54 research outputs found

    Distributed transmission schemes for wireless communication networks

    Get PDF
    In this thesis new techniques are presented to achieve performance enhancement in wireless cooperative networks. In particular, techniques to improve transmission rate and maximise end-to-end signal-to-noise ratio are described. An offset transmission scheme with full interference cancellation for a wireless cooperative network with frequency flat links and four relays is introduced. This method can asymptotically, as the size of the symbol block increases, achieve maximum transmission rate together with full cooperative diversity provided the destination node has multiple antennas. A novel full inter-relay interference cancellation method that also achieves asymptotically maximum rate and full cooperative diversity is then designed for which the destination node only requires a single antenna. Two- and four-relay selection schemes for wireless cooperative amplify and forward type networks are then studied in order to overcome the degradation of end-to-end bit error rate performance in single-relay selection networks when there are feedback errors in the relay to destination node links. Outage probability analysis for a four-relay selection scheme without interference is undertaken. Outage probability analysis of a full rate distributed transmission scheme with inter-relay interference is also studied for best single- and two-relay selection networks. The advantage of multi-relay selection when no interference occurs and when adjacent cell interference is present at the relay nodes is then shown theoretically. Simulation results for outage probability analysis are included which support the theoretical expressions. Finally, outage probability analysis of a cognitive amplify and forward type relay network with cooperation between certain secondary users, chosen by best single-, two- and four-relay selection is presented. The cognitive amplify and forward relays are assumed to exploit an underlay approach, which requires adherence to an interference constraint on the primary user. The relay selection scheme is performed either with a max−min strategy or one based on maximising exact end-to-end signal-to-noise ratio. The outage probability analyses are again confirmed by numerical evaluations

    A rate-splitting approach to multiple-antenna broadcasting

    Get PDF
    Signal processing techniques for multiple-antenna transmission can exploit the spatial dimension of the wireless channel to serve multiple users simultaneously, achieving high spectral efficiencies. Realizing such gains; however, is strongly dependent on the availability of highly accurate and up-to-date Channel State Information at the Transmitter (CSIT). This stems from the necessity to deal with multiuser interference through preprocessing; as receivers cannot coordinate in general. In wireless systems, CSIT is subject to uncertainty due to estimation and quantization errors, delays and mismatches. This thesis proposes optimized preprocessing techniques for broadcasting scenarios where a multi-antenna transmitter communicates with single-antenna receivers under CSIT uncertainties. First, we consider a scenario where the transmitter communicates an independent message to each receiver. The most popular preprocessing techniques in this setup are based on linear precoding (or beamforming). Despite their near-optimum rate performances when highly accurate CSIT is available, we show that such techniques exhibit severe losses under CSIT uncertainties, even when optimally designed. We depart from this conventional approach and adopt an unorthodox transmission strategy based on Rate-Splitting (RS), which relies on broadcasting a common data stream on top of the private data streams precoded using partial CSIT. We propose an average Weighted Minimum Mean Square Error (WMMSE) algorithm to maximize the ergodic sum-rate performance. While the ergodic sum-rate measure captures the long-term overall performance, it is not well suited for delay-limited or fairness based transmissions. Hence, we generalize the RS strategy to formulate the problem of achieving robust max-min fairness over one random fading state under a bounded CSIT uncertainty model. We derive new performance limits in terms of the symmetric-DoF under heterogeneous CSIT qualities across users to identify the RS gains. Then, a robust WMMSE algorithm based on the cutting-set method is proposed to solve the semi-infinite optimization problem. This framework is extended to address the problem of power minimization under Quality of Service (QoS) constraints. Finally, we consider the problem of achieving max-min fairness in a multigroup multicasting scenario, where each message is intended to a group of users. We assume perfect CSIT in this setup, where the presence of multiple users in each group is thought of as a source of (finite) uncertainty. The DoF performance of conventional beamforming techniques are derived from which their limitations are identified. The RS strategy is then extended to this scenario, where we show that significant DoF gains can be achieved. The RS precoder optimization problem in this setup is then solved using the WMMSE approach.Open Acces

    Resource allocation and optimization techniques in wireless relay networks

    Get PDF
    Relay techniques have the potential to enhance capacity and coverage of a wireless network. Due to rapidly increasing number of smart phone subscribers and high demand for data intensive multimedia applications, the useful radio spectrum is becoming a scarce resource. For this reason, two way relay network and cognitive radio technologies are required for better utilization of radio spectrum. Compared to the conventional one way relay network, both the uplink and the downlink can be served simultaneously using a two way relay network. Hence the effective bandwidth efficiency is considered to be one time slot per transmission. Cognitive networks are wireless networks that consist of different types of users, a primary user (PU, the primary license holder of a spectrum band) and secondary users (SU, cognitive radios that opportunistically access the PU spectrum). The secondary users can access the spectrum of the licensed user provided they do not harmfully affect to the primary user. In this thesis, various resource allocation and optimization techniques have been investigated for wireless relay and cognitive radio networks

    Performance evaluation of cross-layer energy-efficient transmit antenna selection for spatial multiplexing systems

    Get PDF
    Abstract Multiple-input multiple-output (MIMO) and cognitive radio (CR) are key techniques for present and future high-speed wireless technologies. On the other hand, there are rising energy costs and greenhouse emissions associated with the provision of high-speed wireless communications. Consequently, the design of high-speed energy efficient systems is paramount for next-generation wireless systems. This thesis studies energy-efficient antenna selection for spatial multiplexing multiple-antenna systems from a cross-layer perspective, contrary to the norm, where physical-layer energy efficiency metrics are optimized. The enhanced system performance achieved by cross-layer designs in wireless networks motivates this research. The aim of the thesis is to propose and analyze novel cross-layer energy-efficient transmit antenna selection schemes that enhance energy efficiency and system performance - with regard to throughput, transmission latency, packet error rate and receiver buffer requirements. Firstly, this thesis derives the analytical expression for data link throughput for point-to-point spatial multiplexing multiple-antenna systems - which include MIMO and underlay CR MIMO systems - equipped with linear receivers with N-process stop-and-wait (N-SAW) as the automatic repeat request (ARQ) protocol. The performance of cross-layer transmit antenna selection, which maximizes the derived throughput metric, is then analyzed. The impact of packet size, number of SAW processes and the stalling of packets inside the receiver reordering buffer is considered in the investigation. The results show that the cross-layer approach, which takes into account system characteristics at both the data link and physical layers, has superior performance in comparison with the conventional physical-layer approach, which optimizes capacity. Secondly, this thesis proposes a cross-layer energy efficiency metric, based on the derived system throughput. Energy-efficient transmit antenna selection for spatial multiplexing MIMO systems, which maximizes the proposed cross-layer energy efficiency metric, by jointly optimizing the transmit antenna subset and transmit power, subject to spectral efficiency and transmit power constraints, is then introduced and analyzed. Additionally, adaptive modulation is incorporated into the proposed cross-layer scheme to enhance system performance. Cross-layer energyefficient transmit antenna selection for underlay CR MIMO systems, where interference constraints now come into play, is then considered. Lastly, this thesis develops novel reduced complexity versions of the proposed cross-layer energyefficient transmit antenna selection schemes - along with detailed complexity analysis - which shows that the proposed cross-layer approach attains significant energy efficiency and performance gains at affordable computational complexity

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Smart Metering Technology and Services

    Get PDF
    Global energy context has become more and more complex in the last decades; the raising prices of fuels together with economic crisis, new international environmental and energy policies that are forcing companies. Nowadays, as we approach the problem of global warming and climate changes, smart metering technology has an effective use and is crucial for reaching the 2020 energy efficiency and renewable energy targets as a future for smart grids. The environmental targets are modifying the shape of the electricity sectors in the next century. The smart technologies and demand side management are the key features of the future of the electricity sectors. The target challenges are coupling the innovative smart metering services with the smart meters technologies, and the consumers' behaviour should interact with new technologies and polices. The book looks for the future of the electricity demand and the challenges posed by climate changes by using the smart meters technologies and smart meters services. The book is written by leaders from academia and industry experts who are handling the smart meters technologies, infrastructure, protocols, economics, policies and regulations. It provides a promising aspect of the future of the electricity demand. This book is intended for academics and engineers who are working in universities, research institutes, utilities and industry sectors wishing to enhance their idea and get new information about the smart meters

    Distributed Protocols for Signal-Scale Cooperation

    Get PDF
    Signal-scale cooperation is a class of techniques designed to harness the same gains offered by multi-antenna communication in scenarios where devices are too small to contain an array of antennas. While the potential improvements in reliability at the physical layer are well known, three key challenges must be addressed to harness these gains at the medium access layer: (a) the distributed synchronization and coordination of devices to enable cooperative behavior, (b) the conservation of energy for devices cooperating to help others, and (c) the management of increased inter-device interference caused by multiple spatially separate transmissions in a cooperative network. In this thesis, we offer three contributions that respectively answer the above three challenges. First, we present two novel cooperative medium access control protocols: Distributed On-demand Cooperation (DOC) and Power-controlled Distributed On-demand Cooperation (PDOC). These protocols utilize negative acknowledgments to synchronize and trigger cooperative relay transmissions in a completely distributed manner. Furthermore, they avoid cooperative transmissions that would likely be unhelpful to the source of the traffic. Second, we present an energy conservation algorithm known as Distributed Energy-Conserving Cooperation (DECC). DECC allows devices to alter their cooperative behavior based on measured changes to their own energy efficiency. With DECC, devices become self-aware of the impact of signal-scale cooperation -- they explicitly monitor their own performance and scale the degree to which they cooperate with others accordingly. Third and finally, we present a series of protocols to combat the challenge of inter-device interference. Whereas energy efficiency can be addressed by a self-aware device monitoring its own performance, inter-device interference requires devices with network awareness that understand the impact of their behavior on the devices around them. We investigate and quantify the impact of incomplete network awareness by proposing a modeling approximation to derive relaying policy behaviors. We then map these policies to protocols for wireless channels

    Physical Layer Security in Wireless Networks: Design and Enhancement.

    Get PDF
    PhDSecurity and privacy have become increasingly significant concerns in wireless communication networks, due to the open nature of the wireless medium which makes the wireless transmission vulnerable to eavesdropping and inimical attacking. The emergence and development of decentralized and ad-hoc wireless networks pose great challenges to the implementation of higher-layer key distribution and management in practice. Against this background, physical layer security has emerged as an attractive approach for performing secure transmission in a low complexity manner. This thesis concentrates on physical layer security design and enhancement in wireless networks. First, this thesis presents a new unifying framework to analyze the average secrecy capacity and secrecy outage probability. Besides the exact average secrecy capacity and secrecy outage probability, a new approach for analyzing the asymptotic behavior is proposed to compute key performance parameters such as high signal-to-noise ratio slope, power offset, secrecy diversity order, and secrecy array gain. Typical fading environments such as two-wave with diffuse power and Nakagami-m are taken into account. Second, an analytical framework of using antenna selection schemes to achieve secrecy is provided. In particular, transmit antenna selection and generalized selection combining are considered including its special cases of selection combining and maximal-ratio combining. Third, the fundamental questions surrounding the joint impact of power constraints on the cognitive wiretap channel are addressed. Important design insights are revealed regarding the interplay between two power constraints, namely the maximum transmit at the secondary network and the peak interference power at the primary network. Fourth, secure single carrier transmission is considered in the two-hop decode-andi forward relay networks. A two-stage relay and destination selection is proposed to minimize the eavesdropping and maximize the signal power of the link between the relay and the destination. In two-hop amplify-and-forward untrusted relay networks, secrecy may not be guaranteed even in the absence of external eavesdroppers. As such, cooperative jamming with optimal power allocation is proposed to achieve non-zero secrecy rate. Fifth and last, physical layer security in large-scale wireless sensor networks is introduced. A stochastic geometry approach is adopted to model the positions of sensors, access points, sinks, and eavesdroppers. Two scenarios are considered: i) the active sensors transmit their sensing data to the access points, and ii) the active access points forward the data to the sinks. Important insights are concluded
    • …
    corecore