15 research outputs found

    Deep Extreme Multi-label Learning

    Full text link
    Extreme multi-label learning (XML) or classification has been a practical and important problem since the boom of big data. The main challenge lies in the exponential label space which involves 2L2^L possible label sets especially when the label dimension LL is huge, e.g., in millions for Wikipedia labels. This paper is motivated to better explore the label space by originally establishing an explicit label graph. In the meanwhile, deep learning has been widely studied and used in various classification problems including multi-label classification, however it has not been properly introduced to XML, where the label space can be as large as in millions. In this paper, we propose a practical deep embedding method for extreme multi-label classification, which harvests the ideas of non-linear embedding and graph priors-based label space modeling simultaneously. Extensive experiments on public datasets for XML show that our method performs competitive against state-of-the-art result

    Locally Non-linear Embeddings for Extreme Multi-label Learning

    Full text link
    The objective in extreme multi-label learning is to train a classifier that can automatically tag a novel data point with the most relevant subset of labels from an extremely large label set. Embedding based approaches make training and prediction tractable by assuming that the training label matrix is low-rank and hence the effective number of labels can be reduced by projecting the high dimensional label vectors onto a low dimensional linear subspace. Still, leading embedding approaches have been unable to deliver high prediction accuracies or scale to large problems as the low rank assumption is violated in most real world applications. This paper develops the X-One classifier to address both limitations. The main technical contribution in X-One is a formulation for learning a small ensemble of local distance preserving embeddings which can accurately predict infrequently occurring (tail) labels. This allows X-One to break free of the traditional low-rank assumption and boost classification accuracy by learning embeddings which preserve pairwise distances between only the nearest label vectors. We conducted extensive experiments on several real-world as well as benchmark data sets and compared our method against state-of-the-art methods for extreme multi-label classification. Experiments reveal that X-One can make significantly more accurate predictions then the state-of-the-art methods including both embeddings (by as much as 35%) as well as trees (by as much as 6%). X-One can also scale efficiently to data sets with a million labels which are beyond the pale of leading embedding methods

    Random forests with random projections of the output space for high dimensional multi-label classification

    Full text link
    We adapt the idea of random projections applied to the output space, so as to enhance tree-based ensemble methods in the context of multi-label classification. We show how learning time complexity can be reduced without affecting computational complexity and accuracy of predictions. We also show that random output space projections may be used in order to reach different bias-variance tradeoffs, over a broad panel of benchmark problems, and that this may lead to improved accuracy while reducing significantly the computational burden of the learning stage

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research

    Improving large-scale k-nearest neighbor text categorization with label autoencoders

    Get PDF
    In this paper, we introduce a multi-label lazy learning approach to deal with automatic semantic indexing in large document collections in the presence of complex and structured label vocabularies with high inter-label correlation. The proposed method is an evolution of the traditional k-Nearest Neighbors algorithm which uses a large autoencoder trained to map the large label space to a reduced size latent space and to regenerate the predicted labels from this latent space. We have evaluated our proposal in a large portion of the MEDLINE biomedical document collection which uses the Medical Subject Headings (MeSH) thesaurus as a controlled vocabulary. In our experiments we propose and evaluate several document representation approaches and different label autoencoder configurations.Ministerio de Ciencia e Innovación | Ref. PID2020-113230RB-C2
    corecore