257 research outputs found

    Robust Decentralized State Estimation and Tracking for Power Systems via Network Gossiping

    Full text link
    This paper proposes a fully decentralized adaptive re-weighted state estimation (DARSE) scheme for power systems via network gossiping. The enabling technique is the proposed Gossip-based Gauss-Newton (GGN) algorithm, which allows to harness the computation capability of each area (i.e. a database server that accrues data from local sensors) to collaboratively solve for an accurate global state. The DARSE scheme mitigates the influence of bad data by updating their error variances online and re-weighting their contributions adaptively for state estimation. Thus, the global state can be estimated and tracked robustly using near-neighbor communications in each area. Compared to other distributed state estimation techniques, our communication model is flexible with respect to reconfigurations and resilient to random failures as long as the communication network is connected. Furthermore, we prove that the Jacobian of the power flow equations satisfies the Lipschitz condition that is essential for the GGN algorithm to converge to the desired solution. Simulations of the IEEE-118 system show that the DARSE scheme can estimate and track online the global power system state accurately, and degrades gracefully when there are random failures and bad data.Comment: to appear in IEEE JSA

    Gossip Algorithms for Distributed Signal Processing

    Full text link
    Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the computer science, control, signal processing, and information theory communities, developing faster and more robust gossip algorithms and deriving theoretical performance guarantees. This article presents an overview of recent work in the area. We describe convergence rate results, which are related to the number of transmitted messages and thus the amount of energy consumed in the network for gossiping. We discuss issues related to gossiping over wireless links, including the effects of quantization and noise, and we illustrate the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.Comment: Submitted to Proceedings of the IEEE, 29 page

    Self-stabilized fast gossiping algorithms

    Get PDF
    In this article, we explore the topic of extending aggregate computation in distributed networks with selfstabilizing properties to withstand network dynamics. Existing research suggests that fast gossiping algorithms, based on the properties of order statistics applied to families of exponential random variables, are a viable solution for computing functions of the values stored in the network. We focus on the specific case in which network changes and failures occur in batches with a minimum frequency in the order of the diameter of the network. Our contribution consists in two self-stabilizing mechanisms, allowing fast gossiping algorithms to be applicable to dynamic networks with minor increase in resources usage. The resulting algorithms can be deployed in networks exhibiting churn, node stop-failures and resets, and random topological changes. The theoretical results are verified with simulations on synthetic data, showcasing desirable properties for large-scale network designers such as scalability, lack of single points of failure, and anonymity

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems

    Fast Real-Time DC State Estimation in Electric Power Systems Using Belief Propagation

    Full text link
    We propose a fast real-time state estimator based on the belief propagation algorithm for the power system state estimation. The proposed estimator is easy to distribute and parallelize, thus alleviating computational limitations and allowing for processing measurements in real time. The presented algorithm may run as a continuous process, with each new measurement being seamlessly processed by the distributed state estimator. In contrast to the matrix-based state estimation methods, the belief propagation approach is robust to ill-conditioned scenarios caused by significant differences between measurement variances, thus resulting in a solution that eliminates observability analysis. Using the DC model, we numerically demonstrate the performance of the state estimator in a realistic real-time system model with asynchronous measurements. We note that the extension to the AC state estimation is possible within the same framework.Comment: 6 pages; 7 figures; submitted in the IEEE International Conference on Smart Grid Communications (SmartGridComm 2017

    Likelihood Consensus and Its Application to Distributed Particle Filtering

    Full text link
    We consider distributed state estimation in a wireless sensor network without a fusion center. Each sensor performs a global estimation task---based on the past and current measurements of all sensors---using only local processing and local communications with its neighbors. In this estimation task, the joint (all-sensors) likelihood function (JLF) plays a central role as it epitomizes the measurements of all sensors. We propose a distributed method for computing, at each sensor, an approximation of the JLF by means of consensus algorithms. This "likelihood consensus" method is applicable if the local likelihood functions of the various sensors (viewed as conditional probability density functions of the local measurements) belong to the exponential family of distributions. We then use the likelihood consensus method to implement a distributed particle filter and a distributed Gaussian particle filter. Each sensor runs a local particle filter, or a local Gaussian particle filter, that computes a global state estimate. The weight update in each local (Gaussian) particle filter employs the JLF, which is obtained through the likelihood consensus scheme. For the distributed Gaussian particle filter, the number of particles can be significantly reduced by means of an additional consensus scheme. Simulation results are presented to assess the performance of the proposed distributed particle filters for a multiple target tracking problem
    • …
    corecore