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In this article, we explore the topic of extending aggregate computation in distributed networks with self-
stabilizing properties to withstand network dynamics. Existing research suggests that fast gossiping al-
gorithms, based on the properties of order statistics applied to families of exponential random variables,
are a viable solution for computing functions of the values stored in the network. We focus on the specific
case in which network changes and failures occur in batches with a minimum frequency in the order of
the diameter of the network. Our contribution consists in two self-stabilizing mechanisms, allowing fast
gossiping algorithms to be applicable to dynamic networks with minor increase in resources usage. The
resulting algorithms can be deployed in networks exhibiting churn, node stop-failures and resets, and ran-
dom topological changes. The theoretical results are verified with simulations on synthetic data, showcasing
desirable properties for large-scale network designers such as scalability, lack of single points of failure, and
anonymity.
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1. INTRODUCTION

Advances in electronics, telecommunication, and user interface design have led to
recent deployments of myriads of networked embedded platforms around us. Smart-
phones, wireless sensor networks, swarms of robotic devices (drones, intelligent cars,
etc.) are just a few examples of systems being increasingly found in our environment.
Making these multinode systems “intelligent” and able to autonomously adapt to in-
ternal and external changes is of acute interest with immediate societal impact. The
bottleneck in such designs is usually their distributed control: due to their sheer size,
networks are subject to emergent behavior that more often than not disrupts their func-
tionality. Examples abound in smart energy grids, large-scale infrastructure, internet
of things, and smart cities applications.

Traditional centralized control fails to work beyond a certain network size, reasons
including limited bandwidth and real-time constraints violated mainly by the continu-
ous changes in network topology. However, in many cases an adequate control strategy
relies on some form of measurement of global parameters of the network—in other
words, estimating if the network is doing the “right thing”—and adopting corrective
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measures if not. Our work focuses on employing gossip algorithms [Boyd et al. 2005] to
achieve distributed state estimation for large-scale networks, thus providing the basic
measurement building block for distributed control.

As the name suggests, gossip algorithms attempt to compute aggregate (i.e., global)
values for important network parameters by relying exclusively on local exchanges of
information. Put differently, network nodes only communicate with their neighbors,
but nevertheless manage to efficiently compute a reliable value for global network
parameters (e.g., the network-wide average, maximum value, various statistic param-
eters, etc.). Such an approach obviates the need to establish a central control authority:
since the resulting estimates diffuse across the network, every node will harbor the ap-
propriate value. Furthermore, our work extends these algorithms to be self-stabilizing
in the sense that changes in the network topology (e.g., resulting from rearrangements
of nodes) are rapidly and automatically reflected in the final result. A vast body of liter-
ature exists around the concept of epidemic algorithms (such as gossiping [Boyd et al.
2005])—unfortunately, probably due to the lack of centralized control, their adoption
in practice is very limited at best (peer-to-peer applications being notable exceptions).

“Traditional gossiping” [Boyd et al. 2005] is a slow converging protocol. We focus
on recent developments, such as the work of Shah [2009], which proposes trade-offs
leading to very fast converging algorithms. The authors exploit a property of order
statistics applied to exponential random variables to achieve convergence in O(Dlog N)
timesteps instead of the “traditional” O(D?log N) timesteps (D being the diameter of
the network and NN the number of nodes). In the following, we refer to this former class
of epidemic algorithms as fast gossiping algorithms.

Dynamics (i.e., changes in network topology such as nodes leaving the network,
stop-failing, resetting, etc.) heavily affect the results of gossiping algorithms, leading
to solutions employing rounds of communication that need to be synchronized [Jelasity
et al. 2005]. The reasoning for this is that during short intervals of time the networks
will experience very few modifications, so the shorter the rounds, the better the es-
timates. Drawing on our previous work [Pruteanu and Dulman 2012], we make use
of synchronization-free approaches, in which simple mechanisms are employed to add
self-stabilization properties to gossiping algorithms. In this article, we show how mak-
ing use of simple timer mechanisms allows “removal” of old values from a network and
triggers the computed aggregate to change reflecting changes in the network-stored
values. Our solution is limited to the scenarios in which changes occur in batches, with
a period larger than the time needed for the network to stabilize.

As an example, let us consider the situation of a large crowd of people taking part in
a city-wide public event. People will carry smartphones and, most usual than not, the
network infrastructure will be assumed unavailable due to the large traffic incurred.
The number of people in the demonstration is a measure of interest to several parties,
including emergency services that accompany such an event. We achieve this compu-
tation by using the ad hoc communication capabilities of smartphones (leading to a
multihop mesh network) and by employing a simple aggregate function (i.e., the sum
of the values in the network) of the values in the network (i.e., each smartphone holds
the value 1). In this scenario, dynamics are represented by a multitude of events: peo-
ple randomly joining and leaving the event, continuously changing network topology,
obvious communication failures, etc. Self-stabilizing fast gossiping algorithms provide
an elegant solution in this case: not only that the value of interest is computed fast and
reliable on all nodes despite the dynamics, but the convergence time depends mainly
on the diameter of the network and not on the number of participants. In other words,
the size of the area in which the event takes place influences the convergence speed. As
we show in Section 4 convergence speed remains almost constant even when varying
the number of nodes across several orders of magnitude.
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Various decentralized approaches solutions exist in literature—they tend to rely
on assumptions invalidated by the previous example case. A few examples include
network-wide synchronization [Jelasity et al. 2005], averaging of estimates of network
parameters running in parallel [Bicocchi et al. 2010], or simply tracking nodes joining or
leaving the network. In line with our previous work [Pruteanu and Dulman 2012; Iyer
et al. 2011], we are advocating for solutions that do not require tracking of individual
nodes and are built in the basic mechanism rather than added as layers of complexity
above it. For example, we introduce in Section 3.1 a simple timer mechanism that allows
“removal” of values belonging to nodes that already left the network, without the need
for a tracking mechanism or even for unique identifiers for the nodes. Furthermore, in
Section 3.2 we show how to achieve a significant speed improvement by the alteration
of the timer expiry function, leading from a linear to an exponential behavior.

The article is structured as follows. Section 2 introduces fast gossiping algorithms
and provides references to the relevant literature. Section 3 presents the main contri-
bution of the article, two self-stabilization extensions, and theoretical characterization
of their convergence time. The algorithms are evaluated numerically and analyzed
in Section 4. We provide information on related work on aggregate computation in
Section 5 and conclude the article with Section 6.

2. PRELIMINARIES—FAST GOSSIPING ALGORITHMS

For the scope of this article, we target geometric random graphs (i.e., mesh networks),
where nodes can communicate mainly with their direct neighbors. From the perspective
of the communication model, we assume that time is discrete. During one timestep each
node will pick and communicate with a random neighbor. Major changes, disruptions,
and updates in the network occur just once in a large number of timesteps. We will
make use of the concept of synchronized time rounds and ask the nodes to update their
local data at the beginning of the rounds. The bootstrap problem and round-based time
models received a lot of attention in literature [Jelasity et al. 2005; Bicocchi et al. 2010;
Pruteanu and Dulman 2012] and is not the focus in this article—loose constraints allow
for algorithms like the one presented in Werner-Allen et al. [2005].

We make no assumptions with respect to nodes stop-failing or new nodes joining the
network. The mechanism described in Section 3 can accommodate these cases and the
computation results will adapt themselves to such changes.

Our contributions are an extension to the basic primitive for computing sums in
a distributed network via fast gossiping mechanism presented in Mosk-Aoyama and
Shah [2008]. The algorithm presented in Mosk-Aoyama and Shah [2008] uses a prop-
erty of order statistics applied to a series of N exponential random variables with
parameters A;, i € (1, N), which leads to the sum of the parameters A; (Table I). The
algorithm resembles gossiping algorithms [Jelasity et al. 2005] but differs in a number
of important points.

Essentially, it trades communication for convergence speed. By relying on the
propagation of an extreme value (the minimum value in this case), locally com-
putable, it achieves the fastest possible convergence in a distributed network—
O(Dlog N) timesteps (with D being the diameter of the network). This speed is sig-
nificant compared to the original gossiping algorithms that converged in O(D?log N)
timesteps [Boyd et al. 2005].

The paid price is the increase in exchanged messages size of O(§~2). § is a parameter
defining the precision of the final result. If A is the ground-truth result, the algorithm of-
fers an estimate in the interval [(1—§)A, (1+8)A] with an error € = O(1/polynomial(N)).

Zooming into the details of the algorithm (see Algorithm 1), each node i holds a
positive variable A; from which it generates an exponential random variable vector
v. At each timestep, each node chooses a random neighbor and they exchange their
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Table I. Notations Used in the Article

Symbol Meaning
D Diameter of the network
N Number of nodes in the network
T Maximum value for the time-to-live field
M Maximum number of samples in a vector
C Decay constant for time-to-live (by default 0.5)
8 Precision of the estimation
€ Probability that the estimation falls within a certain range

i,11, 19 Indexes for the nodes in the network
J Index for the samples in a vector of size M
Ai Local variable for node i
A\ Vector of exponentially distributed random values on node i
v) Original vector of random values on node i
u Vector containing the minimum values from all v;
T; Vector of time-to-live values on node i
ny Number of nodes holding an old value
n_ Number of nodes holding a negative value
ng Number of nodes holding a new value
WY Average time-to-live value on negative value nodes
k Integer index, £ > 1

gy, Qpys - - - Real coefficients

o1 Initial sum of values in the network
09 Intermediate sum of values in the network
o3 Final sum of values in the network

ALGORITHM 1: Mosk-Aoyama-Shah Algorithm

/* A; — local parameter for node i */

/* m - number of samples in the random vectors */

/* n - number of nodes in the network */

/* § - set of received value vectors in the last timestep */
/* Ve - local value vector */

/*x v¥ - original value vector */

/* initialization - rum once */
if v is uninitialized then
for j = 1tomdo

\ v’[j] = random number from exponential distribution with parameter A;
0

© WIS OCAR W

-
- O

Viocal =V

[y
[

/* periodic update - run every timestep */
for each vector vin S do
for j = 1tomdo
if Viocal [.]] > V[J] then
‘ Viocal [J] = V[]]
17 Broadcast v,cu

=
[=2 S L)

18 /* estimation of sum of A-s */
n A~ m
19 Y7 4~ T

values, both keeping the smallest value on each position. In other words, after two
nodes i; and ig, holding the values v;, and v;, communicate, each of them will hold a
vector v = v; = v with the property that v[j] = min(v; [j], vi,[j]D Vj € (1, M). Thus,
the smallest value on each position in the vectors propagates fast in the network,
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Fig. 1. Value removal mechanism wave-alike propagation (geometric random graph with 100, 000 nodes;
diameter 40; random values).

in O(Dlog N) timesteps via this push-pull gossiping mechanism (see Shah [2009],
Section 3.2.2.4, p. 32).

The authors of Shah [2009] further show that, after all vectors in the network con-
verge to the minimum-holding vector u, the sum of A; values in the network is ap-

proximated by the maximum likelihood estimator: Zfil AR % (see Shah [2009],

Property 5.1, p. 72).

Furthermore, the precision of the result is independent of the network size. The
message size is dependent only on the precision 8, O(§2) (see Shah [2009], Theorem 5.1,
p- 74 and Section 5.2.5.4, p. 75).

3. SELF-STABILIZATION EXTENSIONS

In this section, we extend the minimum value propagation mechanisms presented
in Section 2 to account for dynamics in the network. Specifically, we add a time-to-
live field to each value—an integer value that decreases with time and marks the
age of the current value. This mechanism takes care of nodes leaving the network,
stop-crashing, or resetting without the need of tracking each node. The time-to-live
mechanism works also in the failure case in which a group of nodes changes their
values at a given moment. Furthermore, we extend the time-to-live expiry mechanism
to achieve a O(Dlog N + log T') timesteps active value removal. In other words, if a
certain minimum value belonging to a node that changed its variable A; propagated
through the network, we mark it as “expired” and assure its associated time-to-live
value to expire (reach 0) within O(Dlog N +log T') timesteps. Intuitively, in a multihop
mesh network, the value removal mechanism takes the shape of a wave that replaces
the expired value in the network (see Figure 1).

3.1. Passive Mechanism: Counter-Based Self-Stabilization

We extend the algorithm presented in Mosk-Aoyama and Shah [2008] by adding to
each node i a new vector 7; holding a time-to-live counter for each value. This new
vector is initialized with a default value T', larger than the convergence time of the
original algorithm (choosing a proper value is explained next).

The values in t; decrease by 1 every time slot, with one exception. The node generat-
ing the minimum v;[j] on the position j € (1, M) sets t;[j] to T (see Algorithm 3,
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ALGORITHM 2: PropagateMinVal(v, 7)

/* v, T - received value and time-to-live */
/* VUoeal s Tiocal — local value and time-to-live */

/* create temporary variables */
(o va1) <= (min(v, Vyoeqr), Max(v, Vigear))
(T, Ti) < corresponding (z, Tpeqr) t0 (U, Var)

/* update logic */

if v,, == vy then

if v, < 0 then /* equal negative values */
9 | T < Ctn

10 else /* equal positive values */
min(z,,, ) < max(t,, Ty) — 1

W TS AW N

12 else

13 if v,, < 0 then /* at least one negative value */
14 if v,, == —vy then

15 | (o) < (T, T)

16 else

17 | (s Tar) < (CT, CTap)

18 else /* two different positive values */
19 | < tm—1

20 /* update local variables */
21 (Us vlocal) <~ (Umy Um)
22 (T, Tjoew) < corresponding (T, Tar)

line 9). In the absence of any other dynamics, all properties proved in Shah
[2009] remain unchanged as the output of our approach is identical to the original
algorithm.

The main reason for adding the time-to-live field is to account for nodes leaving
the network or nodes that fail-stop. In this way we avoid complicated mechanisms
in which nodes need to keep track of neighbors. An interesting side consequence is
that this mechanism does not require node identifiers, thus applications built on top
preserve the privacy of the nodes in the network.

The intuition behind the counter-based mechanism is that a node iy generating
the network-wide minimum on position j € (1, M) will always advertise it with the
accompanying time-to-live set to the maximum 7. Any other node i will adopt the
min value v;,[j] as v;[j] and have a value t;[;] decreasing with the distance from
the minimum setting node iy. T' is chosen to be larger than the maximum number of
gossiping steps it takes the minimum to reach any node in the network.

In a gossiping step between two nodes i; and ig, if v; [j] = v;,[j], then the largest
of the 7, [j] and t;,[j] will propagate (Algorithm 2, line 11). This means that z;[J]
on all nodes i will be strictly positive for as long as the node is online. If the node
that generated the minimum value on the position j goes offline, all the associated
7;[j] values in the network will steadily decrease (Algorithm 3, line 11) until they
will reach 0 and the minimum will be replaced by next smallest value in the network
(Algorithm 3, lines 12-14). Hence, it takes 7' timesteps for the network to “forget” the
value on position j.

3.2. Active Mechanism: Value Removal Algorithm

The second self-stabilizing mechanism targets nodes changing their values at runtime
but remain in the network and are therefore able to actively remove old versions of their
values that might have propagated in the network. Assume a node i changes its value
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Table II. Value Propagation

Propagation Ordering Previous | Intermediate | Final
none ulk] < v;[k] < v}k ulk] ulk] ulk]
ulk] < v;lk] < v;lk] ulk] ulk] ulk]
Slow vilk] < ulk] < v}[k] v;lk] v;lk] ulk]
vilkl < vi[kl <ulkl | vilk] vilk] v;lk]
fast ViIk <ulkl <vilkl | ulkl vilkl vl
Vilkl < vilkl <ulkl | vil] v; k] v; k]

ALGORITHM 3: ComputeSum (v, )

1 /* v® - original random samples vector on this node */

2 /*x v,T - received value and time-to-live vectors */

38 /x update all elements in the data vector */

4 for j =1 ¢o length(v) do

5 | PropagateMinVal(vl/l, z[j])

6 /x time-to-live update - do once every timeslot */

7 for j = 1to length(v) do

8 if v[j] == v°[j] then /* reinforce a minimum */
9 | Tljl < T

10 else

11 T[jl < z[jl -1 /* decrease time-to-live */
12 if 7[j] <=0 then /* value expired */
13 vljl < v°[j]

14 iyl < T

15 /* estimate the sum of elements */
16 s <0

17 for j = 1t¢o length(v) do

18 | s < s+abs(vljl)

19 return length(v)/s

X; to A; at some time ¢. This change will trigger a regeneration of its original samples
from the exponential random variable v; to v;. Let j be an index with j € (1, M). Let
u be the vector containing the minimum values in the network if the node i would not
exist. In order to understand the change happening when transitioning from A; to A;
we need to look at the relationship between the individual values v;[j], v;[;], and ul[j].

As shown in Table II, if u[;] is the smallest of all three values, then no change will
propagate in the network. If v;[;] is the smallest value, then this will propagate fast,
in O(Dlog N) timesteps, via the basic minimum propagation mechanism. If v;[;] is the
smallest, then this value will remain in the network until its associated time-to-live
field expires in O(T'). As usually T' > D, this leads to a very slow process. We designed
the value removal mechanism to speed up the expiration of this value from the network.

The removal mechanism is triggered by the node owning the value that needs to be
removed (in our case node i) and works as follows: node ¢ will mark the value v;[/]
as “expired” by propagating a negative value —v;[j]. This change will not affect the
minimum value propagation mechanism (Algorithm 2, lines 4, 21—the negative value
of a positive minimum remains the minimum in the network) or the estimation of the
sum (notice the use of the absolute value function in Algorithm 3, line 18). If node ¢
contacts a node also holding the value v;[j], then first, it will propagate the negative
sign for the value, also maximizing its time-to-live field to a large value T'. Intuitively,
as long as the v;[j] is present in the network, the —v;[;] will propagate, overwriting it.
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Considering the large range of unique float or double numbers versus the number of
values in a network at a given time, we assume the values in the network to be unique.

The time-to-live field of any negative value will halve with each gossiping step (by
default C = 0.5) if it does not meet the v;[;] value (Algorithm 2, lines 9, 17). Intuitively,
if a negative value is surrounded by values other than v;[j], it will overwrite the
neighbors’ positive values while canceling itself at the same time with an exponential
rate. This mechanism somewhat resembles a predator-prey model [Arditi and Ginzburg
1989], where prey is represented by the v;[j] variable and predators by —v;[j]. We
designed it such that the populations cancel each-other, targeting the fixed point at
the origin as the solution for the accompanying Lotka-Volterra equations—details are
offered in Section 3.3.

LEmMA 3.1 (VALUE REMOVAL DELAY). By using the value removal algorithm, the new
minimum propagates in the network in O(Dlog N + log T') timesteps.

Proor. In the worst case scenario, the whole network contains the minimum value
v; [k] on position &, with the time-to-live field set at the maximum 7'. The negative value,
being the smallest one in the network, propagates in O(Dlog N) in the whole network.
Again, in the worst case scenario, we have a network with each node having the value
—v;[k] on position £ with the time-to-live set to the maximum 7. From this moment on,
the time-to-live will halve at each gossip step on each node, reaching 0, in the worst case
scenario in O(log T') timesteps. This is the worst case because nodes may be contacted
by several neighbors during a timestep leading to a much faster cancellation. Overall,
the removal mechanism will be active for at most O(Dlog N + log T') timesteps. This
bound is an upper bound. In reality, the spread and cancellation mechanisms will act
in parallel, leading to tighter bounds. O

This result gives us the basis for choosing the 7' constant. Ideally, 7' should be
chosen as small as possible, in line with the diameter of the network. The fact that the
removal mechanism is affected only by log 7' lets us use an overestimate of 7', which
even if a few orders of magnitude larger than the diameter of the network will have
little impact on the convergence speed but will leave an effect on the passive expiry
mechanism. For example, if the network diameter is between 10 and 30 and the values
change roughly every 10,000 timesteps, we may safely set T anywhere between 100
and 1,000. This will not affect the convergence of the sum computation mechanism but
allow for a timely account for a node removal (under the assumption that nodes leaving
the network happens less frequently than nodes changing their values).

Put together, the mechanisms presented in this section lead to the sum computation
mechanism ComputeSum() presented in Algorithm 3. It holds the properties of the
original algorithm described in Mosk-Aoyama and Shah [2008] and it additionally
showcases self-stabilization properties to account for network dynamics in the form of
node removal and nodes changing their values in batches.

3.3. A Model for the Value Removal Mechanism

The value removal mechanism maps onto a predator-prey model, in which the predators
(negative values —v;[j]) need to consume all the prey (positive values v;[j]) before going
extinct. Graphically, the results are presented in Figure 2. In this section, we provide
a mathematical model for this mechanism, with the goal of validating that it leads
to the extinction of both predators and prey, meaning, in our case, that a new value
propagates in the network. For the sake of clarity, we assume that the vector of values
has a single element (M = 1), the extension to M # 1 being straightforward. We will
drop the index when referring to vectors, such that v[1], u[1], and =[1] will be addressed
as v, u, and t. The old value refers to the minimum in the network (u), the negative
value refers to —u, and the new value to a new minimum /.
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Fig. 2. Predator-prey simulation with 1,000 nodes (C; = Co = 0.5; initial configuration consists of a single
predator node and 999 prey nodes).

We focus on a fully connected network case, as this constitutes the most difficult
scenario. Intuitively, the value removal mechanism acts as a wave starting at a node
and encompassing all the network. In the case of a fully connected network, nodes can
talk to any of the neighbors, meaning also that the wave has a difficult time “catching”
values diffused in this communication model.

Let n, be the number of nodes that hold the old value, n_ the number of nodes holding
the negative value, and ny the number of nodes that do not hold either—uninitialized
nodes (n, +n_ + ny = N). We propose a differential equations model to capture the
variation of these quantities in the network. Targeting the worst case scenario, initially
all nodes are assumed initialized with the old value except one, which is initialized with
the negative value (n, = N —1,n_=1).

Modeling the time-to-live mechanism is difficult due to its nonlinearity. We use the
following approximation: define a variable ¢ that holds the average time-to-live value
on the n_ nodes. The y variable changes each time a node with a negative value
interacts with another node.

We focus on a node i with a negative value —v;, having the time-to-live value ;. If it
interacts with a positive value node (its counterpart or any uninitialized node), then
the tuple of time-to-live values on the two nodes becomes (r; ~ ¢, —) — (T',T) and

v — (f + 255:1”), thus increasing (the state transitions are shown in Figure 3). If the

negative value node meets an uninitialized node, then the tuple of time-to-live values

becomes (t;, —) — (Ct;, Cy;) and v — (¥ + 2(5_11{"’ ), with C € (0, 1), thus decreasing.

When several negative value nodes meet uninitialized nodes (say a fraction A), then
¥ changes to ¢':

y =2t
n_
;L YT —hn_y +2hn_Cy _ B h
v = e =y +2C - DYy (1)
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Fig. 3. State transition effects on time-to-live (indices 1, ¢ distinguish between two nodes of the same type
interacting; the arrows indicate transition between states—they can be interpreted also as interactions
between nodes in the two states they connect; diagram does not account for the decrease of time-to-live with
each timestep).
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represent possible f(v) fittings).

From a probabilistic perspective, each of the n_ nodes meets on average % unitialized

nodes, thus A = 7¢. This leads to v — (¥ + 2(C — Dy no’ffN). By replacing h with % a
similar formula is obtained for negative value nodes interacting with other negative

value nodes). Following the same reasoning, we obtain ¥ — (¥ + 2(T — ¢)—=) for

ny+N
negative value nodes meeting positive value nodes.

Negative value nodes interacting with other negative value nodes decrease their
time-to-live values fast and transform themselves in uninitialized nodes. We can ap-
proximate the whole process with a fraction f(y)n_. Regarding the profile of the f(y)
function, few nodes become uninitialized when ¢ is close to T'. As y decreases ap-
proaching 0, negative-values nodes increasingly become uninitialized. Figure 4 shows
this dependency, while Figure 5 shows the general variation of the number of nodes
with the average value of the time-to-live field for negative value nodes.
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Fig. 5. Number of positive and negative value nodes with respect to average time-to-live value (geomet-
ric random graph with 1,000 nodes; diameter 10; points are taken from 10 different simulations ran till
convergence).

Based on the behavior observed in practice, the function f(v) can be approximated
with an expression in the form

Fap) = ! @

e () 7

with % being an index and a;, suitably chosen real number coefficients.
This leads to the system

dn, B non B n,n

d¢ Nt N

dn_ n. n_

— =N T~ fWn, 3)
dy ny — o

P 2T — w)m +29(C1 — 1)m +2¢(Co — 1)n0 TN

where (1, Cz € (0, 1) are constants. For simplicity, we will consider these two constants
equal (C). It is easy to check that the trivial solution (n, = 0, n_ = 0, ¥ = 0) verifies
the system. This model captures well the behavior of the value removal mechanism,
but it still remains an approximation. Its main drawback is that the time scale tends
to be larger than in simulations. The approximation comes from the use of the function
() for which we do not have an exact expression and was obtained via fitting.
Nevertheless, when exploring the solution spaces as a function of C it turns out
that the system converges to the trivial solution as long as C is above a certain value,
dependent on the network size. This is shown graphically in Figure 6, in which we
plotted the variation of the number of negative value nodes as a function of time,
for various values of the constant C. As seen also in practice, for a large range of C,
the system converges fast to the trivial solution. As C gets smaller, the convergence
speeds up and after a certain threshold the system converges to a different solution,
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Fig.6. Variation of the number of negative value nodes with time in a network with 1,000 nodes (C; = Cy = C;
initial configuration consists of a single predator node and 999 prey nodes).
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(C1 = Cy = C; 1,000 nodes; initial configuration consists of a single predator node and 999 prey nodes; arrows
indicate time evolution).

exhibiting oscillatory behavior—better observed in Figure 7, which plots the variation
of the number of positive value nodes versus the number of negative value nodes.
Intuitively, the oscillations and convergence value are the result of the negative value
nodes being too short-lived to cover all the network. We have tested network sizes
ranging from a few hundred nodes to several tens of millions of nodes and found that,
for example, C = 0.5 is a good choice guaranteeing system convergence at a fast rate.
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Fig. 8. Sum computation during network dynamics with value removal mechanism enabled (geometric
random graph with 1,000 nodes initially; diameter 14; random values; half of the network is disconnected
at time 50; 30% nodes change their values at time 200). Notice the reduction in transition period compared
to Figure 9.

4. DISCUSSIONS

Our distributed approach solves most of the scaling issues and proves to be highly
robust against network dynamics (e.g., network nodes becoming unavailable due to
failures, reconfiguration, new nodes joining the system, etc.) as long as these changes
occur in batches, on a time scale comparable to a time round. As we show in the
following, our approach is very fast for a typical network, outperforming the speed of
a centralized approach. As the protocols rely on anonymous data exchanges, privacy
issues are alleviated, as the identities of the system participants are not needed in the
computations.

The downsides of our approach maps onto the known properties of this class of
epidemic algorithms. Although anonymity is preserved, an authentication system [Jesi
et al. 2007] is needed to prevent malicious data corrupting the computations.

In the following subsections, we numerically characterize some of these properties.
The simulations were performed using Matlab and C++. Nodes were randomly deployed
onto a square surface and the circular transmission range was varied until the desired
diameter of the network was obtained. All networks were verified to be formed of one
main cluster, with disconnected nodes not considered. The communication model was
push-pull gossip. We used synchronized time rounds to model time. Unless otherwise
stated, each result point represents an average over 100 simulations.

4.1. Assumptions on Synchronized Changes

Although the two mechanisms introduced in Section 3 do not make use of any synchro-
nization, their functionality is guaranteed only if the changes in the network happen in
batches, with a period in the order O(Dlog N). The question we address in this section
refers to what happens if this assumption is violated.

Figure 8 gives a graphical representation of the two mechanisms at work. The
counter-based self-stabilization mechanism activates when part of the network is
disabled (e.g., due to a permanent hardware failure, network partitioning, software
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Fig. 9. Sum computation during network dynamics with value removal mechanism disabled (geometric
random graph with 1,000 nodes initially; diameter 14; random values; half of the network is disconnected
at time 50; 30% nodes change their values at time 200).

bug invalidating a number of nodes, etc.). While the timers decrease toward expiration
(timesteps 50-80), the aggregate computed in the network remains constant. Once
the timers on various nodes expire, a sudden “dip” occurs in the curve (see timesteps
80-90). This is due to the fact that once a minimum value expires on a node, the node
replaces it with its own value from the original random value vector. As this is usually
larger than the minimum, the computation in Algorithm 3 (Lines 7-19) leads to a very
small value. As a new minimum propagates through the network, the computed value
begins to rise toward the final value.

In the case in which we maintain the change in the network values at the timestep
200, with the value removal mechanism disabled, the network still converges to the

proper value, only slower. This situation is presented in Figure 9. Let o1 = Zf»i 12i be
the sum of the values in the network before the induced change in values at time 200
(the initial sum). After 30% of the nodes change their value, we notice a sudden drop
in values at time 200, which we explained earlier. Then, the network converges to an
intermediate sum o9 (see Figure 9) and the timers associated with the slow propagating
values (see Table II and Section 3.2) decrease toward 0. Once they expire (around time
230), the network fluctuates once more and stabilizes to the value os.

It is interesting to notice that the difference oo — o1 equals the sum of the values that
changed. In other words, assume that a subset of nodes i C Z changed their values A;
to 1} (30% of nodes in the example in Figure 9).

N
1 def /
o2 = . ; ; =2 Mt ) A
> ¥ min(min 1 v)(v; /1), min; (v} [j]) ; XZ:
leading to
(72—0'122)»;. (4)
icT
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Fig. 10. Convergence of network starting from a clean state indicating that convergence time is basically
independent of N and linearly dependent on the diameter D (geometric random graph; nodes initialized with
random values; summation as local aggregate; error bars represent standard deviation; 100 simulations).

Employing the value removal mechanism speeds up the convergence process, by
“removing” the intermediate convergence level o (in reality it exponentially expires the
timers during this level) and leads to the situation shown in Figure 8. The information
on how much change will occur in the network (o9 — 071) is no longer available before
the network finally stabilizes.

4.2. Scalability Aspects

One of the main characteristics of our approach is that the algorithm we propose
scales very well with the number of nodes in the network. As seen again Figure 10
and Figure 11, the number of nodes has little influence in the final results only as
a O(log N) term. The simulation explored a space in which we varied the number of
nodes over four orders of magnitude and the results hint that tighter boundaries might
exist than the ones we proposed in this article. We noticed that for a fully connected
network, the recovery time varies with 34% between a network with 1,000 nodes and
one with 100,000 nodes, while the variation drops to a mere 2.4% for a 20-hop network
varying from 1,000 nodes to 100,000 nodes.

These results are very important for large-scale network applications such as the
smart energy grid. As the network will be linked to a physical space (a country or in
general, a region), fully covering it, the diameter of the network is expected to, at most,
decrease with the addition of new nodes. Intuitively, when thinking of nodes as devices
with a fixed transmission range, adding more devices in the same region may lead to
shorter paths between various points. The aggregate computation approach we propose
shows, on one hand, an almost invariance to the increase in the number of nodes in
the network and a linear variation with the diameter. These properties are essential
for any solution that needs to take into account that the number of participants in the
network will increase over time.

We are also interested in understanding the effects the time-to-live of the negative
fields has on the convergence and scalability properties. We have considered a 10-hop
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network with 1,000 to 5,000 nodes and varied the time-to-live for negative values
between 500 and 10,000. Figure 12 confirms Lemma 3.1 with respect to the log T
term. As the data shows, the convergence time was affected very little by the chosen
parameters. As expected, the diameter of the network has the larger influence in this

mechanism.
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4.3. Influence of Communication Topology

The underlying communication network for a large-scale network (such as a smart
energy grid) can be implemented in a number of ways, mapping to different com-
munication topologies. For example, one might choose to use the internet backbone,
allowing any-to-any communication in the network, leading to a fully connected graph.
In the first experiment, we have initialized the network with a set of random variables
and recorded the time when the aggregated sum converges to the same value on all
nodes. As seen in Figure 10, fully connected networks lead to the fastest aggregate
computation. In a second experiment, once the network stabilized, we introduced a
change in the form of half of the nodes in the network changing their value to a dif-
ferent one. Again, we recorded the time until the network stabilized after this change.
As expected, Figure 11 shows that fully connected networks stabilize the fastest after
a disruption.

These results assume the internet backbone to work perfectly and able to route the
high level of traffic generated. A more realistic scenario is considering that the various
data collection points obtain data from the individual consumers via some radio tech-
nology (e.g., GPRS modems) and are themselves connected to the internet backbone.
To keep the traffic in the network to a minimum, the data collection points only com-
municate with their network-wise first-order neighbors, leading to a mesh network
deployment type. As seen in Figure 10 and Figure 11, the diameter of the network
clearly has the major impact factor on the results, confirming the theoretical results.
The information needs at least O(D) timesteps to propagate through the network. The
constant in the O() notation is influenced on one hand by the average connectivity in
the network (a node can only contact a single neighbor per timestep, slowing infor-
mation dissemination) and the push-pull communication model on the other (a node
may be contacted by several neighbors during a timestep, speeding up information
dissemination).

5. RELATED WORK

Aggregate computation in large-scale networks is a topic that received significant at-
tention across a large number of fields. It is fueled by both need (ultra-large-scale
systems make decision taking a highly complex task [Northrop et al. 2006]) and imag-
ination (programmable matter requires a control paradigm [Goldstein et al. 2005]). A
myriad of domain specific programming languages were developed trying to ease the
task of controlling large-scale networks. The authors of Beal et al. [2013] survey efforts
in fields including amorphous computing, synthetic biology, wireless sensor networks,
pervasive computing, swarm robotics, and parallel and distributed computing, to name
a few.

The basic building blocks of all these languages are primitives that guarantee that
the system converges to a desired state. Complicated networking protocols are usu-
ally not employed as complexity was shown to arise even from combination of simple
rules [Wolfram 2002]. This holds true for both simple cellular automata [Chopard
and Droz 1998] and highly complex systems combining modern communication means
with large-scale fixed infrastructure (e.g., autonomic computing [Kephart and Chess
2003)).

In this context, our research focuses on basic primitives, based on local interactions,
which give designers the possibility of creating complex behaviors in a tractable man-
ner. While solutions involving global information available at each node are easily
rendered useless by increasing system scales (e.g., tracking the status of all individual
nodes is infeasible), aggregate information about the system behavior is achievable.
Gossiping [Boyd et al. 2005] is such a mechanism, allowing computation of aggre-
gates in a timely manner without the need of precise topology information. Complex
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functions can be achieved with simple local rules, ranging from statistical information
about information distributed all over the network [Kempe et al. 2003] to network
overlays [Jelasity and Babaoglu 2006]. The authors of Mosk-Aoyama and Shah [2008]
show that a trade-off exists between the convergence time and the amount of infor-
mation exchanged in the gossiping process, leading to fast converging algorithms (in
O(Dlog N) timesteps) [Shah 2009].

It is interesting to notice that even simple aggregates received a lot of attention.
For example, counting the nodes in a network (thus summing up all the values 1 held
locally) led to a large number of solutions [Kostoulas et al. 2007; Massoulié et al. 2006;
Madden et al. 2002]. Of interest and in line with the work presented in this article is the
synopsis diffusion mechanism [Nath et al. 2004], which employs statistics techniques
to achieve a result fast. Unfortunately, these works are usually one-shot solutions,
requiring some type of synchronization mechanisms (preferably distributed solutions
such as Werner-Allen et al. [2005]). Self-stabilization techniques [Dolev 2000] received
a lot of interest leading to approaches such as periodic synchronization [Jelasity et al.
2005], parallel running algorithms [Bicocchi et al. 2010], or asynchronous periodic
resets [Pruteanu and Dulman 2012].

Self-stabilization techniques like the ones proposed in this article are tightly related
to the classical problem of leader election. The basis for our work, the Mosk-Aoyama-
Shah algorithm [Mosk-Aoyama and Shah 2008], has as an underlying feature the
propagation of a minimum value in a network—a common technique used in leader
election protocols [Dijkstra 1982]. Using timers for detecting changes or deadlocks
in the network state [Mayer et al. 1992] is ubiquitous in computer science protocols.
Also, from the perspective of topology, a large number of leader-election algorithms
present similarities with the underlying analysis of convergence [Shah 2009] (ring
graphs [Garcia-Molina 1982], tree networks [Antonoiu and Srimani 1996], or mesh
networks [Malpani et al. 2000]). More common techniques between these fields have
already been identified in Angluin et al. [2008]. Nevertheless, the second extension we
propose in this article breaks away from the classical topics of leader election and token
management as the assumptions it builds upon (e.g., values of nodes in the network
changing often) are rarely applicable in the works cited previously.

Returning to the problem of engineers having access to a design process for com-
plex behavior, our work provides a measurement component for distributed control
approaches. The primitives we propose can be used in creating complex algebras
(such as the Presburger arithmetic employed in population protocols [Angluin et al.
2007, 2008]) or even in more exploratory solutions such as swarm chemistry [Sayama
2009].

The results of this theoretical work form the basis for building a wide range of
applications. Internet of things, smart cities, and Industry 4.0 are just a few tech-
nologies highly relevant at the moment that may make use of our work, building on
the lessons of already deployed systems (e.g., monitoring of cloud computing server
farms—Astrolabe [Van Renesse et al. 2003] or computing complex robustness metrics
in smart energy grid applications [Kog et al. 2013]).

6. CONCLUSIONS AND FUTURE WORK

In this article, we focused on adding self-stabilizing properties to fast gossiping algo-
rithms. The motivation is that, in the case in which the changes in the network occur
in batches separated in time, no additional synchronization mechanism is needed. A
simple extension based on counters is enough to guarantee the network stabilization
in a timely manner after the disturbance.

To this end, we propose two mechanisms (the counter-based self-stabilization and
the value removal mechanism) that together allow fast gossiping algorithms to
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withstand network dynamics. The basic properties of the fast gossiping algorithms
still hold, leading to a solution that is highly scalable, network topology agnostic, has
no single-point-of-failure and allows real-time results dissemination at all the nodes in
the network.

Regarding the future work, we noticed that the self-stabilizing approaches to large-
scale highly dynamic systems are quite limited in number, offering nice investigating
venues. For example, we would like to extend the proposed counter-based mechanism
to setups in which changes can occur without any restrictions. One direction of research
includes limiting the fluctuations in the aggregate computation to a smaller dynamic
range, preventing it from decreasing toward 0 once timers expire or values change.
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