.2 Local Representation

Local representations consider a video volume as a collection of local descriptors or parts. Differ-

ent from global representations they do not depend on a robust background subtraction or track-

ing and they are more invariant to changes in viewpoint, person appearance and partial occlu-

sions. Local features are extracted at densely sampled points or at space-time interest points.

Once the features are extracted, they are combined into a final video representation. Bag of vi-

sual words (BoW) representations of actions in videos have proven to be remarkably powerful

and robust [1, 26–28]. Using these visual codebooks, some have suggested codebook refinement

techniques for improved recognition results [29, 30] while others employ higher-order relations

between visual words [31–33].

Figure 2.2 shows the components of a generic bag of words framework. During learning, local

spatio-temporal feature descriptors are extracted from the training videos. Subset of those features

are clustered into a set of video codewords, called codebook using K-means algorithm. Then,

each feature in the video is mapped to the closest codeword and the video is represented by the

histogram of the codewords. Those histograms are used in conjunction with machine learning

techniques such as SVMs and graphical models. During recognition, the new observations are

represented as histogram of the codewords and the classifier model learned during training is used

for deciding the best action label for the video.

Bag of word models do not take the temporal information into consideration. They summarize

all frames of an observed sequence into a single representation or perform action recognition for

each frame individually. Temporal state-space models such as Hidden Markov Model (HMM) and

Conditional Random Field (CRF), on the other hand, represent an action as sequence of moments

(states) connected by edges. The edges model the probabilities among states and between states

and observations.
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Figure 2.2: Bag of visual words framework (figure is taken from [34]).

Several methods have been proposed for interest point detection from videos. Laptev and Lin-

deberg [35] use a space-time generalization of Harris corner detector, which is widely used in

object recognition tasks. This work is extended to compensate for relative camera motions in [36].

The drawback of these methods is that they only extract small number of stable interest points.

This issue was addressed by Dollar et al. in [26]. In their method, they extract distinctive peri-

odic motion-based interest points in a given video using a Gaussian kernel in space and a Gabor

function in time.

Once the interest points are detected, the local feature descriptors are computed in the neigh-

borhood of those interest points. In [37], space-time volumes are extracted at detected interest

points and then each volume is subdivided into grid of cuboids. Histograms of oriented gradient

(HOG) [38] and optical flow (HOF) are computed for each cuboid. Finally, the histograms are
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normalized and concatenated into HOG and HOF descriptor vectors. In [39], Kläser et al. extend

the HOG to 3D where 3D spatio temporal gradients are quantized using regular polyhedrons. They

also extend integral images to integral videos for efficient 3D gradient computation. In [40], Sco-

vanner et al. extend the SIFT descriptor [41] to 3D.

Figure 2.3: Space-time-interest-points. (a) Harris3D detector (figure is taken from [35]). (b)
Dollar’s interest point detector (figure is taken from [26]).

Wang et al. [42] show comparisons of different interest point detectors on a variety of available

well-known complex datasets. In their paper, they found that dense sampling outperformed the

interest point detectors of Dollar et al. [26], Laptev and Lindeberg [35], and Willems et al. [43].

They also compared local feature descriptors and found that combination of image gradients and

optical information resulted in the best performance in general.

In [44], Wang et al. introduce a video representation based on dense trajectories and motion bound-

ary histograms (MBH). In their method, they sample dense points from each frame and track them

based on displacement information from optical flow. The histogram of gradient and histogram
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of optical flow features are extracted along the trajectories. They introduce a new feature descrip-

tor based on motion boundary histograms which rely on derivative of optical flow and therefore

it is more robust to camera motion. This descriptor outperforms other descriptors, particularly in

uncontrolled realistic videos such as HMDB.

2.2 Action Localization

Recent work has begun showing the benefits of localizing actions. Studies have focused on show-

ing the importance of action localization for complex datasets [45,46] by utilizing person-location

information or action detection prior to the task of recognition. Lan et al. [8] propose a figure-

centric representation for action localization and recognition by treating person location as a latent

variable and inferring it while simultaneously recognizing the action. Yao et al. [47] classify and

localize human actions in videos using a Hough transform voting framework. Amer et al. [48]

formulate a generative chain model of group activities to localize and recognize group activities.

Yuan et al. [7] propose a discriminative pattern matching technique to locate the action in the 3D

video space using a branch-and-bound search mechanism. Boyraz et al. [49] propose a technique

that transforms the 3D action localization problem into a series of 2D detection tasks. Lu et al. [50]

propose a generative probabilistic model for concurrent action tracking and recognition. Ikizler et

al. [51] employ a “tracking-by-detection” method in association with Felzenszwalb’s human de-

tector [52] for action detection. Raptis et al. [9] use trajectory clusters as salient spatio-temporal

structures for parts of an action. These parts are then represented using a graphical model that

incorporates individual as well as pairwise constraints. Cao et al. [5] propose to use an adaptive

cross-dataset action detection approach by exploring the spatio-temporal coherence of actions.

Those systems are similar in that they require access to manually annotated localization in the

training data. Shapalova et al. [10] present a weakly supervised method to localize action discrim-
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inative regions in video. However, our approach is superior in that not only do we eliminate any

pre-processing but we also perform better than their results on UCF Sports dataset. We will show

how our approach looks for most discriminative regions automatically and that these discriminative

regions tend to correspond to the action of interest.

We also show that our recognition framework looks for actions within segments of the raw video

sequence. Although previous work by Schindler et al. [53] show similar recognition techniques

for short frame snippets, experiments are not only conducted on not-cluttered action datasets (e.g.

KTH and Weizmann) but also rely heavily on pre-processing person detection techniques. In

contrast, we show experiments on cluttered MSR II action dataset without the need for any person

detection pre-processing.

2.3 Learning to Detect Objects from Weakly-Supervised Data

The task of learning to locate objects from weakly-tagged data has been considered in both [54]

and [55]. In [54], a conditional random field model is constructed between images to identify

regions that could contain the same object. Extending this approach to video would be complicated

by the need to link frames within the video. This would lead to a large increase in the number of

edges and nodes in that the CRF would be significantly increased. In [55], Pandey and Lazebnik

propose adapting the deformable parts model from [52] and modifying the training strategy to

locate the object. Because this approach is closely tied to the original implementation in [52], it is

not clear how this would be generalized to video. Our approach also has the advantage of being a

much simpler, bag-of-words based model that can be computed very efficiently. This is important

for coping with the large amounts of data in video.
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CHAPTER 3: LOCALIZING ACTIONS THROUGH SEQUENTIAL 2D

VIDEO PROJECTIONS

In this chapter, we introduce a technique that transforms the 3D localization problem into a series

of 2D detection tasks. This is accomplished by dividing the video into overlapping segments, then

representing each segment with a 2D video projection. The advantage of the 2D projection is that

it makes it convenient to apply the best techniques from object detection to the action detection

problem. Our experiments show that video projection outperforms the latest results on action

detection in a direct comparison.

Our work is strongly influenced by Yuan et al. [7] and Cao et al. [5], where action detection is

performed using an efficient branch-and-bound search. Although we propose a fundamentally

different representation and do not explicitly support cross-dataset training, the goals of our work

are sufficiently close as to enable direct comparison. Philosophically, our notion of a 2D video

projection is also related to concepts such as motion-history images [22] and spin images [56],

where 3D spatio-temporal or volumetric data is transformed into a 2D space that enables efficient

search or recognition. Finally, one can view video projections as enabling spatial and temporal

localization with bag of visual words models by efficiently classifying spatio-temporal subregions.

The basic idea behind the proposed method is to treat the action detection task as a series of parallel

localization subtasks, each examining a short chunk of the video. Each subtask is transformed

into a 2D problem using video projections and solved efficiently. Finally, we connect the local

detections in time using a chaining algorithm. The following subsections detail each of these

steps.
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3.1 Video Representation

Following Laptev et al. [27], we compute spatio-temporal interest points (STIPs) in each video

using Harris3D detector. A subvolume (∆x,∆y,∆t) is extracted at each interest point as shown

in Figure 3.1. The size of the subvolume depends on the detection scales, i.e. ∆x,∆y = 18σ

and ∆t = 8τ , where the σ is spatial scale and τ is the temporal scale used for computing the

descriptor. Each subvolume is divided into (nx, ny, nt) grid of cuboids and for each cuboid 4-bins

histogram of oriented gradients (HOG) and 5-bins histogram of optical flow (HOF) are computed.

Normalized histograms are concatenated into HOG and HOF descriptors. We use parameter values

nx, ny = 3, nt = 2 as suggested by authors. Eight spatial and two temporal scales are used for

computing the feature descriptors.

Figure 3.1: Space-time interest points (STIP) are extracted in a video sequence using Harris3D
detector and HOG & HOF descriptors are computed for each STIP.

Those descriptors are quantized using a visual codebook constructed over the training set, enabling
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us to represent each STIP pj as the tuple (xj, yj, tj, cj), denoting that a STIP was observed at

(xj, yj) in the tj’th frame of video; the discrete label cj corresponds to the codebook word nearest

in feature space to pj’s descriptor. The core assumption behind our approach (similar to that

in [5, 7, 27]) is that one can recognize whether a collection of STIPs corresponds to the action of

interest using a classifier that takes as its input a histogram over these discrete labels. However,

we do not accumulate the features into a single histogram, as would be typical in a bag of visual

words model, but rather we aggregate them in localized spatio-temporal subvolumes, as described

below.

We divide a given video sequence V into a series of overlapping video chunks {V1,V2,. . . ,VN}

each with a temporal duration of F frames, as shown in Figure 3.2. Each chunk is represented by

the collection of STIPs contained within:

Vm = {(x, y, t, c) : tms ≤ t < tme }, (3.1)

where tms = (m − 1) × F/2 + 1 and tme = tms + F . Since each STIP retains its spatio-temporal

location, the goal of action detection is to find those subvolumes that contain STIPs corresponding

to the action of interest. More accurately, since a given action of interest is likely to be span several

chunks, we aim to identify subvolumes within each chunk that are likely to be parts of the action.

Naively testing whether every possible subvolume within a chunk matches the action using an

exhaustive scanning window is clearly inefficient. We propose a better approach next.
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Figure 3.2: We represent a video sequence as a collection of overlapping video chunks and each
video chunk by a collection of STIPs. The goal of action detection is to localize subvolumes that
contain the action of interest.

3.2 Reducing Action Localization to 2D Search

An action can be modeled as a spatio-temporal bounding box (yellow volume in Figure 3.2). We

refer to the subvolume of the action that is contained within a single video chunk as an action

segment. Hence, we can consider an action instance as a chain of action segments contained in

consecutive video chunks,

We analyze each video chunk independently to determine whether it contains an action segment.

Since a chunk consists of only a small number of frames, we seek to localize the action seg-

ment only spatially within the chunk by assuming that it extends temporally throughout the chunk.

Specifically, as shown in Figure 3.3, for each action segment in the chunk, we seek a subvolume

cuboid of duration F frames that covers it. Since the classifier score of any cuboid in the chunk is

determined solely by the STIPs contained within, we observe that rather than exhaustively consid-

ering every cuboid, we only need to consider cuboids that touch STIPs on each face. And since all
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subvolumes are of duration F , it can be modeled as a 2D rectangle [xmin, ymin, xmax, ymax].

Figure 3.3: We need only consider subvolumes in a video chunk that touch a STIP on each face;
through video projection, we model subvolumes as 2D rectangles.

Each subvolume is represented in the classifier by a histogram of the codebook counts for the

STIPs contained within, h = [h1, . . . , hK ], where hi is the number of STIPs within the subvolume

assigned to cluster center i.

hi =
N∑
j=1

lij, (3.2)

where

lij =


1 if cj = i,

0 if cj 6= i,

(3.3)

N is the number of STIPs within the subvolume and the cj is the cluster index of the jth STIP in the

subvolume. We compute the histograms for ground truth action segments that are extracted from

the training videos and train a linear support vector machine (SVM) using the resulting histograms.

We define the action detection and localization problem within a video chunk as finding a subvol-
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ume that would maximize the SVM classifier score, f , given by:

f = β +
K∑
i=1

wihi, (3.4)

whereK is the number of cluster centers, hi is the count of STIPs within the subvolume that belong

to cluster center i, andwi is the SVM weight corresponding to cluster center i. Using Equations 3.2

and 3.3 and the linearity of the scalar product, we can rewrite Equation 3.4 as follows:

f = β +
K∑
i=1

wihi = β +
K∑
i=1

wi

N∑
j=1

lij (3.5)

= β +
N∑
j=1

K∑
i=1

wilij (3.6)

= β +
N∑
j=1

wcj, (3.7)

where N is the number of STIPs contained in the subvolume and wcj is the SVM weight corre-

sponding to the cluster index cj . Equation 3.7 says that each STIP contributes to the SVM score

by its corresponding SVM weight wcj . Intuitively, some STIPs are positively associated with a

given action (their SVM scores are positive) while others are negatively associated with the action

(negative SVM score). Thus, the goal is to identify subvolumes containing a high sum of weights.

Since we are using fixed depth subvolumes with same duration as the video chunk and the SVM

score of the subvolume depends only on the weight of each STIP within the subvolume (Equa-

tion 3.7), we can redefine the three-dimensional subvolume search problem as a two-dimensional

search problem by projecting the data along the temporal dimension, as shown in Figure 3.4. Fig-

ure 3.4(a) shows two candidate subvolumes in a video chunk: the blue one has an SVM score

greater than the threshold and red one has an SVM score less than the threshold. Figure 3.4(b)

shows the corresponding subwindows with the same SVM scores in the projected representation.
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Thus, the subvolume search problem in a video chunk Vm reduces to a subwindow (rectangle)

search problem in its 2D projection.

(a) Video chunk as spatio-temporal volume.

(b) 2-D representation after video projection

Figure 3.4: Video projection converts the subvolume localization problem to a 2D search problem.
Blue (Red) points correspond to STIPs with positive (negative) SVM weights.

3.3 Subvolume Search in 2D Video Projection

In the previous section, we show how the subvolume search problem in a video chunk could be

reduced to a subwindow search problem in the 2D projection of the video chunk. We can use any

two dimensional search method to find rectangular regions of interest whose SVM scores, as given
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by Equation 3.7, would exceed a specified threshold. One obvious candidate is Lampert et al.’s

Efficient Subwindow Search (ESS) algorithm [6]. However, given the sparsity of STIP features

in our chunks, we propose a new fast method, Two-Point Subwindow Search (TPSS) that is well-

suited for this task. Both are detailed below.

3.3.1 Efficient Subwindow Search

Efficient Subwindow Search (ESS), as proposed by Lampert et al. [6], was designed for efficient

object localization in images. ESS uses branch-and-bound algorithm to find a region of inter-

est with global maximum for a given quality function f . The parameter space is the set of all

possible rectangles in an image. Each rectangle is represented by its top, left, bottom, right coor-

dinates: (t, b, l, r). A candidate subset of rectangles in the parameter space is represented as tuples

[T,B, L,R], where T , B, L and R define the maximum and minimum values for t, b, l and r,

respectively as shown in Figure 3.5.

Figure 3.5: A candidate subset of rectangles in the parameter space is represented as tuples
[T,B, L,R], where T , B, L and R define the maximum and minimum values for t, b, l and r,
respectively. Figure is courtesy of Lampert et al.s CVPR 2008 talk on ESS.
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In order to use the ESS algorithm, we need to define a quality function f that we seek to maximize

and a function f̂ such that:

f̂(R) ≥ max
R∈R

f(R) (3.8a)

f̂(R) = f(R), if R is the only rectangle in R (3.8b)

In our problem, f as defined in Equation 3.7 serves as the quality function for ESS to maximize;

we also define the bounding function f̂ as follows:

f̂(R) = f+(Rmax) + f−(Rmin), (3.9)

where Rmax is the largest rectangle and Rmin is the smallest rectangle contained in R, f+ is com-

puted using only those points with positives SVM weights and correspondingly, f− using only

negative weights in R.

Once we define the quality and bounding functions we can use ESS to search a rectangular region

with the highest SVM score. Algorithm 1 (adapted from [6]) provides pseudo-code for ESS. For

each rectangle set, an upper bound is computed for the highest score that the quality function f

could take on any of the rectangles in the set. ESS terminates when it has identified a rectangle

with a quality score that is at least as good as the upper bound of all remaining candidate regions.

In order to detect multiple action instances within the same video chunk, we run Algorithm 1

multiple times, removing the detected rectangle from I at every iteration until the SVM score of

the detected rectangle falls below the threshold.
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Algorithm 1 Efficient Subwindow Search
// Im×n : 2D video projection
// f̂ : Quality bounding function

Initialize P as empty priority queue
set [T,B, L,R] = [0, n]× [0, n]× [0,m]× [0,m]
repeat

[T,B, L,R]→ [T1, B1, L1, R1] ∪ [T2, B2, L2, R2]
push ([T1, B1, L1, R1], f̂([T1, B1, L1, R1]) into P
push ([T2, B2, L2, R2], f̂([T2, B2, L2, R2]) into P
retrieve top state [T,B, L,R] from P

until [T,B, L,R] consists of only one rectangle
set Rmax = [T,B, L,R]

3.3.2 Two Point Subwindow Search

Even though, theoretically, the search space for an M × N image using the sliding window ap-

proach is M2N2, in practice there are only sparse number of STIPs with non-zero SVM weight

and only a small fraction of those are positive. Using this observation, we propose a new search

method called Two-Point Subwindow Search (TPSS). In this search method, two STIPs with pos-

itive SVM weights define a rectangle, with STIPs at opposite corners as shown in Figure 3.6. The

SVM score of such rectangular regions can be efficiently computed using an integral image [57].

Our proposed search method has two stages, summarized in Algorithm 2: (1) we compute the

SVM score for all candidate rectangles that are defined by pairs of STIPs, each with positive SVM

weight, if the SVM score is over a threshold, then the rectangle is considered as a detection; (2)

we perform a non-maximum suppression algorithm on the detection set to eliminate overlapping

rectangles.

The primary benefit of the first stage is that the set of candidates (rectangles defined by two STIPs

with positive SVM weights) is much smaller than the number of sliding windows (or even rect-

angles defined by all STIPs). Intuitively, the TPSS algorithm restricts its search to promising
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rectangles. For instance, consider a rectangle bounded by a STIP with a negative score; shrinking

such a rectangle so as to exclude this STIP should result in improving the score.

(a) (b)

Figure 3.6: (a) Two STIPs with positive SVM weights define a rectangle with STIPs at opposite
corners. We search over all such possible rectangles followed by non-maximal suppression. (b)
Integral image [57] is used for efficiently computing the SVM score of any rectangle using only
four operations. The score of area D is computed as 4̄ − B − C + A, where 4̄ is the accumulated
sum at point 4.

The second stage performs non-maximum suppression to reduce the number of redundant detec-

tions. During non-maximum suppression, we first select the rectangle with the highest SVM score,

i.e., Rmax, from the detection set. Then, we identify and remove all the rectangles from the de-

tection set that are connected to Rmax. Two rectangles R1 and R2 are treated as connected if both

(R1∩R2)/R1 and (R1∩R2)/R2 are greater then a threshold ρ, where ∩ denotes the operator used

to compute the overlap volume. Once we find the set of rectangles that are connected to Rmax, we

replace Rmax with a bounding box that contains all rectangles that are connected to Rmax, and push

the updated Rmax to the final detection list. We repeat the process by selecting the next rectangle

with the maximum SVM score from the remaining rectangles until no rectangles remain in the
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detection set. Thus, unlike ESS, TPSS does not require multiple reruns to detect multiple action

instances in a video chunk.

Algorithm 2 Two-Point Subwindow Search
// p+ : STIP with positive SVM weight
// Rij : The subwindow defined by STIPs p+i and p+j
// f(R) : The SVM score of the subvolume R
// Rmax : Subwindow which maximizes f
// Dn: List of detections in In
// In : 2D projection of video chunk Vn

for ∀(p+i , p+j ) ∈ In where i 6= j do
Rij ← (pi, pj)
Compute the SVM score f for Rij using Eqn. 3.7
if f > threshold then

Add Rij to the detection list Dn

end if
end for

Non-maximum Suppression:
while Dn is not empty do
Rmax ← arg max

R
f(R)

Move Rmax to the local maximum list Ln

for ∀R ∈ Dn do
ρ1 ← |R∩Rmax|

|Rmax|

ρ2 ← |R∩Rmax|
|R|

if ρ1 and ρ2 ≥ 0.5 then
Rmax ← Rmax ∪R
Remove R from the detection list, Dn

end if
end for

end while
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(a)

(b)

Figure 3.7: (a) Action segments detected in subsequent video chunks. (b) Two action segments
belong to the same action instance, i.e. connected, if intersection over union volume of the action
segments is greater than a threshold.

3.4 Chaining Subvolumes Across Time

Once subvolumes are detected in each video chunk, either using ESS or TPSS, a greedy chaining

strategy is used to connect the detections in consecutive video chunks together to form a complete

action. We start the search with the first video chunk and select the detection with the highest

SVM score. Then, we find all the detections C from the next video chunk that are connected to the

currently selected detection. We treat two detections in adjacent video chunks as connected if their
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volume overlaps by a certain threshold (see Figure 3.7). We select the detection with the highest

SVM score from the connected detections list and continue our search with the next video chunk

until there are no more connected detections left in the following video chunks (Algorithm 3).

Algorithm 3 Chaining Subvolumes Across Video Chunks
// ActionSet : The set of action detections
// Action: List of connected action segments
// Dn: List of subvolume detections in Vn

// Rmax: Subvolume detection maximizing SVM score
// C: List of rectangles from Dn+1 connected to Rmax

Initialize ActionSet as an empty set
for n = 1 to N do

if Dn 6= ∅ then
Action := {}
Rmax ← arg max

R∈Dn

f(R)

Delete Rmax from Dn

Add Rmax to ActionTrace
i← 1
C ← {R : R ∈ Dn+i, ρ1 and ρ2 ≥ ρ}
while C 6= ∅ do
Rmax ← arg max

R∈C
f(R)

Delete Rmax from Dn+i

Add Rmax to Action
i← i+ 1
C ← {R : R ∈ Dn+i, ρ1 and ρ2 ≥ ρ}

end while
Add Action to ActionSet

end if
end for

3.5 Computational Complexity

The worst case complexity of the naive 3D branch-and-bound search for detecting a single instance

of an action is given by O(m2n2t2) for a m × n × t video. Overall complexity of our proposed
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method for detecting a single instance of an action using the TPSS is given by O(Np
2 × t/F ) +

O(t/F ), where Np is the number of STIPs contained in the video chunk with positive SVM weight

and F is the duration of the video chunks. The first term in this equation is the complexity of the

TPSS algorithm and the second term is the complexity of chaining the subvolumes across time.

Since Np << m×n, the upper bound of our algorithm is given as O(m2n2t)+O(t) = O(m2n2t).

In order to detect multiple instances of actions, the 3D branch-and-bound search needs to be run

multiple times. Assuming that there are k instances of actions in a given video, the worst case

complexity of 3D branch-and-bound search becomes O(m2n2t2k). On the other hand, the TPSS

does not require reruns to detect multiple instances of actions and the complexity of the first part

of our algorithm does not change. However, the worst case complexity of chaining the subvolumes

becomes O(k2t) since there can be at most k action segments in each video chunk. Hence, the

overall complexity of our method for detecting k instances of actions is O(m2n2t) + O(k2t).

Realistically, the number of instances of actions in a video is much less than m×n and the overall

complexity of our method is given by O(m2n2t) when k < m × n. Moreover, since our method

searches each video chunk separately, the 2D search can be performed in parallel. The Table 3.1

summarizes the worst case complexity comparison of our method and the 3D branch-and-bound

search.

Table 3.1: Worst case complexity comparison of our method and naive 3D branch-and-bound
search for detecting actions in a given video sequence.

Naive 3D B&B Our Method
1 action O(m2n2t2) O(m2n2t)
k actions O(m2n2t2k) O(m2n2t)
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(a)

(b)

Figure 3.8: (a) Sample video frames from KTH dataset. (b) Sample video frames from MSR
dataset. Different than KTH dataset, there are other activities happening in the background.

3.6 Experimental Results

Our experimental methodology follows that of Cao et al. [5] to facilitate direct comparisons. We

use the KTH [1] and Microsoft Research Action Dataset II (MSR) [5] in our experiments. KTH

contains videos of six action types: boxing, hand waving, hand clapping, walking, jogging and

running, performed by a single actor against a relatively fixed background. MSR contains three

action types: hand waving, hand clapping and boxing, performed in a more challenging setting

with multiple users in a cluttered and dynamic scene. By design, the three actions in MSR are the

same as those in KTH, to explore cross-dataset performance of action detection algorithm. The

MSR dataset contains 54 video clips, with each clip exhibiting several instances of each action

type (71 waving, 51 clapping and 81 boxing action instances). Figure 3.8 shows sample video
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frames from MSR and KTH datasets.

Following [5], our training set consists of the waving, clapping and boxing clips from KTH aug-

mented with four randomly-selected video clips from the MSR dataset. The testing dataset consists

of the remaining videos in MSR. We first construct a standard vocabulary using K-means cluster-

ing (K = 1000) on HNF descriptors computed at space-time interest points (STIP) [35] extracted

on the training set, where the descriptors are a compound of HOG and HOF [27] features.

Next, we train a set of linear one-vs-all SVM classifiers using videos from KTH and the ground

truth volumes from the MSR training subset. For each, we extract overlapping video chunks with

durations of F frames (F = 32 is typical) and compute a bag-of-video-words histogram by accu-

mulating the counts of HNF descriptors in the volume, quantized using the above dictionary. We

employ randomly-extracted video chunks of the same size as negative examples and expand this

negative sample set using bootstrapping [58]. Figure 3.9 summarizes the training and test of our

proposed action detection model.

For comparing our results to the ones in Cao et al. [5] we use the same precision and recall criteria.

For the precision score, a detection is regarded as a true positive if at least 1/8 of its volume

overlaps with that of the ground truth. For recall, the ground truth label is regarded as retrieved

if at least 1/8 of its volume is covered by one of the detected volumes. The precision and recall

values are computed using Equation 3.10 for different SVM thresholds to generate P-R curves, as

shown below.

Precision =
Number of True Positives

Number of Detections
(3.10a)

Recall =
Number of Retrieved Labels

Number of Labels
(3.10b)
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Figure 3.9: Summary of our training and test methodology.

3.6.1 Cross-Dataset Action Detection Comparisons

Figure 3.10 shows the precision-recall curves for Cao et al. [5] and the two search variants of the

proposed video projection (VP) method: VP+ESS and VP+TPSS. We make several observations.

First, we see that in general, both VP methods outperform [5], particularly in the high recall regime.

Second, we observe that the proposed two-point subwindow search (TPSS) appears to be slightly

better than ESS [6] on this task, in spite of its simplicity. Finally, we note that even though our
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approach is not explicitly designed with cross-dataset action detection in mind, it surprisingly

outperforms [5] on the task.

Figure 3.10: Direct comparison on MSR Action II, trained using KTH+4 clips of MSR. Both
variants of proposed method, VP+ESS and VP+TPSS, outperform Cao et al. [5] despite their
simplicity.
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3.6.2 Additional Results

Our last set of experiments explores a few remaining questions, such as: how well does our method

perform with shorter-duration video chunks (smaller values of F )? Figure 3.11 shows the preci-

sion/recall curves for the waving action (trained as in Section 3.6.1) for different chunk lengths.

We observe that while the performance is reduced for smaller window sizes, it is still reasonable.

This indicates that the proposed approach should be suitable for online recognition systems, where

low latency is essential; in such settings, a detection can be flagged using only a portion of the

action of interest. Finally, Figure 3.12 shows examples of action detections on the MSR Actions II

dataset using VP+TPSS.

Figure 3.11: VP+ESS on the waving action for different video chunk sizes. The system performs
best when longer chunks are used, but performance is acceptable if smaller chunks are needed,
such as for on-line recognition.
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Figure 3.12: Examples of action detections on MSR dataset using VP+TPSS. Colored boxes denote
detected actions: boxing (blue), clapping (green), and waving (red). Qualitatively, our results are
comparable to Cao et al. [5].
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CHAPTER 4: A WEAKLY-SUPERVISED PROBABILISTIC MODEL

FOR ACTION LOCALIZATION AND RECOGNITION

In the previous chapter, we introduced an efficient method for detecting actions by transforming

the 3D localization problem into a series of 2D detection tasks. The drawback of this method and

other supervised detection methods [5,7–9,47,52] is that they require access to manually annotated

action locations in the training data. This is feasible on small datasets like UCF Sports and MSR

II , however it is highly costly and cumbersome on larger, more complex datasets such as UCF101

and HMDB.

In this chapter, we first present a weakly-supervised probabilistic model for detecting actions by

localizing discriminative sub-regions in datasets where each video may contain multiple instances

of actions. While our first system introduced in the previous chapter requires every action to be

manually outlined in every frame of the video, this second system only requires that the video be

given a single high-level tag. From this data, the system is able to identify discriminative sub-

regions that correspond well to the regions containing the actual actions.

Next, we extend the above probabilistic model for finding the discriminative sub-regions to the

action recognition problem where the video clips have been tightly trimmed to contain only one

instance of an action. The goal of our proposed model is to extract most discriminative sub-regions

within a video sequence and then aggregate them for the final action classification. This is different

than standard BoW model where all the features contained in a video are accumulated into a single

histogram. Our model is trained in a weakly-supervised manner: training videos are annotated only

with training label without any action location information within the video. Our localization ex-

periments on UCF Sports dataset show that the discriminative sub-regions produced by this weakly

supervised system are comparable in quality to action locations produced by systems that require
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training on datasets with fully annotated location information. Furthermore, our classification ex-

periments on UCF Sports and two other major action recognition benchmark datasets, HMDB and

UCF101, show that our recognition system significantly outperforms the baseline BoW models

and is better than or comparable to the state-of-the-art.

The rest of this chapter is organized as follows. Section 4.1 provides the overview of the video rep-

resentation. Section 4.2 introduces our weakly-supervised model for detecting actions in datasets

where each video clip may contain multiple instances of actions. Section 4.3 extends the localiza-

tion model to recognize actions in datasets where each video has been tightly trimmed to contain

only one instance of an action.

4.1 Overview of Video Representation

Video data is represented using HOG-HOF descriptors computed at densely sampled interest points

using Laptev’s STIP detector [37]. Building on the success of bag-of-words approaches, the de-

scriptors are represented in a standard vector quantization representation and then clustered to

construct a visual codebook of size 4000 using K-means clustering. Each STIP pj is represented

as the tuple (xj, yj, tj, cj), denoting that a STIP was observed at (xj, yj) in frame tj of the video;

the label cj corresponds to the index of the visual word in the codebook that is closest in feature

space to pj’s descriptor.

The densely sampled interest point option for the STIP detector returns interest point locations

based on the spatial and temporal scale sizes used. These locations are highly sparse, making it

possible to compact the images and significantly reduce the amount of computation necessary to

localize discriminative sub-regions. Each feature descriptor captures the information contained in

a rectangular cuboid centered at the interest points and a single 2D image can represent the quan-
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tized STIP features for a given range of actual video frames as shown in Figure 4.1. For brevity,

we will use the term frame to denote this 2D image.

Figure 4.1: Interest points (STIPs) are sampled at dense space time intervals and a single 2D image
can represent the quantized STIP features for a given range of the action video frames. We use the
term ‘frame’ to represent the descriptor images.

4.2 A Weakly-Supervised Model for Action Localization

In this section, we introduce a probabilistic model for detecting actions by localizing discriminative

sub-regions in videos where each video may contain multiple instances of actions. While our first

detection system introduced in the previous chapter requires every action to be manually outlined

in every frame of the video, this second system only requires that the video be given a single high-

level tag. Our experiments on MSR Action Dataset II show that the localizations produced by

this weakly supervised system are comparable in quality to localizations produced by systems that
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require each frame to be manually annotated.

4.2.1 Probabilistic Model for Localizing Discriminative Sub-Regions

A localizer identifies the sub-regions in the frame of quantized descriptors that are the most dis-

criminative for classifying an action. Building on the success [6], the discriminative power of each

sub-region is computed with a linear discriminator based on the histogram of quantized features,

or bag-of-words, in the sub-region. This can be implemented probabilistically with a distribution

similar to the softmax activation function. For now, we will focus on localizing within a single

frame of descriptors, which corresponds to several frames of raw video data, then expand to com-

plete videos below in Section 4.2.3. If Rf denotes the set of all possible sub-regions in frame f ,

then the probability that the sub-region r is the most discriminative region, pf (r;φ) is defined as:

pf (r;φ) =
exp

(
φ>hf,r

)∑
r′∈Rf

exp
(
φ>hf,r′

) . (4.1)

In this distribution, hf,r denotes the histogram describing the frequency of visual words in the sub-

region r contained in frame f and φ contains localization parameters. TheRf denotes the set of all

possible sub-regions in the frame, however, we only used full size, three-quarter-sized, half-sized

and quarter-sized sub-regions w.r.t. the frame size in our computations. We have experimented

with including smoothness terms between frames and computing the marginal distribution for each

frame, but this did not improve accuracy. A significant advantage of this linear scoring function is

that it can be computed efficiently using the integral image representation, similar to [6].

43



4.2.2 Incorporating Weakly Supervised Tags

Because this system is weakly supervised, the only source of localization information is the label

assigned to each clip. Thus, the localization model must be extended to include a class label.

This will make it possible to learn the localizer by optimizing a recognition criterion. This can

be done by changing the localization model in Equation (4.1) from a distribution over the most

discriminative sub-regions in each frame into a joint distribution over sub-region locations and a

video label, c. We thus introduce one localizer per label and altering the distribution so that the

parameters used depend on the label, c. Again, letting r denote the most discriminative sub-region

in a frame, the joint probability over r and c is defined as

pf (r, c;φ1, . . . ,φC) =
exp

(
φ>c hf,r

)∑
c′∈C

∑
r′∈Rf

exp
(
φ>c′hf,r′

) (4.2)

where there are C possible labels, and φ1, . . . ,φC are the localizers associated with each of the C

classes (Figure 4.2). This distribution can be interpreted as specifying the probability that the label

c and sub-region r are the best combination of sub-region and label that describes the action in the

frame.

4.2.3 Detecting Actions

With this basic formulation, it is possible to create a weakly-supervised action detection system

for video data that may contain multiple simultaneous actions. Building on the single frame model

described in the previous section, this detection method will detect the action using just the de-

scriptors from one segment of video. Depending on the number of frames in the descriptor, this

means that each frame of descriptors will represent T frames of raw video data.

44



Φ = {Ø1, …, ØC}
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Figure 4.2: Each sub-region, r, in a descriptor frame is represented as histogram of quantized
features contained in the sub-region and the joint probability distribution between sub-regions and
action labels are computed.

While previous work, such as [5], searches over variable length sub-volumes in the video, detecting

from a fixed set of frames makes it possible to apply this method to streaming video. In addition,

both [53] and our experiments below show that competitive detection results can be achieved from

short snippets of data.

Using a dataset, like the MSR Action Dataset II used in [5], this system can be trained by process-

ing the video into frames of descriptors, then treating the frames as independent samples. Each

frame is tagged with a label specifying which actions is present. Frames that includes multiple

actions are duplicated for each of the actions present in the frame. Treating the frames as inde-

pendent samples does lose temporal coherence, but greatly simplifies the application to streaming
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data. We have experimented with the incorporation of CRF models to capture temporal coherence,

but did not find significant differences in performance.

The learning criterion is created by taking the negative log of the marginal distribution over c, then

summing this negative log over the frames. For a set of Nf training samples and associated labels

l1, . . . , lNf
, the loss function is defined as:

L(Φ) = −
Nf∑
f=0

log(P (Tf = lf |Φ) +
1

2
ε

C∑
c=1

||φc||2 (4.3)

where Φ = {φ1, . . . ,φC} are the sub-region localizer weights, Tf is the predicted action label

and the lf is the ground truth action label of sample frame f . The probability P (Tf = lf |Φ) is

computed by marginalizing the joint distribution in Equation 4.2 over r:

P (Tf = lf |Φ) =

∑
r∈Rf

exp
(
φ>lfhf,r

)
∑
c∈C

∑
r∈Rf

exp
(
φ>c hf,r

) (4.4)

Using Equation 4.4 in Equation 4.3, the final loss for Nf examples becomes:

L(Φ) = −
Nf∑
f=0

(
− log

∑
r∈Rf

exp
(
φ>lfhf,r

)
+ log

C∑
c=1

∑
r∈Rf

exp
(
φ>c hf,r

)+
1

2
ε

C∑
c=1

||φc||2 (4.5)

A significant advantage of this straightforward probabilistic formulation is that is easily imple-

mented using standard optimization packages. We train the localization parameters, Φ = {φc},

using conjugate gradient descent optimization package.
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4.2.4 Action Detection Experiments

Tested on the MSR Action Dataset II [5], the discriminative sub-regions chosen by our weakly-

supervised learning approach match the ground-truth labeling of the videos well. The MSR Action

Dataset II consists of 54 video sequences recorded in crowded scene. There are 3 type of actions

(boxing, handclapping and handwaving) in this dataset and each video contains multiple instances

of actions. There are 203 action instances in total.

While [5] began by training from the KTH Action dataset, then used videos from the MSR-II

dataset to adapt the detectors. We found that beginning with the KTH dataset did not help our

system, so instead we trained directly on four videos from MSR-II as [5] did for domain adaptation,

so that both our system and [5] both used the same amount of data from MSR-II. To examine how

more data benefits our localization performance, we also randomly split the 54 video sequences

into 3 groups and measure our detection performance with a 3-fold cross validation test.

In detection stage, we perform a per-frame localization and obtain a bounding box for each frame.

Following [5]’s evaluation setup, we calculate Precision-Recall curves based on different proba-

bility thresholds. For the precision score, a detection is regarded as a true positive if at least 1/8

of its volume overlaps with that of the ground truth. For recall, the ground truth label is regarded

as retrieved if at least 1/8 of its volume is covered by one of the detected volumes. As Figure 4.3

shows, our system produces acceptable results when trained with just four videos, but produces

results that improve on [5] when given more access to training data. Our method gives reasonable

localization results on most of the videos as shown in Figure 4.4.
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Figure 4.3: Action detection on MSR-II compared with [5]. Black curves show our result trained

with randomly selected 4 videos and Red curves show our detection result trained with 3-fold cross

validation. Training using just 4 videos, our performance is acceptable. With more training videos,

the localization improves significantly and outperforms [5].
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(a) (b)

(c) (d)

Figure 4.4: Examples of action detections on MSR dataset. Our method gives reasonable localiza-
tion results on most of the videos.
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4.3 Action Recognition by Discriminative Sub-Region Localization

The model in Section 4.2 is designed for videos where the action in each frame may be different.

In current research, whole-clip classification is a popular alternative. In these datasets, such as

UCF Sports [2], the training and test data are made up of short clips that have been tightly trimmed

temporally to contain only the action. Each of these clips are assigned a single label that represents

the action in that clip.

In this section, we show how the probabilistic model for finding discriminative sub-regions can

be extended to video databases with one label assigned to short clips. Because a single label is

applied to multiple frames in the clip, the role of the localizer must be adapted. Our goal in this

new framework is to build on techniques that have proven to be robust for action recognition.

If the localizers are used to produce global histograms that represent different sub-volumes, the

recognition system can be built on the bag-of-words recognition model that has proven successful

in action recognition.

4.3.1 Model Implementation

Figure 4.5 shows our proposed weakly-supervised framework for localizing discriminative sub-

regions and recognizing actions. The goal of our system is to extract most discriminative sub-

regions within a video sequence and then aggregate them for the final action classification.

Given a video sequence, the classification system uses a set of localizers to find the most dis-

criminative sub-regions in the video necessary to classify the action. Each of these sub-regions

is represented via a visual words histogram. These histograms are then aggregated across frames

to construct a video level histogram for each localizer. In order to incorporate nonlinearity into

our model, we use Kernel Map technique [16] to transform the histograms to a high-dimensional
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feature space, where linear dot product approximates Histogram Intersection Kernel (HIK). Using

these high-dimensional features, we then compute the joint probability for all combinations of dis-

criminative sub-region localizers and action classes. Marginalizing this probability over localizers

and picking the class corresponding to the highest probability gives us our final classification.

Localizer # 1 x̂1 = Ψ(x1)

V = { I1,I2, …, IN }

x1

xD

Localizer # D x̂D = Ψ(xD)

x̂1 

x̂d 

Φ = { φ1 , …, φD } 

Kernel Map

y (x̂,θ)Estimated Histograms

θ = { θdc } 

P[Action]

Figure 4.5: This diagram illustrates our approach for recognizing actions. First, a set of localizers
estimate which sub-regions in the video frames are likely to contain the discriminative informa-
tion necessary to classify the action. These candidate sub-regions are represented by histograms
of visual words. Next, the feature vectors generated by the histograms are used to compute the
probability of any particular combination of candidate sub-region and action class. An important,
unique aspect of this approach is that the system is designed so that localization parameters (Φ)
and recognition parameters (Θ) are trained to maximize the probability of the correct action class.
This makes it possible to train this system in a weakly-supervised fashion.

The following are the summary of the differences between the action recognition model presented

in this section and the detection model presented in Section 4.2:

• Action recognition model is used for localizing and recognizing actions from video clips

where each video clip is segmented to contain only one instance of an action while the

previous model is used for detecting actions (localizing in both time and space) in videos

where the video may contain multiple action instances and the duration of the video sequence

is longer than the duration of the action instance.
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• In the detection model, each descriptor frame is considered as a separate example during

training. In recognition model, the histograms extracted from each frame are accumulated

to have a video level representation.

• In recognition model, the number of localizers can be different than the number of action

labels. Each localizer is considered as a latent variable.

• The kernel map [16] is integrated into the action recognition framework to introduce non-

linearity and therefore improve the discriminative power of the classifier.

We will provide a detailed explanation of our proposed framework shown in Figure 4.5 in the

following sections.

4.3.1.1 Localizing Discriminative Sub-Regions

As shown in Figure 4.5, the first step in recognizing the action is localizing discriminative sub-

regions that best describe the action. These candidates are selected using a set of D discriminative

sub-region localizers. A localizer φd, learned during training (as explained in Section 4.3.2), is a

vector of parameters describing the probability distribution of a latent location variable. For every

sub-region in each frame in the video, each localizer computes the probability of that sub-region

being the most discriminative in that frame. Each localizer has the same form as the localizer

shown in Equation (4.1), i.e.:

pf (r;φd) =
exp

(
φ>d hf,r

)∑
r′∈Rf

exp
(
φ>d hf,r′

) . (4.6)

In this distribution, hf,r denotes the histogram describing the frequency of visual words in the sub-
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region r contained in frame f and φd are the parameters for localizer d, which are learned during

training.

I2

I1 I2 INf
hd: video histogram for 

localizer d

Figure 4.6: Our objective is to compute a video representation by selecting the sub-region in each
video frame that maximizes the probability in Equation (4.6) and accumulating the histograms of
sub-regions across all video frames.

4.3.1.2 Estimating Histograms to Represent Localized Sub-Regions

Once the sub-region probabilities of each frame are computed, our objective is to compute a video

level histogram representation for each localizer. The straightforward way is to select the sub-

region in each video frame that maximizes the probability in Equation (4.6) and accumulate the

histograms of sub-regions across frames as shown in Figure 4.6, i.e.

hd =
∑
f∈F

hf,rmax (4.7)

where rmax = arg maxr p
f (r;φd). However, since the max operator is not differentiable, we

use the sub-region probabilities to compute the estimated histograms using softmax approxima-
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tion. The final feature representation for localizer d ∈ D, denoted xd, is obtained by using this

expectation calculation to aggregate over all frames:

xd =
∑
f∈F

∑
r∈Rf

hf,r.p
f (r;φd), (4.8)

where F is the number of frames for the given video sequence, Rf is again the set of all possible

sub-regions within a frame, hf,r represents the histogram of features for sub-region r in f and

pf (r,φd) is computed as in Equation (4.6).

4.3.1.3 Kernel Map

The histogram intersection kernel has proven to be a popular component of a bag of visual words

model for object or action recognition. Unfortunately, applying this kernel is difficult because

the training data is weakly supervised. In a traditional kernel-based classifier, new examples are

classified by using the kernel function to compute the dot product between transformed versions

of the example and various training examples. However, the actual sub-region for each frame in

the training videos is not known. While recent work has proposed a methodology for extending

kernel methods to latent models, like the latent SVM model [15], the range of possible values for

the latent sub-region location creates significant computational issues.

Instead, we employ the technique introduced by Vedaldi et al. [16] to approximate non-linear

kernels via explicit feature maps. This enables applying the efficient learning methods for linear

kernels to non-linear kernels including histogram intersection kernel. An additive kernel is defined
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by

K(x,y) =
B∑
b=1

k(xb,yb), (4.9)

where b is the bin index. If k(x, y) is homogeneous then the additive kernel is called homogeneous

i.e.

∀c ≥ 0 : k(cx, cy) = ck(x, y). (4.10)

Most popular non-linear kernels used in computer vision applications, including histogram inter-

section and chi-square kernels, are homogeneous kernels.

A feature map Ψ(x) for a kernel is defined as a function which maps x into a high-dimensional

feature space as follows:

∀x, y : k(x, y) =< Ψ(x),Ψ(y) > . (4.11)

Vedaldi et al. [16] proposed a technique using kernel signatures to analytically construct closed-

form feature maps for homogeneous kernels which allows transforming the data into a format

suitable for linear classifiers. Also, they propose a method using Fourier transform of the kernel

signature and sampling theorem to approximate the infinite dimensional feature map Ψ(x) with the

finite dimensional feature map Ψ̂(x). The feature map approximation of the estimated histogram
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xd, where d is the index of one of the D detectors, is given as follows:

[Ψ̂(xd)]j√
xdL

=



√
κ(0), j = 0,√
2κ( j+1

2
L) cos ( j+1

2
L logxd), j > 0 odd,√

2κ( j
2
L) sin ( j

2
L logxd), j > 0 even,

(4.12)

where j = 0, 1, ..., 2n, n is the number of samples used in the discrete approximation, L is the

sampling period, and κ is the density function which is given by

κ(λ) =
2

π

1

1 + 4λ2
(4.13)

for histogram intersection kernel. In our experiments we set the sampling number n = 3 which

gives a good approximation for the histogram intersection kernel.

4.3.1.4 Action Classification

After computing the kernel map transformation of the estimated histograms, we use them to esti-

mate the probability of action labels for each video. The key problem is that the system must ag-

gregate the information in D different localizers to produce this final probability. This aggregation

is implemented using a probabilistic model. The distribution p(d, c) denotes the joint probability

that the video is best described by class c and contained in sub-region located by localizer d.

Using the kernel map features representations for each localizer, denoted by x̂1, . . . , x̂D, we can
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compute the joint probability distribution p(d, c) as:

p(d, c) =
exp

(
x̂>d θdc

)
C∑

c′=1

D∑
d′=1

exp
(
x̂>d′θd′c′

) , (4.14)

where θdc is the set of weights that define p(d, c) and x̂d = Ψ̂(xd) as defined in Section 4.3.1.3.

If the primary goal is labeling the action in the video, the probability in Equation (4.14) can be

marginalized over d to estimate the marginal distribution over the class labels. The final label is

selected by choosing the label with the highest probability in this marginal distribution.

4.3.2 Learning

For a set of training videos {Vn} and corresponding set of ground truth labels {ln}, where n =

1, . . . , N , our goal is to maximize the probability of ground truth label for each video by simulta-

neously optimizing both the localization parameters Φ and the classification parameters Θ. Con-

verting the criterion to a loss function by taking the negative logarithm of the likelihood and adding

regularization terms, we get:

L(Φ,Θ) =−
N∑

n=1

C∑
c=1

1c(l
n) log ync (Φ,Θ) +

1

2
ε1

D∑
d=1

||φd||2

+
1

2
ε2

D∑
d=1

C∑
c=1

||θdc||2
(4.15)
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where the probability of video Vn is classified as class c is given by

ync (Φ,Θ) =

D∑
d=1

exp
(
x̂n
d(φd)

>θdc
)

C∑
c′=1

D∑
d=1

exp
(
x̂n
d(φd)

>θdc′
) (4.16)

and 1c(l
n) is a class indicator function

1c(l
n) =


0 , c 6= ln

1 , c = ln
. (4.17)

We train the localization parameters, Φ = {φd}, and classification parameters, Θ = {θdc} using

standard conjugate gradient descent optimization package. The gradients are computed efficiently

using the backpropagation algorithm.

4.3.3 Experimental Evaluation

In this section, we first show the effectiveness of our proposed model at localizing discriminative

sub-regions on UCF Sports dataset which is the most consistently used dataset in recent work

on localization [8–10] because ground-truth localizations are available at each frame. Then, we

present the action recognition results of our method on two major action recognition datasets:

HMDB and UCF101.

We compare our results with the baseline global BoW model and state-of-the-art methods using

STIP and MBH features. For the baseline BoW model, we compute the global histograms of visual

words and transform the histograms using Kernel Map to approximate the Histogram Intersection
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Kernel (HIK). Then, we train multi-class linear SVM using the transformed features. This es-

sentially provides very similar results as training a non-linear SVM using HIK. However, we use

Kernel Map in our baseline BoW setting in order to make a direct comparison with our proposed

weakly-supervised method.

Figure 4.7: Sample video frames from UCF Sports dataset for each category.

4.3.3.1 UCF Sports Dataset

The UCF Sports dataset contains 150 video sequences and includes 10 human actions: diving, golf

swinging, kicking (a ball), weight lifting, horse riding, running, skateboarding, swinging (on the

pommel horse and on the floor), swinging (at the high bar) and walking. It is a challenging dataset
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due to large variations in camera motion, object appearance and pose, object scale, viewpoint,

cluttered background and illumination conditions. The sample video frames from UCF Sports

dataset are shown in Figure 4.7.

4.3.3.1.1 Accuracy Results

While it is common to use a Leave-One-Out-Cross-Validation (LOOCV) testing methodology

when conducting experiments with the UCF Sports dataset, Lan et al. [8] have recently pointed

out that many of the videos in this dataset are clips taken from a longer video. This is problematic

when conducting LOOCV tests because several training clips will often be drawn from the same

video as the testing clip. This causes the classifier to perform best when it effectively memorizes

the appearance of the training clips to exploit the strong inherent context correlation among clips

drawn from the same video segment. In order to overcome this issue, [8] suggest using approx-

imately a third of the videos from each action class for testing while the remaining videos are

reserved for training.

Table 4.1: Mean per-class action recognition accuracies (split) on the UCF Sports dataset. We
show that our method outperforms both global and results reported in [8–10]. * Both [8] and [9]
use ground truth annotations during training where as our model is weakly supervised and does
not require ground truth annotations.

Method Accuracy(%)
Global BoW+SVM [Linear] 65.95

Our Method [Linear] 72.86
Lan et al. [8] 73.1*

Shapovalova et al. [10] 75.3
Raptis et al. [9] 79.4*

Global BoW+SVM[Kernel Map] 70.21
Our Method [Kernel Map] 80.95
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Figure 4.8: Confusion matrix for the UCF Sports dataset using train/test split.

Table 4.1 shows mean per-class accuracy results and Figure 4.8 shows the corresponding confusion

matrix using the train-test split suggested in [8]. We observe that using a global bag-of-words

approach only leads to an approximate 66% accuracy. This is similar to results reported in [8–

10] and demonstrates the inability of the system to differentiate between discriminative vs non-

discriminative features.

While a slight improvement is achieved by switching from a linear to non-linear kernel, our lo-

calization based-system is able to improve the classification accuracy of the global bag-of-words

system by more than 10%. Compared with recent action recognition systems, Table 4.1 also shows

two important aspects of the performance of this system:

1. The 80.95% recognition accuracy of our system is more than 5% better than the accuracy

of the recently proposed weakly-supervised system in [10], with the added advantage of not

requiring any object saliency detector for limiting candidate sub-regions. This is, in part,

due to the ability of our system to learn localizers that are trained to find discriminative
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sub-regions.

2. Our system is competitive with recently proposed methods that require hand-annotated re-

gions in the training data [8, 9], significantly improving on [8].

Because these results were computed by treating each frame independently, we also experimented

with a Conditional Random Field (CRF) model that includes a smoothness terms between frames.

Instead of finding the discriminative locations independently, the CRF system optimizes the loca-

tions jointly over the frames. However, we saw no improvement in the recognition performance.

This could be because the localizers were able to find strong enough visual information even when

the frames were treated independently. Also, histograms are aggregated across frames which helps

smooth out the effect of jitters in the localization.

We also performed experiments using the LOOCV method on the UCF Sports dataset. The accura-

cies for the LOOCV method are provided in Table 4.2. We can see that our method is comparable

to results reported by others.

Table 4.2: Mean per-class action recognition accuracies (LOOCV) on the UCF Sports dataset. Our
LOOCV results are comparable to the state-of-the-art.

Method Accuracy(%)
Kovashka et al. [31] 87.3

Klaser [45] 87.3
Wang et al. [42] 85.6
Yeffet et al. [59] 79.3

Rodriguez et al. [2] 69.2
Lan et al. [8] 83.7
Our Method 83.7

Lastly, we conducted experiments using different numbers of discriminative sub-region localiz-

ers. The corresponding classification accuracies are provided in Table 4.3. When the number of
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localizers is zero, the whole frame is considered, and the results are similar to the global bag of

words model. Even with only 2 localizers, the classification performance significantly increases,

peaking with 10 localizers. Increasing the number of localizers further, results in a slight drop in

performance which may be due to the model overfitting on the training data.

Table 4.3: Classification accuracy w.r.t. the number of discriminative sub-region detectors. We
observe that increasing localizers improves recognition performance up until D = 10. Beyond
that, there is a drop in performance, which can be attributed to overfitting.

# of detectors (D) Accuracy(%)
0 71.78
1 73.45
2 77.85
5 79.52

10 80.95
15 78.45

4.3.3.1.2 Localization Results

Because our method is trained using weakly-supervised data, this method is limited to learning

to isolate discriminative sub-regions in the video. However, the results in this section will show

that this approach is able to actually locate the action with accuracy that is comparable to previous

work that was trained with hand-annotated bounding boxes.

The action location is found using the action/location probabilities. Just as the distribution in Equa-

tion (4.14) was marginalized to compute a distribution over action class, it can be marginalized to

compute a marginal distribution over which localizer has identified the action. The sub-region can
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then be found by picking the localizer with highest probability:

d∗ = argmax
d∈D

C∑
c=1

p(d, c). (4.18)

Once we decide on the localizer, we pick the sub-region with the highest probability in each video

frame using Equation (4.6).

Figure 4.9 shows localization results obtained using our proposed technique that provide empirical

evidence that this localizes the actual action well, despite only being trained to locate discriminative

sub-regions. This indicates that the sub-regions containing the actual action tend to be the most

discriminative sub-regions.

In order to evaluate how well our discriminative sub-regions are localizing actions, we use the same

evaluation criterion given in [8]: we first compute the intersection-over-union score per frame using

Area(Rf ∩Rg
f )/Area(Rf ∪Rg

f ) where Rf is the detected sub-region in frame f and Rg
f is the

ground-truth action bounding box. Then, we compute the average intersection-over-union score

for a video using all frames in the video. If this score is greater than a threshold σ, we consider

the video to be correctly localized. We compute ROC curves for each action class similar to [8].

A video is considered as correctly predicted if both the prediction label and the localization match

the ground truth.

Figure 4.10 shows our average ROC curve for action classes and the ROC curve from [8] for

σ = 0.2. We also compute the area under the ROC curve (AUC) for different σ values. Although

our system has no access to ground-truth bounding boxes during training, while the system in [8]

does, our system performs comparably with [8] and in many cases outperforms it.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 4.9: We show localization results obtained using our method on the UCF Sports action
dataset. We can see that our model is able to correctly localize action specific sub-regions as the
best possible representation of the action being conducted in the video.
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Figure 4.10: Comparison of action localization performance against Lan et al. [8]. (a) ROC curves
for σ = 0.2. (b) Area Under ROC for different σ. σ is the threshold that determines if a video
is correctly localized. Compared with [8], which requires the action be manually located in the
training data, our system produces comparable or improved results.
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4.3.3.2 HMDB Dataset

The UCF Sports dataset is often used for action localization tasks since it incorporates the ground

truth annotations of the actions. However, it is a relatively small dataset for action recognition

tasks with only 10 action classes and 150 videos. We ran experiments on HMDB dataset [3]

to demonstrate the action classification performance of our method on larger action recognition

datasets. The HMDB dataset consists of 51 action categories and 6849 video clips (see Figure 4.11

for sample video frames). Each action category contains a minimum of 101 clips. The action

categories in HMDB dataset are grouped in five categories as follows:

1. General facial actions: smile, laugh, chew, talk.

2. Facial actions with object interaction: smoke, eat, drink.

3. General body movements: cartwheel, clap hands, climb, climb stairs, dive, fall on the floor,

backhand flip, handstand, jump, pull up, push up, run, sit down, sit up, somersault, stand up,

turn, walk, wave.

4. Body movements with object interaction: brush hair, catch, draw sword, dribble, golf, hit

something, kick ball, pick, pour, push something, ride bike, ride horse, shoot ball, shoot

bow, shoot gun, swing baseball bat, sword exercise, throw.

5. Body movements with human interaction: fencing, hug, kick someone, kiss, punch, shake

hands, sword fight.

In our experiments, we follow the original approach using the three train-test splits [3] and report

the average accuracy. For each class and split, there are 70 videos for training and 30 videos for

testing. Note that the dataset includes both the original videos and their stabilized version. In our

experiments we used the original videos.
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Figure 4.11: Sample video frames from HMDB dataset.
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Table 4.4: Mean per-class action classification accuracies for the first 10 action classes from
HMDB dataset using STIP features. The number of localizers is set to 10 in a similar setting
to the UCF Sports Dataset.

Method Accuracy(%)
Global BoW 47.1
Our method 57.0

First, we ran an experiment using the first 10 classes from the HMDB dataset. In this experiment,

we have used 10 localizers in order to demonstrate performance of our framework on HMDB

dataset in a similar setting to the UCF Sports Dataset. The Table 4.4 shows that there is a 10% im-

provement (21% relative increase) over the baseline global BoW model with histogram intersection

kernel, which is consistent with the results on UCF Sports dataset.

Next, we ran experiments on the complete dataset using different number of localizers. Table 4.5

shows that the best performance was obtained using 1 localizer and the performance drops as

the number of localizers increases. Overfitting is likely becoming the problem as the number of

localizers increases. The HMDB dataset contains 51 action categories and the second layer of our

model has over 14 million parameters for HMDB dataset with 10 localizers and gets larger as the

number of localizers are increasing.

Table 4.5: Mean per-class action classification accuracies on HMDB dataset using STIP features
for different number of localizers.

# of Localizers Accuracy(%)
1 27.12
5 26.21
10 25.50
15 25.43
20 24.51
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In order to demonstrate that our video representation explained in Section 4.1 can be used with

any local feature descriptor, we ran experiments using densely sampled Motion Boundary His-

togram (MBH) descriptor [44, 60] which outperforms the STIP descriptor in most of the realistic

datasets [61]. MBH was proposed by Dalal et al. [60] for detecting humans in films and videos

where there is camera motion and background clutter and used by Wang et al. [44] for action

recognition problem. MBH is computed using the derivatives of the optical flow in vertical and

horizontal directions. Since it is the gradient of the optical flow, the constant camera motion is re-

moved and therefore it is more robust to camera motion than the optical flow. We follow [44] and

compute the MBHx and MBHy descriptors along the densely sampled SIFT trajectories. In [44],

authors construct different codebooks for MBHx and MBHy. For classification, they use a non-

linear SVM with RBF-χ2 in a one-vs-rest setting. Different descriptors are combined using a

multi-channel approach. In our experiments, we combined the MBHx and MBHy into a single

feature descriptor and constructed a codebook with 4000 visual words by clustering a subset of

100,000 randomly selected training features using k-means.

Table 4.6: Comparison of our method with global BoW and other methods that use STIP
(HOG/HOF) and MBH features.

Method Accuracy(%)
HOG/HOF [3] 20.0

C2 [3] 23.0
Action Bank [12] 26.9

Dense Trajectory [MBH] [44] 43.2

Global BoW [STIP] 21.0
Global BoW [MBH] 36.6

Our method [STIP] 27.12
Our method [MBH] 42.42

Table 4.6 provides a comparison of our method with the global BoW method and other methods

that are using STIP (HOG/HOF) and MBH features. As shown in the table, the classification
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accuracy of our method is 6.12% better than the global BoW model for STIP features and 5.82%

better for MBH features. Our results are better than or comparable to the state-of-the-art methods

that use STIP features. However, we were not able to generate the results reported in [44] for MBH

features using global BoW model.

Figures 4.12 and 4.14 show the confusion matrices for global BoW model and our method using

both MBH and STIP features. Finally, the per-class action classification accuracies are provided

in Figures 4.13 and 4.15, where each bar shows the percentage of the videos that were correctly

classified in each action category. As shown in figures, our proposed method provides better clas-

sification accuracies for most of the action classes when compared to the global BoW model.
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Figure 4.12: Confusion matrix for HMDB dataset using STIP features. (a) global BoW (b) our
method 72
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Figure 4.13: Comparison of action class accuracies for HMDB dataset using STIP features. The
bars show the percentage of the videos that are correctly classified in each action class.
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Figure 4.14: Confusion matrix for HMDB dataset using MBH features. (a) global BoW (b) our
method
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Figure 4.15: Comparison of action class accuracies for HMDB dataset using MBH features. The
bars show the percentage of the videos that are correctly classified in each action class.
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4.3.3.3 UCF101 Dataset

UCF101 [4] is an action recognition dataset collected from YouTube. It is an extension of UCF50

dataset and consists of 13320 videos from 101 action categories. The videos in each action category

are grouped into 25 groups, where each group consists of 4-7 videos of an action. The videos from

the same group may share some common features, such as similar background, similar viewpoint,

etc.

The action categories in UCF101 dataset are grouped into five types as follows: 1) Human-Object

Interaction 2) Body Motion Only 3) Human-Human interaction 4) Playing Musical Instruments

5) Sports. The action categories for UCF101 data set are: Apply Eye Makeup, Apply Lipstick,

Archery, Baby Crawling, Balance Beam, Band Marching, Baseball Pitch, Basketball Shooting,

Basketball Dunk, Bench Press, Biking, Billiards Shot, Blow Dry Hair, Blowing Candles, Body

Weight Squats, Bowling, Boxing Punching Bag, Boxing Speed Bag, Breaststroke, Brushing Teeth,

Clean and Jerk, Cliff Diving, Cricket Bowling, Cricket Shot, Cutting In Kitchen, Diving, Drum-

ming, Fencing, Field Hockey Penalty, Floor Gymnastics, Frisbee Catch, Front Crawl, Golf Swing,

Haircut, Hammer Throw, Hammering, Handstand Pushups, Handstand Walking, Head Massage,

High Jump, Horse Race, Horse Riding, Hula Hoop, Ice Dancing, Javelin Throw, Juggling Balls,

Jump Rope, Jumping Jack, Kayaking, Knitting, Long Jump, Lunges, Military Parade, Mixing

Batter, Mopping Floor, Nun chucks, Parallel Bars, Pizza Tossing, Playing Guitar, Playing Piano,

Playing Tabla, Playing Violin, Playing Cello, Playing Daf, Playing Dhol, Playing Flute, Playing

Sitar, Pole Vault, Pommel Horse, Pull Ups, Punch, Push Ups, Rafting, Rock Climbing Indoor,

Rope Climbing, Rowing, Salsa Spins, Shaving Beard, Shotput, Skate Boarding, Skiing, Skijet,

Sky Diving, Soccer Juggling, Soccer Penalty, Still Rings, Sumo Wrestling, Surfing, Swing, Table

Tennis Shot, Tai Chi, Tennis Swing, Throw Discus, Trampoline Jumping, Typing, Uneven Bars,

Volleyball Spiking, Walking with a dog, Wall Pushups, Writing On Board, Yo Yo.
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In our experiments, we follow the original approach using the three splits for training-testing [4]

and report the average accuracy. Table 4.7 compares the accuracy results of our method using STIP

features with the baseline BoW and [4] which is the only reported result on UCF101. Table 4.8

compares the accuracy results of our method using MBH features with the baseline BoW. Our

method is 7.69% better than the state-of-the-art [4] for STIP features and 6.56% better than the

global BoW model for MBH features.

Table 4.7: Comparison of our method with global BoW using STIP features.

Method Accuracy(%)
Global BoW + Linear SVM 34.99

Global BoW + SVM [Kernel Map] 43.94
Global BoW [Harris3D + STIP] [4] 43.90

Our method with 1 localizer 51.59
Our method with 5 localizers 51.21

Table 4.8: Comparison of our method with global BoW using MBH features.

Method Accuracy(%)
Global BoW + SVM [Kernel Map] 65.28

Our method with 1 localizer 71.84
Our method with 5 localizers 70.35
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(a)

(b)

Figure 4.16: Confusion matrix for UCF101 dataset using STIP features. (a) global BoW (b) our
method
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Figure 4.17: Comparison of action class accuracies for UCF101 dataset using STIP features. The
bars show the percentage of the videos that are correctly classified in each action class.
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Figure 4.18: Confusion matrix for UCF101 dataset using MBH features. (a) global BoW (b) our
method
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Figure 4.19: Comparison of action class accuracies for UCF101 dataset using MBH features. The
bars show the percentage of the videos that are correctly classified in each action class.
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CHAPTER 5: ACTION RECOGNITION USING NEURAL NETWORKS

WITH DROPOUT

One common problem with datasets containing large number of classes is the overfitting of the

parameters on the training data. As an example, the second layer of our framework has over 14

million parameters for HMDB dataset with 10 localizers and gets larger as the number of localizers

increases. Most commonly used approach to avoid overfitting is introducing a regularization term

to the cost function and controlling the overfitting by preventing the weight values getting very

large.

A recently introduced technique for feed-forward deep neural networks, called “dropout” [17],

has been applied successfully to object recognition problem by preventing the overfitting substan-

tially [18]. The dropout procedure can be viewed as a very efficient way of performing model

averaging with neural networks. The overfitting on the data is reduced by setting the output of

hidden units to zero with a probability of 0.5 and those units do not contribute to the forward pass

and back-propagation. Every time a training input is presented, the architecture of the network

changes, but still sharing the same weights and prevents complex co-adaptations on the training

data.

Building upon success of dropout in [17, 18], we integrate the dropout technique into our action

recognition framework introduced in Chapter 4 by replacing the multinomial logistic regression

classifier with a multilayer neural network as shown Figure 5.1. The output of the kernel map

transformation are used as input to the neural network. The last layer of the network is a C-

way softmax classifier for final action classification. Using a deep neural network instead of a

single layer logistic regression model enables the system to learn more complex representations

from features and therefore results in a more discriminative classifier. Also, using the dropout
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technique for training the neural network reduces overfitting of the parameters on the training data

and improves the accuracy results. Even though the success of dropout was demonstrated on large

scale object recognition datasets, to our knowledge it has not been used for action recognition

problem.

Localizer # 1

V = {I1,I2, …, IN }

x1

xD

x2

Localizer # D

Localizer # 2

Estimated 
Histograms

x̂2 = Ψ(x2)

x̂D = Ψ(xD)

1

2

C

Neural Network with dropoutNeural Network with Dropout

x̂1

x̂2

x̂D

Φ = { φ1 , …, φD } 

x̂1 = Ψ(x1)

Figure 5.1: Action recognition framework using neural network with dropout. The first stage of the
framework is kept same as the one in Figure 4.5 and the second stage is replaced with a two-layer
neural network.

The rest of this chapter is organized as follows. Section 5.1 provides an overview of the video

representation. Section 5.2 discusses the proposed action recognition framework with neural net-

work and dropout. Section 5.3 explains how the neural network parameters are trained. Finally,

Section 5.4 provides the experimental results on HMDB and UCF101 datasets.

5.1 Video Representation

A video sequence is represented as a collection of descriptor frames as explained in Section 4.1.

We use two different feature descriptors in our experiments: STIP and MBH.
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The STIP features are computed using Laptev’s STIP detector [37] with default settings. The

interest points are sampled at eight spatial and two temporal scales. 72 dimensional HOG and 90

dimensional HOF feature descriptors are extracted at each interest point and concatenated into a

162 dimensional STIP feature vector.

Figure 5.2: Feature points are sampled densely at each spatial scale and tracked for L = 15 frames.
MBH features are computed within a space-time volume aligned with the trajectories. (Figure is
taken from [44])

The MBHx and MBHy descriptors, which represent the gradient of the horizontal and vertical

components of optical flow respectively, are computed along the densely sampled SIFT trajectories

as explained in [44]. Dense trajectories are extracted by first sampling feature points on a grid

spaced by 5 pixels at different spatial scales and then tracking feature points on each spatial scale

separately through the video. There are 8 spatial scales at most depending on size of the video

and the spatial scale increases by a factor of 1/
√

2. MBHx and MBHy descriptors are computed

within the space-time volumes aligned with the trajectories as shown in Figure 5.2. The size of

the volume is N ×N pixels and L frames where N = 32 and L = 15. We concatenate these two

components into a single MBH feature.
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We construct separate codebooks for STIP and MBH descriptors by clustering a subset of 100,000

randomly selected training features using k-means. We set the number of visual words in each

codebook to 4000. Finally, each feature point pj is represented as the tuple (xj, yj, tj, cj), denoting

that it was observed at (xj, yj) in frame tj of the video; the label cj corresponds to the index of the

visual word in the codebook that is closest in feature space to pj’s descriptor.

5.2 Framework Overview

Figure 5.1 shows the proposed action recognition framework with neural network. The first stage of

the framework is same as the localization stage of the framework introduced in Section 4.3.1. The

second stage of the original framework is replaced with a two-layer feed-forward neural network.

In the first stage of the framework, the video histograms are computed using the localizer weights

as explained in Section 4.3.1.2. We use the same localizer weights learned in Section 4.3.3 for

computing the histograms. Once the histograms are computed, they are transformed to a higher

dimension using kernel map to approximate the histogram intersection kernel (HIK). The output

of the kernel map are used as the input layer of the neural network.

For simplicity, we will first consider the case when there is a single localizer and then, extend it

to multiple localizers. Figure 5.3 shows the network diagram for a single localizer. The input,

hidden and output variables are represented by nodes and the weight parameters are represented

by the links between nodes. The x̂i represents the ith bin of the feature vector x̂ and the x̂0 and z0

represent the bias terms which are set to 1. The input for the jth hidden unit is computed as the

linear combination of the input variables as follows:

aj =
B∑
i=1

w
(1)
ji xi + w

(1)
j0 (5.1)
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where j = 1, ...,M , B is total number of inputs and the superscript (1) indicates the first layer of

the network. Output of the hidden units are computed using a nonlinear activation function h:

zj = h(aj) (5.2)

zj 

z0 

z1 

zM 

x0̂ 

x1̂ 

xî 

xB̂ 

aj 
wji

(1) wkj
(2) bk 

yC 

yk 

y1 

Figure 5.3: Network diagram for a two-layer neural network with B inputs, M hidden units and C
outputs. The output of the kernel map are used as input to the neural network.
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We have used two different activation functions in our experiments , i.e.

h(a) =


1/(1 + e−a) , logistic sigmoid

(1− e−2a)/(1 + e−2a) , hyperbolic tangent (tanh)
(5.3)

and the accuracy results using the logistic sigmoid was slightly better than the hyperbolic tangent.

The outputs of the hidden units are linearly combined as input to the output units

bk =
M∑
j=1

w
(2)
kj zj + w

(2)
k0 (5.4)

where k = 1, ..., C and C is the total number of action classes. Finally, the softmax activation

function is used to provide the class probability outputs as follows:

yk = f(bk) =
ebk∑
k′ e

bk′
(5.5)

The output with the highest probability is selected as the predicted class label. The following

equation summarizes the output as a function of network inputs and weight parameters

yk(x̂,w) = f

(
M∑
j=1

w
(2)
kj h

(
B∑
i=1

w
(1)
ji x̂i + w

(1)
j0

)
+ w

(2)
k0

)
. (5.6)

The network diagram shown in Figure 5.3 can be extended to the case where there are multiple

localizers. We have experimented using two different network structures as shown in Figure 5.4.

Even though the accuracy results of both networks were similar, the network shown in Figure 5.4(a)

was easier to implement using parallel processing.
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Figure 5.4: Two different network structures are used for multiple localizers: (a) the localizer
parameters are only connected to a subset of the hidden units (b) fully connected neural network
where all localizer parameters are connected to all hidden units.

5.3 Network Training

We have already trained the parameters of the first stage of our framework in Section 4.3.3. We

use the output of the first stage as input of the neural network and only train the neural network

parameters of the proposed framework. For a given set of training vectors {x̂n} and corresponding

set of ground truth labels {ln}, where x̂ is the output of the kernel map and n = 1, . . . , N , we
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define the error function as negative logarithm of the likelihood function on the training set, i.e.

E(w) = −
N∑

n=1

C∑
k=1

tkn log yk(x̂n,w) +
1

2
ε||w||2 (5.7)

where

yk(x̂n,w) =
exp (bk(x̂n,w))∑C
j=1 exp (bj(x̂n,w))

(5.8)

and

tkn =


0 , k 6= ln

1 , k = ln
. (5.9)

We trained the neural network weights, w, using stochastic gradient descent with a batch size of

100 examples and momentum (µ) of 0.5. We set the number of hidden units, M , to 500 for each

localizer. The following is the pseudo-code for our stochastic gradient descent algorithm:

1. Initialize the weight parameters, w, from a zero mean Gaussian distribution with standard

deviation of 0.01.

2. Initialize the learning rate η = 0.01.

3. Repeat until error function is zero or maximum number of iterations is reached:

3.1. Randomly shuffle the examples in the training set.

3.2. For each batch i = 1, 2, . . . , n, do:

i. If enabled, apply dropout.

ii. Compute the average error gradient ∇Ei(wi) over the ith batch.

iii. Update the weights:

∆wi+1 = µ∆wi − η∇Ei(wi)

wi+1 = wi + ∆wi+1
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The gradients were computed using error backpropagation. The learning rate was initialized to

0.01 and reduced by a factor of 10 when the error rate stopped improving with the current learning

rate.

5.3.1 Dropout

The dropout [17,18] is a recently introduced technique to reduce the overfitting in neural networks

and it consists of setting the output of each hidden unit to zero with probability 0.5. The hidden

units that are dropped-out do not contribute to the forward pass and not included in backpropa-

gation as shown in Figure 5.5. Every time a training input is presented, the architecture of the

network changes and this prevents complex co-adaptations on the training data. During testing, all

the neurons are used but their outputs are multiplied by 0.5.

(a) (b)

Figure 5.5: (a) In a fully connected neural network, all the hidden units contribute to the forward
pass and backpropagation. (b) When there is dropout, the output of each hidden unit is set to zero
with probability 0.5 and the hidden units that are dropped out do not contribute to the forward pass
and backpropagation.
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5.3.2 Computing the Error Gradients

Error gradients can be computed efficiently using the error backpropagation. We can re-write the

error function given in Equation 5.7 as

E(w) =
N∑

n=1

En(w) +
1

2
ε||w||2 (5.10)

where

En(w) = −
C∑

k=1

tkn log yk(x̂n,w). (5.11)

Hence, the gradient of the error function can be written as a linear combination of the gradient

contributions from each training sample as follow

∇E(w) =
N∑

n=1

∇En(w) + w (5.12)

Using 5.5 in 5.11, we obtain

En(w) =
C∑

k=1

(
−tknbk + tknlog

(
C∑

k′=1

exp (bk′)

))
(5.13)

First, we compute the derivative of En with respect to the second-layer weights as follows:

∂En

∂w
(2)
kj

=
∂En

∂bk

∂bk

∂w
(2)
kj

. (5.14)
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We define the following notation for simplicity:

δk ≡
∂En

∂bk
(5.15)

which is computed using Equation 5.13 as

δk = yk − tk. (5.16)

Using Equation 5.4, we can write
∂bk

∂w
(2)
kj

= zj. (5.17)

Substituting Equations 5.16 and 5.17 into Equation 5.14, we obtain

∂En

∂w
(2)
kj

= δkzj. (5.18)

Next, we compute the derivative of En with respect to the first-layer weights as follows:

∂En

∂w
(1)
ji

=
∂En

∂aj

∂aj

∂w
(1)
ji

= δjzi. (5.19)

where
∂aj

∂w
(1)
ji

= zi (5.20)

and

δj ≡
∂En

∂aj
=

C∑
k=1

∂En

∂bk

∂bk
∂aj

. (5.21)
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Using Equations 5.4, 5.2 and 5.15 in Equation 5.21, we obtain

δj = h′(aj)
C∑

k=1

w
(2)
kj δk. (5.22)

The pseudo-code for the backpropagation procedure is given as follows.

1. For a given input vector x̂, compute the network outputs using Equations 5.1 through 5.5.

2. Compute δk for all output units using Equation 5.16.

3. Backpropagate the δks using Equation 5.22 to obtain δj for each hidden unit.

4. Use Equations 5.18 and 5.19 for computing the derivatives with respect to the first-layer and

second-layer weights.

5.4 Experimental Evaluation

We evaluated the performance of the proposed action recognition framework on HMDB and

UCF101 datasets.

The Table 5.1 provides the mean per-class action accuracies on HMDB dataset for different number

of localizers using STIP features. We compare the accuracy results of our proposed framework

introduced in Section 5.2 with the accuracies reported in Table 4.5 which were obtained using the

multinomial logistic regression (MLR). As shown in the table, using neural network (NN) without

dropout slightly improves the results over the MLR. However, using NN with dropout improves

the results over MLR more than 2% which corresponds to approximately 9% relative increase.

We also ran experiments using MBH features on HMDB dataset. The Table 5.2 compares our

results with other methods that use STIP and MBH features. As shown in the table, our method

with dropout outperforms the state-of-the-art methods that use STIP and MBH features.

93



Table 5.1: Comparison of the action classification accuracies for STIP features on HMDB dataset
with and without using the dropout.

# of
Localizers

Multinomial
Logistic Regression

Neural Network
without Dropout

Neural Network
with Dropout

1 27.12% 27.38% 29.56%
5 26.21% 26.92% 28.84%
10 25.50% 26.21% 27.65%

Table 5.2: Comparison of our method with other methods that use STIP (HOG/HOF) and MBH
features on HMDB dataset.

Method Accuracy(%)
HOG/HOF [3] 20.0

C2 [3] 23.0
Action Bank [12] 26.9

Dense Trajectory (MBH) [44] 43.2

BoW with STIP + SVM [Kernel Map] 21.0
Our method + MLR (STIP) 27.12

Our method + NN without dropout (STIP) 27.38
Our method + NN with dropout (STIP) 29.56

BoW with MBH + SVM [Kernel Map] 36.6
Our method + MLR (MBH) 42.42

Our method + NN without dropout (MBH) 43.48
Our method + NN with dropout (MBH) 45.29

Finally, the Table 5.3 shows the mean per-class action classification accuracies on UCF101 dataset.

Using dropout improves the accuracy results over weakly supervised method proposed in Sec-

tion 4.3. Our best accuracy on UCF101, which is 78.77%, was obtained by combining the MBH

and STIP features together and using dropout.
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Table 5.3: Mean per-class action classification accuracies for UCF101 dataset using STIP and
MBH features.

Method Accuracy(%)
Global BoW [Harris3D + STIP] [4] 43.90
BoW + SVM [Kernel Map] (STIP) 43.94

Our method + MLR (STIP) 51.59
Our method + NN with dropout (STIP) 53.35

BoW + SVM [Kernel Map] (MBH) 65.28
Our method + MLR (MBH) 71.84

Our method + NN with dropout (MBH) 74.24

Our method + NN with dropout (MBH + STIP) 78.77
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CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1 Summary of Contributions

In this dissertation, we have addressed the problem of human action recognition and localization in

unconstrained videos under a number of challenging conditions which include background clutter,

occlusions, camera motion, different camera viewpoints and changes in illumination.

First, we introduced a technique for detecting actions in both space and time by representing the

videos as a collection of sequential 2D video projections. This video representation enables us to

apply the best techniques from object detection to the action detection problem. We also intro-

duced a novel method for searching the 2D projections to localize actions, termed Two-Point Sub-

window Search (TPSS). We evaluated the action detection performance of our proposed method on

Microsoft Research (MSR) Action II dataset which is a particularly difficult dataset for action de-

tection since the video clips are longer than the duration of the actions and each video clip contains

multiple instances of the same or different actions. Our experiments show that video projection

outperforms the latest results on action detection in a direct comparison.

Second, we proposed a weakly-supervised probabilistic model for localizing actions in videos.

Different from the above method and other supervised methods, our proposed method does not

require the ground truth action locations of the actions during training. We ran experiments on

two different datasets, MSR Action II and UCF Sports, demonstrating that our weakly-supervised

approach is able to localize actions as well as or better than the methods trained on hand-annotated

data. We extended this method to action recognition datasets where the training and test data are

made up of short video clips that have been tightly trimmed temporally to contain only the action.

We demonstrated that localizing the discriminative regions in videos that are likely to contain
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actions improves the action recognition accuracies over the standard bag-of-words models which

ignore the spatial location of actions. Our results on UCF Sports, HMDB and UCF101 datasets

were better than or comparable to the state-of-the-art recognition systems on those datasets.

Third, we addressed the overfitting problem in action recognition datasets with large number of

classes. We integrated a recently introduced technique, called dropout, for preventing the over-

fitting in neural networks into our action recognition framework. The dropout procedure can be

viewed as an efficient way of performing model averaging with neural networks. The overfitting

on the training data is reduced by setting the output of hidden units in the neural network to zero

with a probability of 0.5. The units that are dropped out do not contribute to the forward passing

and backpropagation. We evaluated the performance our proposed framework with dropout on

HMDB and UCF101 dataset. Our results show that using dropout improves the accuracy results

on those dataset over the methods that do not use dropout.

6.2 Future Work

In this section, we present some possibilities for future directions to further the research carried

out in this dissertation.

The weakly-supervised action localization and recognition model, introduced in Chapter 4, recog-

nizes actions by localizing the discriminative sub-regions in video frames that correspond well to

action locations. One limitation of this model is that the sub-region size is fixed during training

and all the localizers use the same sub-region size. This can be modified so that each localizer uses

a different sub-region size. In this way, different localizers would search for discriminative regions

at different spatial scales.

In Chapter 5, we showed that using dropout reduces the overfitting and improves the accuracy
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results. However, we applied dropout only for training the classification parameters and used the

same localization parameters learned in Section 4.3.2. Using dropout also for training the local-

ization parameters may further improve the performance of our model. This can be implemented

by modifying the model introduced in Section 4.3 so that the localizers are dropped-out with a

probability of 0.5 during training. This could prevent the complex co-adaptations on localizer

data.

Recently, deep convolutional neural networks have been successfully used for object recognition

and achieved better accuracy results than previous state-of-the-art on large image classification

datasets [18]. Our weakly-supervised model introduced in this dissertation has similarities to the

convolutional neural networks. In our model, the estimated histogram of a video frame is computed

by aggregating the sub-region histograms into a single histogram as explained in Section 4.3.1.2.

This is similar to the convolutional layer in a deep neural network where the filter size is the same

as the frame size. However, our system uses sub-region histograms instead of actual image pix-

els. Building on success of deep convolutional neural networks we can modify our model so that

smaller filter sizes are used for aggregating the sub-region histograms. In this way, only the his-

tograms from neighboring sub-regions would be aggregated instead of combining the histograms

from all sub-regions within a frame. The output of this convolutional layer can be applied as an

input to the next convolutional layer until we have a single histogram to represent the frame. In-

troduction of those additional layers may learn more complex representations than the currently

proposed model.
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