5,945 research outputs found

    Switched Capacitor DC-DC Converter for Miniaturised Wearable Systems

    Get PDF
    Motivated by the demands of the integrated power system in the modern wearable electronics, this paper presents a new method of inductor-less switched-capacitor (SC) based DC-DC converter designed to produce two simultaneous boost and buck outputs by using a 4-phases logic switch mode regulation. While the existing SC converters missing their reconfigurability during needed spontaneous multi-outputs at the load ends, this work overcomes this limitation by being able to reconfigure higher gain mode at dual outputs. From an input voltage of 2.5 V, the proposed converter achieves step-up and step-down voltage conversions of 3.74 V and 1.233 V for Normal mode, and 4.872 V and 2.48 V for High mode, with the ripple variation of 20–60 mV. The proposed converter has been designed in a standard 0.35 μm CMOS technology and with conversion efficiencies up to 97–98% is in agreement with state-of-the-art SC converter designs. It produces the maximum load currents of 0.21 mA and 0.37 mA for Normal and High modes respectively. Due to the flexible gain accessibility and fast response time with only two clock cycles required for steady state outputs, this converter can be applicable for multi-function wearable devices, comprised of various integrated electronic modules

    Ultra-Low-Power Superconductor Logic

    Full text link
    We have developed a new superconducting digital technology, Reciprocal Quantum Logic, that uses AC power carried on a transmission line, which also serves as a clock. Using simple experiments we have demonstrated zero static power dissipation, thermally limited dynamic power dissipation, high clock stability, high operating margins and low BER. These features indicate that the technology is scalable to far more complex circuits at a significant level of integration. On the system level, Reciprocal Quantum Logic combines the high speed and low-power signal levels of Single-Flux- Quantum signals with the design methodology of CMOS, including low static power dissipation, low latency combinational logic, and efficient device count.Comment: 7 pages, 5 figure

    Ultra-low Voltage Digital Circuits and Extreme Temperature Electronics Design

    Get PDF
    Certain applications require digital electronics to operate under extreme conditions e.g., large swings in ambient temperature, very low supply voltage, high radiation. Such applications include sensor networks, wearable electronics, unmanned aerial vehicles, spacecraft, and energyharvesting systems. This dissertation splits into two projects that study digital electronics supplied by ultra-low voltages and build an electronic system for extreme temperatures. The first project introduces techniques that improve circuit reliability at deep subthreshold voltages as well as determine the minimum required supply voltage. These techniques address digital electronic design at several levels: the physical process, gate design, and system architecture. This dissertation analyzes a silicon-on-insulator process, Schmitt-trigger gate design, and asynchronous logic at supply voltages lower than 100 millivolts. The second project describes construction of a sensor digital controller for the lunar environment. Parts of the digital controller are an asynchronous 8031 microprocessor that is compatible with synchronous logic, memory with error detection and correction, and a robust network interface. The digitial sensor ASIC is fabricated on a silicon-germanium process and built with cells optimized for extreme temperatures

    Circuits and Systems Advances in Near Threshold Computing

    Get PDF
    Modern society is witnessing a sea change in ubiquitous computing, in which people have embraced computing systems as an indispensable part of day-to-day existence. Computation, storage, and communication abilities of smartphones, for example, have undergone monumental changes over the past decade. However, global emphasis on creating and sustaining green environments is leading to a rapid and ongoing proliferation of edge computing systems and applications. As a broad spectrum of healthcare, home, and transport applications shift to the edge of the network, near-threshold computing (NTC) is emerging as one of the promising low-power computing platforms. An NTC device sets its supply voltage close to its threshold voltage, dramatically reducing the energy consumption. Despite showing substantial promise in terms of energy efficiency, NTC is yet to see widescale commercial adoption. This is because circuits and systems operating with NTC suffer from several problems, including increased sensitivity to process variation, reliability problems, performance degradation, and security vulnerabilities, to name a few. To realize its potential, we need designs, techniques, and solutions to overcome these challenges associated with NTC circuits and systems. The readers of this book will be able to familiarize themselves with recent advances in electronics systems, focusing on near-threshold computing

    Voltage stacking for near/sub-threshold operation

    Get PDF

    Standard cell library design for sub-threshold operation

    Get PDF

    Design of Low-Voltage Digital Building Blocks and ADCs for Energy-Efficient Systems

    Get PDF
    Increasing number of energy-limited applications continue to drive the demand for designing systems with high energy efficiency. This tutorial covers the main building blocks of a system implementation including digital logic, embedded memories, and analog-to-digital converters and describes the challenges and solutions to designing these blocks for low-voltage operation

    Real-time image streaming over a low-bandwidth wireless camera network

    Get PDF
    In this paper we describe the recent development of a low-bandwidth wireless camera sensor network. We propose a simple, yet effective, network architecture which allows multiple cameras to be connected to the network and synchronize their communication schedules. Image compression of greater than 90% is performed at each node running on a local DSP coprocessor, resulting in nodes using 1/8th the energy compared to streaming uncompressed images. We briefly introduce the Fleck wireless node and the DSP/camera sensor, and then outline the network architecture and compression algorithm. The system is able to stream color QVGA images over the network to a base station at up to 2 frames per second. © 2007 IEEE
    • …
    corecore