44 research outputs found

    Multiframe Scene Flow with Piecewise Rigid Motion

    Full text link
    We introduce a novel multiframe scene flow approach that jointly optimizes the consistency of the patch appearances and their local rigid motions from RGB-D image sequences. In contrast to the competing methods, we take advantage of an oversegmentation of the reference frame and robust optimization techniques. We formulate scene flow recovery as a global non-linear least squares problem which is iteratively solved by a damped Gauss-Newton approach. As a result, we obtain a qualitatively new level of accuracy in RGB-D based scene flow estimation which can potentially run in real-time. Our method can handle challenging cases with rigid, piecewise rigid, articulated and moderate non-rigid motion, and does not rely on prior knowledge about the types of motions and deformations. Extensive experiments on synthetic and real data show that our method outperforms state-of-the-art.Comment: International Conference on 3D Vision (3DV), Qingdao, China, October 201

    Multiframe Scene Flow with Piecewise Rigid Motion

    Full text link
    We introduce a novel multiframe scene flow approach that jointly optimizes the consistency of the patch appearances and their local rigid motions from RGB-D image sequences. In contrast to the competing methods, we take advantage of an oversegmentation of the reference frame and robust optimization techniques. We formulate scene flow recovery as a global non-linear least squares problem which is iteratively solved by a damped Gauss-Newton approach. As a result, we obtain a qualitatively new level of accuracy in RGB-D based scene flow estimation which can potentially run in real-time. Our method can handle challenging cases with rigid, piecewise rigid, articulated and moderate non-rigid motion, and does not rely on prior knowledge about the types of motions and deformations. Extensive experiments on synthetic and real data show that our method outperforms state-of-the-art.Comment: International Conference on 3D Vision (3DV), Qingdao, China, October 201

    BENDING THE DOMING EFFECT IN STRUCTURE FROM MOTION RECONSTRUCTIONS THROUGH BUNDLE ADJUSTMENT

    Get PDF
    Structure from Motion techniques provides low-cost and flexible methods that can be adopted in arial surveying to collect topographic data with accurate results. Nevertheless, the so-called "doming effect", due to unfortunate acquisition conditions or unreliable modeling of radial distortion, has been recognized as a critical issue that disrupts the quality of the attained 3D reconstruction. In this paper we propose a novel method, that works effectively in the presence of a nearly flat soil, to tackle a posteriori the doming effect: an automatic ground detection method is used to capture the doming deformation flawing the reconstruction, which in turn is wrapped to the correct geometry by iteratively enforcing a planarity constraint through a Bundle Adjustment framework. Experiments on real word datasets demonstrate promising results

    Projective Bundle Adjustment from Arbitrary Initialization Using the Variable Projection Method

    Get PDF
    Bundle adjustment is used in structure-from-motion pipelines as final refinement stage requiring a sufficiently good initialization to reach a useful local mininum. Starting from an arbitrary initialization almost always gets trapped in a poor minimum. In this work we aim to obtain an initialization-free approach which returns global minima from a large proportion of purely random starting points. Our key inspiration lies in the success of the Variable Projection (VarPro) method for affine factorization problems, which have close to 100% chance of reaching a global minimum from random initialization. We find empirically that this desirable behaviour does not directly carry over to the projective case, and we consequently design and evaluate strategies to overcome this limitation. Also, by unifying the affine and the projective camera settings, we obtain numerically better conditioned reformulations of original bundle adjustment algorithms

    Pareto Meets Huber: Efficiently Avoiding Poor Minima in Robust Estimation

    Get PDF
    International audienceRobust cost optimization is the task of fitting parameters to data points containing outliers. In particular, we focus on large-scale computer vision problems, such as bundle adjustment , where Non-Linear Least Square (NLLS) solvers are the current workhorse. In this context, NLLS-based state of the art algorithms have been designed either to quickly improve the target objective and find a local minimum close to the initial value of the parameters, or to have a strong ability to avoid poor local minima. In this paper, we propose a novel algorithm relying on multi-objective optimization which allows to match those two properties. We experimentally demonstrate that our algorithm has an ability to avoid poor local minima that is on par with the best performing algorithms with a faster decrease of the target objective
    corecore