1,107 research outputs found

    LCrowdV: Generating Labeled Videos for Simulation-based Crowd Behavior Learning

    Full text link
    We present a novel procedural framework to generate an arbitrary number of labeled crowd videos (LCrowdV). The resulting crowd video datasets are used to design accurate algorithms or training models for crowded scene understanding. Our overall approach is composed of two components: a procedural simulation framework for generating crowd movements and behaviors, and a procedural rendering framework to generate different videos or images. Each video or image is automatically labeled based on the environment, number of pedestrians, density, behavior, flow, lighting conditions, viewpoint, noise, etc. Furthermore, we can increase the realism by combining synthetically-generated behaviors with real-world background videos. We demonstrate the benefits of LCrowdV over prior lableled crowd datasets by improving the accuracy of pedestrian detection and crowd behavior classification algorithms. LCrowdV would be released on the WWW

    Crowd detection and counting using a static and dynamic platform: state of the art

    Get PDF
    Automated object detection and crowd density estimation are popular and important area in visual surveillance research. The last decades witnessed many significant research in this field however, it is still a challenging problem for automatic visual surveillance. The ever increase in research of the field of crowd dynamics and crowd motion necessitates a detailed and updated survey of different techniques and trends in this field. This paper presents a survey on crowd detection and crowd density estimation from moving platform and surveys the different methods employed for this purpose. This review category and delineates several detections and counting estimation methods that have been applied for the examination of scenes from static and moving platforms

    Unsupervised Methods for Camera Pose Estimation and People Counting in Crowded Scenes

    Get PDF
    Most visual crowd counting methods rely on training with labeled data to learn a mapping between features in the image and the number of people in the scene. However, the exact nature of this mapping may change as a function of different scene and viewing conditions, limiting the ability of such supervised systems to generalize to novel conditions, and thus preventing broad deployment. Here I propose an alternative, unsupervised strategy anchored on a 3D simulation that automatically learns how groups of people appear in the image and adapts to the signal processing parameters of the current viewing scenario. To implement this 3D strategy, knowledge of the camera parameters is required. Most methods for automatic camera calibration make assumptions about regularities in scene structure or motion patterns, which do not always apply. I propose a novel motion based approach for recovering camera tilt that does not require tracking. Having an automatic camera calibration method allows for the implementation of an accurate crowd counting algorithm that reasons in 3D. The system is evaluated on various datasets and compared against state-of-art methods

    Segmentation and Counting of People Through Collaborative Augmented Environment

    Get PDF
    People counting system have wide potential application including video surveillance and public resources management. Also with rapid development of economic society, crowd flowing in varies public places and facility is more and more frequent. Effectively managing and controlling crowd in public places become an important issue. People counting system based on this kind of demand arises, which can be used in commercial domain such as market survey, traffic management as well as architectural design domain. For example suppose there is a crowd gathering at specific place then it indicates an unusual situation and second one if counting of people is done in shopping mall then it provides valuable information for optimizing trading hours, as well as evaluating the attractiveness of some shopping areas
    corecore