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Abstract. Bundle adjustment is used in structure-from-motion pipelines as final
refinement stage requiring a sufficiently good initialization to reach a useful local
mininum. Starting from an arbitrary initialization almost always gets trapped in
a poor minimum. In this work we aim to obtain an initialization-free approach
which returns global minima from a large proportion of purely random starting
points. Our key inspiration lies in the success of the Variable Projection (VarPro)
method for affine factorization problems, which have close to 100% chance of
reaching a global minimum from random initialization. We find empirically that
this desirable behaviour does not directly carry over to the projective case, and
we consequently design and evaluate strategies to overcome this limitation. Also,
by unifying the affine and the projective camera settings, we obtain numerically
better conditioned reformulations of original bundle adjustment algorithms.
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1 Introduction

Standard structure from motion (SfM) approaches are typically multi-stage pipelines
comprising of feature matching or tracking, initial structure and camera estimation,
and final nonlinear refinement stages. While feature matching and tracking and the
nonlinear refinement stage have well-established gold standard implementations (most
notably matching using SIFT features, tracking via Lucas-Kanade and nonlinear re-
finement via Levenberg-Marquardt), no elegant and generally accepted framework for
estimating the initial poses and 3D structure from feature tracks is known. Even when
one has a sensible starting point (initial 3D reconstruction) available, accumulated drift,
undetected loop closures, etc., require a large basin of convergence for bundle adjust-
ment to succeed. The essence of this work is widening the convergence basin of bundle
adjustment thereby improving SfM systems.

If an affine or weak perspective camera model is given (or assumed), determining
pose and 3D structure amounts to solving a matrix factorization problem, which is an
easy task if all points are visible in every image. If the visibility pattern is sparse and
structured as induced by feature tracking, matrix factorization algorithms employing the
Variable Projection (VarPro) method are highly successful (i.e. return a global optimum
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(a) Observed tracks (b) Initial (377.29) (c) Best affine (9.38) (d) Best proj. (0.84)

Fig. 1. Visualization of the Di2 (see Table 7) tracks recovered using our two-stage meta-
algorithms. In each run, each meta-algorithm is initialized from random camera poses and
points (Fig. 1b). In the first stage, it performs affine bundle adjustment using either a Linear
or Nonlinear VarPro-based algorithms, reaching the best affine optimum (Fig. 1c) in 91% of
all runs. The outputs are then used to initialize projective bundle adjustment. Although Di2 has
strong perspective effects, our recommended meta-algorithms (TSMA1 and TSMA2) both reach
the best projective optimum (Fig. 1d) in 90–98% of all runs.

in a large fraction of runs) even when the poses and the 3D structure are initialized
arbitrarily [18, 10]. Thus, the initial SfM computation can be entirely bypassed in the
affine case. One obvious question is whether this is also true when using a pinhole
camera model. This the main motivation of this work.

Formally, we are interested in finding global minimizers of the following nonlinear
least squares projective bundle adjustment problem

min
{Pi}{x̃j}

∑
{i,j}∈Ω

‖π (Pix̃j)− m̃ij‖22 (1)

without requiring good initial values for the unknowns. In (1) the unknowns are as
follows: Pi ∈ R3×4 is the projective camera matrix for frame i and x̃j ∈ R4 is the
homogeneous vector of coordinates of point j. m̃ij ∈ R2 is the observed projection of
point j in frame i. Ω denotes a set of visible observations and π (·) is the perspective
division such thatπ([x, y, z]>) := [x/z, y/z]>. This division introduces nonlinearity to
the objective, and thus we can interpret (1) as a nonlinear matrix factorization problem.

Our quest to solve (1) directly without the help of an initial structure and motion
estimation step leads to the following contributions:

+ Extension of Ruhe and Wedin algorithms: we extend the separable nonlinear
least squares algorithms in [20] to apply to nonseparable problems such as (1).

+ Unification of affine and projective cases: we unify affine and projective bundle
adjustment as special cases of a more general problem class. As a byproduct we
obtain numerically better conditioned formulations for each of the special cases.

+ Simple two-stage meta-algorithms: we provide numerical experiments to identify
the method yielding the highest success rate overall on real and synthetic datasets.
We conclude that each of two winning methods is a Variable Projection (VarPro)
method-based two-stage approach, which uses either a traditional or proposed nu-
merically stable affine bundle adjustment algorithm followed by the proposed pro-
jective bundle adjustment algorithm.
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Conversely, there are limitations of this work: the scope is confined to the L2-norm
projective formulation, and consequently we may encounter new challenges when in-
coporating robust kernel techniques and/or extending this work to the calibrated case,
which is more frequently used in practice. We discuss the iteration complexity of our
proposed algorithms but do not include timing measurements as we believe meaningful
run-time figures require comparable implementations (and our code in [11] is inefficient
as it has not incorporated the speed-up tricks mentioned in [2, 4, 10]).

1.1 Related work

In this section we briefly summarize relevant literature. The first seminal work dates
back to Wiberg [25], who investigated the task of matrix factorization under missing
data and whose name is today associated with the most successful method to solve this
problem. The method is based on the principle of Variable Projection, which rewrites
the objective in terms of a reduced set of unknowns by “minimizing out” the remaining
ones. This approach is in particular promising, when the dependencies between un-
knowns forms a bipartite graph (which is the case in the structure from motion setting).
In several works it has been experimentally verified that the Wiberg/VarPro method is
far superior to naive joint optimization for matrix factorization problems (e.g. [5, 17,
10]), which explains the interest in the more difficult to implement VarPro methods.

In computer vision the connection between matrix factorization and affine struc-
ture from motion—but without missing data—was explored in [23]. Solving projective
structure from motion via matrix factorization is more difficult, and it requires iterative
methods even in the fully observed case (e.g. [22]). One step towards the application of
VarPro methods in projective problems is the Nonlinear VarPro extension explored by
Strelow [21], which we take as a starting point for our implementation.

All methods mentioned so far are ideally designed not to require a careful initializa-
tion for the unknown cameras and 3D structure (or matrix factors in the general case),
and VarPro-derived methods work well for matrix factorization tasks even with ran-
dom values as initializer. In SfM applications strong geometric constraints (we refer
to [9] for a comprehensive treatment) can be used to determine sensible initial cameras
and 3D structure. This initialization is subsequently used as starting point for nonlinear
least-squares optimization (termed bundle adjustment) over all unknowns (see [24] for
a review). Determining a good starting point for bundle adjustment is a non-trivial prob-
lem and expensive to solve in the general case. Compared to two-view and three-view
geometry and to full-scale bundle adjustment this step of finding a good initializer also
lacks in theoretical understanding. Hence, it is beneficial to bypass this stage altogether
and investigate initialization-free methods for bundle adjustment.

2 Known methods for bivariate least-squares optimization

Bivariate least-squares solves

min
u,v
‖ε(u,v)‖22 (2)



4 J.H. Hong, C. Zach, A.W. Fitzgibbon and R. Cipolla

where u and v are sets of model parameters and ε is the residual vector. We can solve
this by using various methods, namely Joint optimization, Variable Projection (Lin-
ear [6] and Nonlinear VarPro [21]) and Alternating least-squares (ALS), which is equiv-
alent to RW3 (see §2.2 and §3).

The key to implementing all these methods is the use of the Levenberg-Marquardt
(LM) algorithm [13, 15], which is a widely used trust-region strategy.

The Levenberg-Marquardt algorithm (LM)

LM [13, 15] is an extension of the Gauss-Newton algorithm, which minimizes ‖ε(x)‖22
by iteratively solving its linearization and updating x accordingly. At each iteration, the
Gauss-Newton update ∆x is the solution of the linearized problem

argmin
∆x

‖ε(x) + J(x)∆x‖22 (3)

where x denotes the parameter values from the previous iteration and J(x) := ∂ε(x)/∂x.
This step is likely to lead to a lower objective if the local cost surface about x resembles
a quadratic model, but otherwise may lead to a higher objective. To overcome this, LM
incorporates a regularizer to control the step size and find the augmented solution

argmin
∆x

‖ε(x) + J(x)∆x‖22 + λ‖∆x‖22 (4)

where λ is known as the damping factor which we tune to decrease the cost. This pa-
rameter indicates the size of the trust region — the smaller the value of λ, the larger the
region that can be “trusted” as quadratic.

2.1 Joint optimization

Joint optimization solves for all parameters simultaneously. This is achieved by stacking
into the vector x = [u;v] and using a Newton-like solver such as LM. In general, the
update at iteration k is

[uk+1;vk+1] = xk+1 = xk − (H(xk) + λI)−1g(xk) (5)

where H(xk) is the Hessian (or its approximation) of ‖ε(x)‖22 at xk, g(xk) is the gra-
dient ∇x‖ε(xk)‖22 and λ is the damping factor. A widely used Hessian approximation,
which is also used by LM (and throughout this paper), is the Gauss-Newton matrix
2J(xk)

>J(xk) where J(xk) := ∂ε(xk)/∂x.

2.2 Linear Variable Projection (Linear VarPro)

Linear VarPro [6] is an approach for solving separable nonlinear least-squares [20],
which is a subset of bivariate optimization problems and has a property that the residual
vector is linear in at least one of two variables, e.g.

min
u,v
‖ε(u,v)‖22 = min

u,v
‖A(u)v − b‖22 (6)
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where u and v are sets of model parameters, ε is the residual vector, A(u) is a linear
operator which depends on u and b is a constant vector. Since ε is linear in v, we have
a direct solution for v that minimizes (6) given u which we call

v∗(u) := argmin
v

‖A(u)v − b‖22 = A†(u)b. (7)

Substituting v∗(u) for v in (6) yields

min
u
‖ε∗(u)‖22 := min

u
‖A(u)v∗(u)− b‖22 = min

u,v
‖
(
A(u)A†(u)− I

)
b‖22 (8)

which is a nonlinear reduced problem in u that can be solved using LM.
In [7], the authors claim that this reduced objective is almost always better condi-

tioned than the original one. Although no formal proof is provided, we can find empir-
ical evidence in matrix factorization [10].

Deriving the Jacobian of the reduced problem First, we write the Jacobian of the
original problem (6) as

J(u,v) :=

[
∂ε(u,v)

∂u

∂ε(u,v)

∂v

]
=

[
∂ε(u,v)

∂u
A(u)

]
=:
[
Ju(u,v) Jv(u)

]
. (9)

We then express (using the chain rule) the Jacobian of the reduced problem (8) as

J∗(u) :=
dε∗(u)

du
=
dε(u,v∗(u))

du
=
∂ε(u,v∗(u))

∂u
+
∂ε(u,v∗(u))

∂v

dv∗(u)

du
(10)

= Ju(u,v
∗(u)) + Jv(u)

d

du

[
A(u)†b

]
(11)

= Ju(u,v
∗(u)) + Jv(u)

d

du

[
Jv(u)

†]b. (12)

If v∗(u) is differentiable, (12) is analytically tractable. (see [11].)

Ruhe and Wedin algorithms for Linear VarPro In [20], Ruhe and Wedin proposed
three Newton-like algorithms each of which uses an approximation to the Hessian. The
first algorithm, RW1, simply uses Gauss-Newton (2J>J). The second algorithm, RW2,
approximates dv∗(u)/du in the Jacobian such that the approximated Gauss-Newton
matrix is orthogonal to the column space of Jv(u). Finally, RW3 assumes independence
of the two variables by setting dv∗(u)/du = 0, leading to alternation.

Although Ruhe and Wedin did not associate any trust region strategy with the above
algorithms, we can easily incorporate this by using LM.

2.3 Nonlinear Variable Projection (Nonlinear VarPro)

The approach in §2.2 can be applied only to separable nonlinear least-squares, where the
objective is bivariate and linear in at least one of two variables. Strelow [21] extended
this to apply to nonseparable problems, which can be expressed as

min
u,v
‖ε(u,v)‖22 = min

u,v
‖f(u,v)− b‖22. (13)
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Similar to §2.2, we wish to find v∗(u) := argminv ‖ε(u,v)‖22 and solve

min
u
‖ε∗(u)‖22 := min

u
‖ε(u,v∗(u))‖22. (14)

In this case, v∗(u) may not have a closed form solution as the residual vector is non-
linear in both u and v. Instead, we apply a second-order iterative solver (e.g. LM) to
approximately solve argminv ‖ε(u,v)‖22 and store the final solution in v̂∗0 .

Now, assuming that v̂∗0 has converged, we define v̂∗(u) as the quantity obtained by
performing one additional Gauss-Newton iteration over v from (u, v̂∗0). i.e.

v̂∗(u) := v̂∗0 + argmin
∆v

‖ε(u, v̂∗0) + Jv(u, v̂
∗
0)∆v‖22︸ ︷︷ ︸

The additional Gauss-Newton step

= v̂∗0 − Jv(u, v̂
∗
0)
†ε(u, v̂∗0).

(15)

Above expression implicitly assumes that ε(u,v) is locally linear in v about ε(u, v̂∗0).
This approximation allows us to estimate dv∗(u)/du by computing dv̂∗(u)/du:

dv∗(u)

du
≈ dv̂∗(u)

du
= − ∂

∂u
[Jv(u, v̂

∗
0)
†ε(u, v̂∗0)]. (16)

Combining the results of (10) and (16) and using the differentiation rule for matrix
pseudo-inverses [6] yields

J̃∗(u) := Ju(u, v̂
∗
0)− Jv(u, v̂

∗
0)

∂

∂u

[
Jv(u, v̂

∗
0)
†ε(u, v̂∗0)

]
(17)

=
(
I− Jv(u, v̂

∗
0)Jv(u, v̂

∗
0)
†) Ju(u, v̂

∗
0)

− Jv(u, v̂
∗
0)

∂

∂u

[
Jv(u, v̂

∗
0)
†] ε(u, v̂∗0) (18)

where J̃∗(u) is the approximate Jacobian used by Nonlinear VarPro.
In summary, one iteration of Nonlinear VarPro amounts to solving one inner mini-

mization over v given u, which outputs v̂∗0 ≈ v∗(u), followed by one outer minimiza-
tion over u, which is achieved by linearizing the residual vector in v about ε(u, v̂∗0).

For separable problems, the residual vector is always linear in v, and therefore (18)
becomes the exact Jacobian.

3 Ruhe and Wedin algorithms for Nonlinear VarPro

We acquire the nonlinear extensions of the original Ruhe and Wedin algorithms [20]
as follows: since original RW1 applies the Gauss-Newton algorithm on the reduced
problem (8), we propose that Nonlinear RW1 employs the Gauss-Newton algorithm
using the Jacobian derived in (18). (This is essentially the same as Strelow’s General
Wiberg [21]). Original RW2 projects the exact Jacobian of original RW1 to the left
nullspace of Jv(u), resulting in an approximated Gauss-Newton matrix. For Nonlinear
RW2, we project the Jacobian of Nonlinear RW1 to the left nullspace of Jv(u, v̂

∗
0),

which is equivalent to discarding the latter term of (18). Lastly, original RW3 assumes
u and v to be independent. For the nonlinear case, this translates to dv̂∗(u)/du = 0,
yielding Jv(u, v̂

∗
0) as the approximate Jacobian of Nonlinear RW3.
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Table 1. A list of approximate Jacobians used by our nonlinear extension of the Ruhe and
Wedin algorithms. Nonlinear RW1 applies the Gauss-Newton (GN) algorithm on the reduced
problem (14), Nonlinear RW2 makes an approximation to the Jacobian as described in §3 and
Nonlinear RW3 makes a further approximation which turns it into alternation. v̂∗0 is obtained
using a second-order iterative solver (see §2.3).

Algorithm Approximate Jacobian used
Nonlinear RW3 (ALS) JRW3 := Ju(u, v̂

∗
0)

Nonlinear RW2 JRW2 := JRW3 − Jv(u, v̂
∗
0)Jv(u, v̂

∗
0)
†Ju(u, v̂

∗
0)

Nonlinear RW1 (GN) JRW1 := JRW2 − Jv(u, v̂
∗
0)

∂
∂u

[
Jv(u, v̂

∗
0)
†] ε(u, v̂∗0)

3.1 The sparsity of the Hessian approximations

Okatani et al. [18] and Strelow [21] pointed out structural similarity between the Schur
complement reduced system for Joint optimization and Linear VarPro. Analysing the
exact differences between the two methods is a research question on its own, and there-
fore in this paper we just confirm numerically that the Hessian approximations of both
RW1 and RW2 (linear and nonlinear) have the same sparsity pattern as the Schur com-
plement reduced system for Gauss-Newton based Joint optimization. Furthermore, we
found (through code implementation) that the iteration complexity of our proposed non-
linear extensions is similar (same for RW2, higher for RW1) to standard bundle adjust-
ment with embedded point iterations [12]. Hence, one LM iteration of both standard
bundle adjustment and our method will take roughly similar amount of time.

4 A unified notation for uncalibrated camera models

In this section, we present a unified notation for uncalibrated (affine and projective)
cameras which allows a modularized compilation of bundle adjustment algorithms.

Affine and projective cameras are widely-used uncalibrated camera models which
can be expressed in the homogeneous or the inhomogeneous form. We can incorporate
both models and forms into a single camera matrix by defining

Pi := P(pi,qi, si, µi) :=

 pi1 pi2 pi3 pi4
pi5 pi6 pi7 pi8
µiqi1 µiqi2 µiqi3 si

 =:

 p>i1:
p>i2:[

µiq
>
i si

]
 (19)

where pi = [p>i1:,p
>
i2:]
> = [pi1, · · · , pi8]> and qi = [qi1, qi2, qi3]

> are the projective
camera parameters for frame i, µi ∈ [0, 1] indicates the degree of ”projectiveness” of
frame i, and si is the scaling factor of the i-th camera.

Now each point is typically parametrized as

x̃j := x̃(xj , tj) :=
[
x>j tj

]
:=
[
xj1 xj2 xj3 tj

]>
(20)

where xj =
[
xj1, xj2, xj3

]>
is the vector of unscaled inhomogeneous coordinates of

point j and and x̃j is the vector of homogeneous coordinates of point j. (19) and (20)
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lead to a unified projection function

πij := π(Pi, x̃j) = π(P(pi,qi, si, µi), x̃(xj , tj)) =
1

µiq>i xj + sitj

[
p>

i1:x̃j

p>
i2:x̃j

]
. (21)

We show in Table 2 that the affine and the projective models (in both homogeneous
and inhomogeneous forms) are specific instances of the unified model described above.

Table 2. A summary of uncalibrated camera models using the unified notation. H ∈ R4×4 is an
arbitrary invertible matrix, and A ∈ R4×4 is an arbitrary invertible matrix with the last row set to
[0, 0, 0, 1]. αi, βj ∈ R is an arbitrary scale factor.

Form Variable Affine model (µi = 0) Projective model (µi = 1)

Homogeneous

Camera (Pi) P(pi, 0, si, 0) P(pi,qi, si, 1)
Point (x̃j) x̃(xj , tj) x̃(xj , tj)
Inverse depth sitj q>i xj + sitj
Model property Nonlinear in Pi and x̃j

Gauge freedom Pix̃j = (PiH)(H
−1x̃j)

Scale freedom π(Pi, x̃j) = π(αiPi, βjxj)

Inhomogeneous

Camera (Pi) P(pi, 0, 1, 0) P(pi,qi, 1, 1)
Point (x̃j) x̃(xj , 1) x̃(xj , 1))
Inverse depth 1 q>i xj + 1
Model property linear in Pi and x̃j nonlinear in Pi and x̃j

Gauge freedom Pix̃j = (PiA)(A
−1x̃j) Pix̃j = (PiH)(H

−1x̃j)
Scale freedom None

5 Compilation of affine/projective bundle adjustment algorithms

In this section, we present the building blocks of our bundle adjustment algorithms for
uncalibrated cameras which stem from §2, §3 and §4. To simplify notations, we stack the
variables introduced in §4 across all cameras or points by omitting the corresponding
subscript, e.g. p = [p>1 , · · · ,p>f ]> and x = [x>1 , · · · ,x>n ]>, where f is the number
of frames and n is the number of points in the dataset used. We also define p̃ to be the
collection of the camera parameters p, q and s. (Note that µ is not included.) We can
now rewrite (1) as

min
p,q,s,x,t

‖ε(p,q, s,x, t,µ)‖22. (22)

In this paper, we assume that µ (the projectiveness vector) is fixed during optimization
as finding an optimal way to adjust µ at each iteration is not trivial. Our algorithms first
eliminate points (x̃), generating a reduced problem over camera poses (p̃), but we could
reverse the order to eliminate poses first as described in §6.1 of [24].



Projective Bundle Adjustment from Arbitrary Initialization 9

5.1 Required derivatives

We only need three types of derivatives to implement all the algorithms mentioned in §2
irrespective of the camera model used.

The first two derivatives are the Jacobian with respect to camera poses (Jp̃) and the
Jacobian with respect to feature points (Jx̃) which are the first order derivatives of the
original objective (1). These Jacobians are used by both Joint optimization and VarPro
but are evaluated at different points in the parameter space — at each iteration, Joint
optimization evaluates the Jacobians at (p̃, x̃) whereas Linear and Nonlinear VarPro
evaluate them at (p̃, x̃∗(p̃)), where x̃∗(p̃) denotes a set of feature points which locally
minimizes (1) given the camera parameters p̃.

The third derivative, which involves a second-order derivative of the objective, is
only required by Linear and Nonlinear RW1.

Table 3. A list of derivatives required for implementing affine and projective bundle adjustment
algorithms based on the methods illustrated in §2. The camera parameters (p̃) consist of p, q and
s, and the point parameters (x̃) consist of x and t. Note that the effective column size of these
quantities will vary depending on the parameterization of the camera model used. The Jacobians
are the first-order derivatives of ε(p,q, s,x, t,µ) in (22).

Required derivatives
Affine Projective

Hom. Inhom. Hom. Inhom.

Jacobian w.r.t. cameras (Jp̃)
[
∂ε

∂p

∂ε

∂s

]
∂ε

∂p

[
∂ε

∂p

∂ε

∂q

∂ε

∂s

] [
∂ε

∂p

∂ε

∂q

]
Jacobian w.r.t. points (Jx̃)

[
∂ε

∂x

∂ε

∂t

]
∂ε

∂x

[
∂ε

∂x

∂ε

∂t

]
∂ε

∂x

∂[J†x̃]ε

∂p̃
(required by RW1)

[
∂[J†x̃]

∂p

∂[J†x̃]

∂s

]
ε
∂[J†x̃]ε

∂p

[
∂[J†x̃]

∂p

∂[J†x̃]

∂q

∂[J†x̃]

∂s

]
ε

[
∂[J†x̃]

∂p

∂[J†x̃]

∂q

]
ε

5.2 Constraining local scale freedoms in homogeneous camera models

Homogeneous camera models have local scale freedoms for each camera and point (see
Table 2). We need to constrain these scales appropriately for the second-order update to
be numerically stable — manually fixing an entry in each camera and point (as in the
inhomogeneous coordinate system) may lead to numerical instability if some points or
cameras are located in radical positions.

To do this, we apply a Riemannian manifold optimization framework [1, 14]. The
intuition behind this is that scaling each point and each camera arbitrarily does not
change the objective, and therefore, each point and each camera can be viewed as lying
on the Grassmann manifold (which is a subset of the Riemannian manifold).

In essence, optimization on the Grassmann manifold can be achieved [14] by pro-
jecting each Jacobian to its tangent space, computing the second-order update of pa-
rameters on the tangent space then retracting back to the manifold by normalizing each
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camera and/or point. This is numerically stable since the parameters are always updated
orthogonal to the current solution. Details of our implementation can be found in [11].

5.3 Constraining gauge freedoms for the VarPro-based algorithms

Unlike scale freedoms, gauge freedoms are present in all camera models listed in §4.
Our VarPro-based algorithms eliminate points such that the matrix of whole camera

parameters lie on the Grassmann manifold. This means that any set of cameras which
share the same column space as the current set does not change the objective. With
the inhomogeneous affine camera model, the matrix of whole cameras lie on a more
structured variant of the Grassmann manifold as the scales are fixed to 1.

Since homogeneous camera models require both scale and gauge freedoms to be
removed simultaneously (and the Jacobians are already projected to get rid of the scale
freedoms), we incorporate a technique introduced in [18] to penalize the matrix of
whole cameras updating along the column space of the current matrix, and this con-
strains all 16 gauge freedoms. (This approach can be viewed [10] as a relaxed form
of the manifold optimization framework described in §5.2.) With the inhomogeneous
affine model, we manipulate this technique to prevent from overconstraining the prob-
lem, and this removes 9 out of 12 gauge freedoms. More details are included in [11].

We have not implemented a gauge-constraining technique for Joint optimization
but [16] could be applied.

5.4 Remarks

Combining all the aforementioned techniques yield 16 algorithms which are listed
in [11]. We use 4 of them (see Table 4) to synthesize two-stage meta algorithms in §6.

As mentioned in §2.3, Nonlinear VarPro requires iterative inner minimization over
points given cameras at each iteration. Our algorithms initialize points from the closest
algebraic solution obtained using the Direct Linear Transformation (DLT) method [9].

Table 4. A list of affine and projective bundle adjustment algorithms used for our two-stage
meta-algorithms in §6. We compile these algorithms using the building blocks from §5.

ID Camera Form Strategy Algorithm Constrained gauge
AHRW2P Affine Homogeneous Nonlinear VarPro RW2 16 / 16
AIRW2P Affine Inhomogeneous Linear VarPro RW2 9 / 12
PHRW1P Projective Homogeneous Nonlinear VarPro RW1 16 / 16

PHJP Projective Homogeneous Joint optimization LM None

6 Two-stage meta-algorithms for projective bundle adjustment

Initially, we attempted to use the projective bundle adjustment algorithms compiled
in §5 directly on the datasets listed in Table 6 and Table 7. However, our preliminary
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investigation showed that none of these work out of the box as the Linear VarPro-based
algorithms do for the inhomogeneous affine case.

To resolve this, we propose the following strategy: perform affine bundle adjustment
first and then use the outputs to initialize projective bundle adjustment. This is inspired
by the fact that some projective algorithms such as projective matrix factorization [9,
22] and trilinear projective bundle adjustment [21] initialize all camera depths to 1,
which is equivalent to employing the affine camera model. The key difference between
our strategy and the aforementioned methods is that our approach enforces the affine
model throughout the first stage whereas other methods can switch to the projective
model straight after initialization. Since our strategy essentially places a prior on the
affine model, it is important to check how this performs on strong perspective scenes.

For the first (affine) stage, we choose AIRW2P (Affine Inhomogeneous RW2 with
manifold Projection) and AHRW2P (Affine Homogeneous RW2 with manifold Projec-
tion). We opt for the VarPro-based algorithms, which have large convergence basins for
the affine case. We drop the RW1 series as they perform substantially slower than the
RW2 series with comparable success rates. (Similar phenomenon is reported in [8, 10].)

For the second (projective) stage, we choose PHRW1P (Projective Homogeneous
RW1 with manifold Projection) and PHJP (Projective Homogeneous Joint with mani-
fold Projection). We drop PHRW2P after observing its poor performance on some of
the datasets used. None of the inhomogeneous projective algorithms are selected due to
numerical stability issues (see §5.2).

Table 5. A list of two-stage meta-algorithms used in our experiments.

ID First-stage (affine) algorithm Second-stage (projective) algorithm
TSMA1 AHRW2P PHRW1P
TSMA2 AIRW2P PHRW1P
TSMA3 AHRW2P PHJP
TSMA4 AIRW2P PHJP

7 Experiments

All experiments were carried out on a workstation with 2.2 GHz Intel Xeon E5-2660
processor and 32 GB 1600 MHz DDR3 memory. We used MATLAB R2015b in single-
threaded mode to run all the experiments.

We tested on various small synthetic (Table 6) and real SfM datasets (Table 7) de-
rived from circular motion (Din, Dio, Di2, Hou), non-circular motion (Btb), forward
movement (Cor, R47, Sth, Wil) and small number of frames (Lib, Me1, Me2, Wad).

On each dataset, we ran all four two-stage meta-algorithms listed in Table 5 for 100
runs. On each run, initial camera poses and points were drawn from N (0, I). The first
stage of each meta-algorithm minimized the affine version of (1), and the second stage
minimized the projective version of the same problem. We set the maximum number of
iterations in each stage to 1000 and the function value tolerance to 10−9.
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Table 6. Synthetic tracks of 319 points randomly generated on a sphere of radius 10.0 viewed
from 36 cameras. The cameras are equidistantly positioned and form a ring of radius d, looking
down the sphere at 60◦ from the vertical axis. We employ structured visibility patterns with high
missing rates to depict real tracks with occlusions and tracking failures.N (0, I) noise is added.

Dataset d Loop closed Missing (%) Best affine cost Best projective cost
S30L 30.0 Yes 77.56 2.993821 0.861392
S30 30.0 No 76.92 2.947244 0.842539
S20L 20.0 Yes 77.61 7.261506 0.862520
S20 20.0 No 76.92 7.157783 0.842511
S13L 13.0 Yes 77.61 25.100919 0.863871
S13 13.0 No 76.92 24.831476 0.844125
S12L 12.0 Yes 77.61 34.871149 0.863867
S12 12.0 No 76.92 34.730023 0.844817
S11L 11.0 Yes 77.61 55.782547 0.863274
S11 11.0 No 76.92 56.946272 0.845271
S10.5L 10.5 Yes 77.61 80.700734 0.862545
S10.5 10.5 No 76.92 85.970046 0.844771

We then compared how many fractions of runs each meta-algorithm converged to
the best observed minimum on each dataset, defining this quantity as the success rate.
The success rates of different meta-algorithms are compared in Fig. 2a and Fig. 2b.

Throughout this paper, we report the normalized cost values which can be computed
as follows:

√
Equation (1) / (2× Total number of visible frames over all cameras) .

8 Discussions

Fig. 2a and Fig. 2b show that TSMA1 and TSMA2 return global optimum in a large
fraction of runs on most datasets. Considering that each run is initialized from arbitrary
cameras and points, we believe that these are novel and valuable results.

On the synthetic datasets (Fig. 2a), all our meta-algorithms yield high success rates
(74–100%) until the ground truth cameras are moved radically close to the sphere (e.g.
S10.5/L). As discussed in §6, this is somewhat expected since our strategy is inevitably
biased towards affine reconstruction. However, one should bear in mind that these are
extreme cases where the cameras are located only 0.5 unit away from the surface of the
sphere of radius 10.0, and our strategy still succeeds with high probability on strong
perspective datasets such as S11/L S12/L and S13/L. The presence of loop closure does
not seem to influence success rates massively.

On the real sequences (Fig. 2b), each of TSMA1 and TSMA2 achieves 88–100% on
all datasets but one (Lib for TSMA1 and Cor for TSMA2). This demonstrates that these
methods work well in practice as they provide consistent performances across different
kinds of camera motions.

Regarding the first (affine) stage algorithms, we do not observe a clear boost in
success rates from employing AHRW2P instead of AIRW2P. (We only observe this on
the Cor dataset (see Fig. 2b), which comprises forward camera movements.) This is
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Table 7. Real datasets used for the experiments. f denotes the number of frames and n denotes
the number of feature points. ∗Di2 was generated by projecting real points from synthetic camera
poses made deliberately close to the 3D structure thereby inducing strong perspective effects.

ID Dataset f n Missing (%) Best affine Best projective
Btb Blue teddy bear (trimmed) (Ponce) 196 827 80.71 0.530633 0.489283
Cor Corridor (VGG) 11 737 50.23 2.237213 0.272462
Din Dinosaur (trimmed) [5] 36 319 76.92 1.270153 1.114493
Dio Dinosaur (VGG) 36 4983 90.84 1.217574 1.166165
Di2∗ Dinosaur (trimmed) closer cameras 36 319 76.92 9.380473 0.838414
Hou House (VGG) 10 672 57.65 2.750877 0.441660
Lib Oxford University Library (VGG) 3 667 29.24 4.180297 0.172830
Me1 Merton College 1 (VGG) 3 717 22.13 3.176176 0.118450
Me2 Merton College 2 (VGG) 3 475 21.61 3.995869 0.158851
R47 Road scene point tracks #47 11 150 47.09 4.402777 3.344768
Sth Stockholm Guildhall (trimmed) [19] 43 1000 18.01 8.833195 5.619975
Wad Wadham College (VGG) 5 1331 54.64 3.424812 0.135711
Wil Wilshire (Ponce) 190 411 60.73 2.703663 0.423892

against our hypothesis that AHRW2P, which is a numerically-stable reformulation of
AIRW2P, should perform better on strong perspective sequences. The results imply that
the potential numerical instability caused by the use of inhomogeneous coordinates is
not a major issue in the affine case. (It is still an issue for the projective model.)

In addition to the main experiments, we investigated to see if our meta-algorithms
could serve as an initializer for the full bundle adjustment process. We ran a projective
bundle adjustment algorithm, namely PHRW1P, on the full dinosaur dataset (Dio) with
the initial camera values set to those of the global optimum of the trimmed dataset
(Din). This allowed PHRW1P to reach the global optimum of the full sequence within
10 iterations. Based on this observation, we believe that our meta-algorithms could be
applied to a segment of large datasets to trigger incremental or full bundle adjustment.

We also tried incrementing µ (the projectiveness parameter) gradually to make the
affine-projective transition smoother, but this strategy performed comparable to projec-
tive bundle adjustment without affine initialization. Implementing a fully unified algo-
rithm still remains a challenge.

9 Conclusions

In this work we analysed if the Variable Projection (VarPro) method, which is highly
successful in finding global minima in affine factorization problems without careful
initialization, is equally effective in the projective scenario. Unfortunately, the answer is
that the success rate of VarPro algorithms cannot be directly replicated in the projective
setting. Thus, we proposed and evaluated several meta-algorithms to overcome this
shortcoming, and each of the winning methods (TSMA1 and TSMA2) obtained success
rates between 88 and 100% on all real datasets but one (Lib for TSMA1 and Cor for
TSMA2). Experimentally it turns out that using an affine factorization based on VarPro
to warm-start projective bundle adjustment is essential to boost the success rate.
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Fig. 2. The figures show the success rates of each meta-algorithm on each dataset. (A run is
counted as successful if and only if it reaches the best known optimum of the dataset used.) We
conclude that TSMA1 and TSMA2 are winners by narrow margins.

We demonstrated that the convergence basin can be greatly enhanced using the right
combination of methods. By unifying affine and projective factorization problems we
also derived numerically better conditioned formulations to solve these instances.

Future work includes the followings: addressing outliers in the measurements and
therefore robustness in the cost function (e.g. by incorporating robust kernel reformu-
lation [26]) and to operate in metric instead of projective space by restricting the un-
knowns to the respective Lie group. A highly ambitious goal is to solve large datasets
as introduced in [3] via an initialization-free approach.
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20. Ruhe, A., Wedin, P.Å.: Algorithms for separable nonlinear least squares problems. SIAM
Review (SIREV) 22(3), 318–337 (1980)

21. Strelow, D.: General and nested Wiberg minimization: L2 and maximum likelihood. In: Pro-
ceedings of the 12th European Conference on Computer Vision (ECCV), pp. 195–207 (2012)

22. Sturm, P., Triggs, B.: A factorization based algorithm for multi-image projective structure
and motion. In: Proceedings of the 4th European Conference on Computer Vision (ECCV),
pp. 709–720 (1996)

23. Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factor-
ization method. International Journal of Computer Vision (IJCV) 9(2), 137–154 (1992)

24. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment - A modern
synthesis. In: Proceedings of the International Workshop on Vision Algorithms: Theory and
Practice. pp. 298–372. ICCV ’99 (2000)

25. Wiberg, T.: Computation of principal components when data are missing. In: Proceedings of
the 2nd Symposium of Computational Statistics. pp. 229–326 (1976)



16 J.H. Hong, C. Zach, A.W. Fitzgibbon and R. Cipolla

26. Zach, C.: Robust bundle adjustment revisited. In: Proceedings of the 13th European Confer-
ence on Computer Vision (ECCV). pp. 772–787 (2014)


