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Abstract: In this paper, we introduce a multi-label lazy learning approach to deal with automatic
semantic indexing in large document collections in the presence of complex and structured label
vocabularies with high inter-label correlation. The proposed method is an evolution of the traditional
k-Nearest Neighbors algorithm which uses a large autoencoder trained to map the large label space
to a reduced size latent space and to regenerate the predicted labels from this latent space. We have
evaluated our proposal in a large portion of the MEDLINE biomedical document collection which
uses the Medical Subject Headings (MeSH) thesaurus as a controlled vocabulary. In our experiments
we propose and evaluate several document representation approaches and different label autoencoder
configurations.

Keywords: autoencoders; multi-label categorization; semantic indexing; nearest neighbors; text
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1. Introduction

In Large-Scale Text Categorization (LSTC) we are confronted with textual classification
problems where a very large and structured set of possible classes are employed. For the
general case, not limited exclusively to text, the term eXtreme Multi-Label categorization
(XML) is also often used. Usually, in these cases we are dealing with multi-label learning
problems where models learn to predict more than one class or label to be assigned to a
given input text.

Conventional approaches in multi-label learning either convert the original multi-label
problem into a set of single-label problems or adapt well known single-label classification
algorithms to handle multi-label datasets. In the context of LSTC and XML research,
evolutions of both types of method, that employ what has been called label embedding
(LE) or label compression (LC), have recently emerged, trying to take advantage of label
dependencies to improve categorization performance. LE methods try to take advantage
of label dependencies to improve categorization performance. The starting premise of
LE is to convert the large label spaces to a reduced-dimensional representation space (the
embedding space) where the actual classification is performed, the results of which are
then transformed back to the original label space.

Autoencoders (AEs) are a classical unsupervised neural network architecture able to
learn compressed feature representations from original features. Usually AEs are symmet-
rical networks with a series of layers that learn to transform their input to a latent space of
lower dimension (encoder) and another series of layers that learn to regenerate that input
from the latent space (decoder), both of them are connected by a small layer that acts as
an information bottleneck. Training is carried out in an unsupervised way, presenting the
same training vector in the input layer and in the output layer. AE are typically employed
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in data pre-processing, discarding the decoder and using the learned encoder to create rich
representations of the input data useful in further processing.

Automatic semantic indexing is often modeled as an LSTC or XML problem. This task
seeks to automate assigning to a given input document a sets of descriptors or indexing
terms taken from a controlled vocabulary in order to improve further searching tasks.
MeSH (Medical Subject Headings) is a large semantic thesaurus commonly used in the
management of biomedical literature. MeSH labels are semantic descriptors arranged
into 16 overlapping concept sub-hierarchies, which are employed to index MEDLINE,
a collection of millions of biomedical abstracts.

Given this context, in this paper, a multi-label lazy learning approach is presented to
deal with automatic semantic indexing in large document collections in the presence of
complex and structured label vocabularies with high inter-label correlation. This method is
an evolution from the traditional k-Nearest Neighbors (k-NN) algorithm which exploits an
AE trained to map the large label space to a reduced size latent space and to regenerate the
output labels from this latent space. Our contributions are as follows:

• We have employed MEDLINE as a huge labeled collection to train large label-AEs able
to map MeSH descriptors onto a semantic latent space where label interdependence
is coded.

• Our proposal adapts classical k-NN categorization to work in the semantic latent space
learned by these AEs and employs the decoder subnet to predict the final candidate
labels, instead of applying simple voting schemes like traditional k-NN.

• Additionally, we have evaluated different document representation approaches, using
both sparse textual features and dense contextual representations. We have studied
their effect in the computation of inter-document distances that are the starting point
to find the set of neighbor documents employed in k-NN classification.

The remainder of this article is organized as follows. Section 2 presents the background
and context of this paper. Section 3 describes the details of the proposed method and its
components. Finally, Section 4 discusses the experimental results obtained by our proposals
and Section 5 summarizes the main conclusions of this work.

2. Related Work

This work is framed at the confluence of three research fields: (1) large-scale multi-
label categorization, (2) autoencoders and (3) semantic indexing. This section provides
a brief review of the most relevant contributions in the state of the art of these topics in
relation to our label autoencoder proposal.

2.1. Multi-Label Categorization

In multi-label learning [1] examples can be assigned simultaneously to several not
mutually exclusive classes. This task differs from single-label learning (binary or multi-
class) and has its own characteristics that make it more complex, while being able to model
many relevant real-world problems. Formally, given L = {l1, l2, . . . , ll} the finite set of
labels in a multi-label learning task and D = {(x1, y1), (x2, y2), . . . , (xn, yn)} the set of
multi-label training instances, where xi is the i-example feature vector and yi ⊆ L is the set
of labels for that example, the multi-label categorization task aims to build a multi-label
predictor f : x′ 7−→ y′, with y′ ⊆ L, able to produce good classifications on incoming test
instances from T = {x′1, x′2, . . . , x′m}.

The scientific literature on multiple-label learning [2,3] usually identifies two main
groups of approaches when dealing with this problem: algorithm adaptation methods
and problem transformation methods. Algorithm adaptation approaches extend and
customize single-label machine learning algorithms in order to handle multi-label data
directly. Several adaptations of traditional learning algorithms have been proposed in the
literature, such as boosting (AdaBoost.MH) [4], support vector machines (RankSVM) [5],
multi-label k-nearest neighbors (ML-kNN) [6] and neural networks [7]. On the other
hand, problem transformation methods transform a multi-label learning problem into a
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series of single-label problems which already have well-established resolution methods.
The solutions of these problems are then combined to solve the original multi-label learning
task. For example, Binary Relevance (BR) [8], Label Powerset (LP) [9] and Classifier Chains
(CC) [10] transform multi-label learning problems into binary classification problems.

A relevant aspect in multi-label learning approaches is the treatment given to inter-
label dependencies. The simplest methods, such as BR, do not take into account correlation
between labels, assuming label independence and neglecting the fact that some labels
are more likely to co-exist. This assumption brings advantages in parallelization and
training efficiency, but at the cost of lower performance in many real-word tasks that
exhibit complex inter-label dependencies. Other approaches, like LP and CC, try to capture
the dependencies between labels using different strategies. For example, CC sequentially
creates a set of binary classifiers where labels predicted by previous classifiers are part of
the features employed in successive classifications.

Recent research in multi-label learning propose a label embedding (LE) or label com-
pression (LC) approach that tries to properly exploit correlation between label information
by transforming the label space into a latent label space of reduced dimensionality. The ac-
tual categorization is performed in that latent space, where correlation between labels is
implicitly exploited and a proper decoding process will map the projected data back onto
the original label space. Early work in LE [11,12] typically considered linear embedding
functions and worked with fairly small label space sizes. Other approaches overcome the
limitations of linear assumptions evolving to non-linear embeddings [13–15], including
several methods based on conventional or deep neural networks [16–18].

Finally, a prominent field in multi-label learning that have been attracting lots of
research in recent times is eXtreme Multi-label Classification (XML) [19,20]. XML is a
multi-label classification task in which learned models automatically label a data sample
with the most relevant subset of labels from a large label set, with sizes ranging from
thousands to millions. This is a challenging problem due to the scale of the classification
task, label sparsity and complex label correlations. The ability to handle label correlations
and the scalability of LE approaches [14] have shown many advantages in XML making
embeddings one of the most popular approaches for tackling XML problems.

2.2. Autoencoders in Multi-Label Learning

Autoencoders (AEs) [21,22] are a family of unsupervised feedforward Neural Network
architectures that jointly learn an encoding function, which maps an input to a latent space
representation, and a decoding function, which maps from the latent space back onto the
original space. Figure 1 shows this symmetric encoder-decoder structure, with;

• An encoder function Enc : X → Z, which maps the input vectors into a latent (often
lower-dimensional) representation though a set of hidden layers.

• A decoder function Dec : Z → X, which acts as an interpreter of the latent repre-
sentation and reconstructs the input vectors though a set of hidden layers, usually
symmetric with the encoding layers.

• A middle hidden layer representing in the latent space Z an encoding of the input data.

Training the model to reproduce the input data at its output, AE jointly optimizes the
parameters of encoder Enc and decoder Dec functions and can learn in its hidden layer
richer non-linear encoding features that can represent complex input data in a reduced
dimensionality latent space. Most practical applications of AE exploit this latent represen-
tation in (1) data compression or hashing tasks, (2) classification tasks, using AE to reduce
input features dimensionality with minimal information loss, (3) anomaly detection, by an-
alyzing outliers and abnormal patterns in generated embeddings, (4) visualization tasks on
the encoded space or (5) data reconstruction and noise reduction in image processing.
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Figure 1. Architecture of a generic autoencoder.

Usage of AEs in single-label and multi-label learning, including XML, has already
been reported in many research works and AEs are frequently part of pre-processing
steps performing dimensionality reduction in order to improve categorization performance
and speed. Methods like AE-kNN [23] train an AE on high dimensional input features
from a training dataset and employ the encoder sub-net as an input feature compressor,
transforming the original input space into a lower-dimensional one where a conventional
instance-based k-NN algorithm does the labeling.

The use of AEs over the label space has been less common in the literature. With the
advent and explosion of XML methods, research proposals that try to take advantage of the
capabilities of AEs to capture non-linear dependencies among the labels have appeared.

Wicker et al. [16], in a pioneering work in the use of label space AEs, introduce MANIC,
a multi-label classification algorithm following the problem transformation approach which
extracts non-linear dependencies between labels by compressing them using an AE. MANIC
uses the encoder part to replace training labels with a reduced dimension version and then
trains a base classifier (a BR model in their proposal) using the compressed labels as new
target variables.

C2AE (Canonical-Correlated AutoEncoder) [17] and Rank-AE (Ranking-based Auto-
Encoder) [18] follow a similar idea, which was later generalized in [24]. These approaches
perform a joint embedding learning by deriving a compressed feature space shared by
input features and labels. An input space encoder and a label space encoder, sharing the
same hidden space, and a decoder that converts this hidden space back to the original label
space are trained together to create a deep latent space that embeds input features and
labels simultaneously.

2.3. Semantic Indexing in the Biomedical Domain

Controlled vocabularies provide an efficient way of accessing and organizing large
collections of textual documents, specially in domains where a simple text-based represen-
tation of information is too ambiguous, like the biomedical or legal domains. Automatic
semantic indexing seeks to build systems able to annotate an arbitrary piece of text with
relevant controlled vocabulary terms. Aside from pure natural language processing (NLP)
based methods, most of them following Named Entity Recognition (NER) or Entity Linking
strategies, many approaches to semantic indexing model the assignment of controlled
vocabulary terms as a multi-label categorization problem.

The Medical Subject Headings (MeSH) thesaurus [25] is a controlled and hierarchically-
organized vocabulary, developed and maintained by the National Library of Medicine
(https://www.nlm.nih.gov/, accessed on 24 July 2022) , which was created for categorizing
and searching citations in MEDLINE and the PubMED database. MEDLINE (https://
www.nlm.nih.gov/medline/medline_overview.html, accessed on 24 July 2022) is an NLM

https://www.nlm.nih.gov/
https://www.nlm.nih.gov/medline/medline_overview.html
https://www.nlm.nih.gov/medline/medline_overview.html
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bibliographic database that contains more than 29 million references to journal articles
in life sciences published from 1966 to present, published in more than 5200 journals
worldwide in about 40 languages. Each MEDLINE citation contains the title and abstract of
the original article, author information, several metadata items (journal name, publishing
dates, etc.) and a set of MeSH descriptors that describe the content of the citation and
were assigned by NLM annotators to help indexing and searching MEDLINE records. The
task of identifying the MeSH terms that best represent a MEDLINE article is manually
performed by human experts. The average number of descriptors per citation in MEDLINE
2021 edition was 12.68.

MeSH vocabulary is composed of MeSH subject headings (commonly known as
descriptors) which describe the subject of each article and a set of standard qualifiers
(subheadings) which narrow down the MeSH heading topic. Additionally, Check Tags are
a special subset of 32 MeSH descriptors that cover concepts mentioned in almost every
article (human age groups, sex, research animals, etc.). MeSH descriptors are arranged in
a hierarchy with 16 top-level categories that constitute a collection of overlapping topic
sub-thesauri. A given descriptor may appear at several locations in the hierarchical tree
and can have several broader terms and several narrower terms. The 2021 edition of the
MeSH thesaurus is composed of 29,917 unique headings, hierarchically arranged in one or
more of the 16 top-level categories, with the distribution shown in Table 1.

Table 1. Descriptor distribution in MeSH top-level categories.

Number of
Subhierarchy Descriptors

(A) Anatomy 3303
(B) Organisms 5210
(C) Diseases 12,749
(D) Chemicals and Drugs 23,589
(E) Analytical, Diagnostic and Therapeutic Techniques and Equipment 5327
(F) Psychiatry and Psychology 1435
(G) Biological Sciences 3794
(H) Physical Sciences 582
(I) Anthropology, Education, Sociology and Social Phenomena 841
(J) Technology and Food and Beverages 765
(K) Humanities 216
(L) Information Science 552
(M) Persons 345
(N) Health Care 2860
(V) Publication Characteristics 231
(Z) Geographic Locations 517

Automatic indexing with MeSH poses great research challenges. (1) Beyond its large
size, the distribution of descriptors follows a power-law, where a few labels (Check Tags and
very general descriptors) appear in a large number of citations, whereas most descriptors
are employed to annotate very few abstracts According to statistics in [26], only 1% of all
MeSH headings which have more than 5000 occurrences contribute to more than 40% of
indexing. (2) Simultaneously indexing within 16 top-level overlapping topic sub-hierarchies
leads to complex label interdependency.

Over the years several proposals have attempted to tackle the problem of automatic
MeSH indexing. The Medical Text Indexer (MTI) [27] is a tool in permanent development by
NLM for internal usage as a preliminary annotation tool of incoming MEDLINE citations.
MTI is based on a combination of NLP based concept finding performed with MetaMap [28],
k-NN prediction using descriptors from PubMed-related citations and several hand-crafted
rules and state-of-the-art machine learning techniques that have been incorporated over
years of development.
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Semantic indexing with MeSH descriptors has also been boosted in recent years by
competitions such as the BioASQ challenge [29], which, since 2013, has been organizing an
annual shared-task dedicated to semantic indexing in MEDLINE. Several state-of-the-art
methods for MeSH indexing were introduced by teams participating in this challenge,
most of them modeling the task as a multi-label learning problem [30]. Some relevant
recent developments in MeSH indexing are MeSHLabeler [31], DeepMeSH [32], MeSH
Now [33], AttentionMeSH [34], MeSHProbeNet [35], FullMeSH [26], BERTMeSH [36] and
k-NN methods using ElasticSearch and MTI such as [37].

3. Materials and Methods

Our proposal models semantic indexing over MeSH as a multi-label categorization
problem with the following specific characteristics:

• MEDLINE provides us with an extensive collection of manually annotated documents
to train our models.

• MeSH is a rich hierarchical thesaurus with a large set of descriptors and complex label
co-occurrence.

The approach that we describe in this work tries to take advantage of these character-
istics through the use of label autoencoders (label-AEs). Our method starts by training a
label-AE using the historical information available in MEDLINE. Once trained, the com-
ponents of this AE allow us to (1) convert the MeSH descriptors assigned to a MEDLINE
citation to an embedded semantic space using the encoder part and (2) use the decoder
part and a simple threshold scheme to return from that reduced-dimensional space back to
the MeSH descriptor space.

The proposed multi-label classification follows a label embedding approach. Our
method aims to take advantage of the reduced-dimensional semantic space learned by the
label-AE so that a lazy learning scheme operates on it performing the actual classification.
This results in a k-NN classifier enriched with the compact semantic information provided
by the AE components. This section details the elements that make up our proposal.

3.1. Similarity Based Categorization (k-NN)

The k-Nearest Neighbor (k-NN) algorithm [38] is a lazy learning method which clas-
sifies new samples using previous classifications of similar samples assuming the new
ones will fall into the same or similar categories. For a given test instance, x, the k most
similar instances (the k-nearest neighbors), denoted as N(x), are taken from the training set
according to a certain similarity measure. Votes on the labels of instances in N(x) are taken
to determine the predicted label for that test instance x.

Approaches based on k-NN have been widely used in large-scale multi-label cate-
gorization in many domains, including MEDLINE documents [37,39,40]. This preference
for this lazy learning method is mainly due to its scalability, minimum parameter tuning
and, despite its simplicity, its ability to deliver acceptable results when a large number of
training samples are available.

The basic k-NN method we employ in our proposal follows these steps:

1. Create an indexable representation from the textual contents of every document
(MEDLINE citations in our case) in the training dataset.
Two different approaches for creating these indexable representations, dense and
sparse, were evaluated in our study as is shown in Section 3.2.

2. Index these representations in a proper data structure in order to efficiently query it
to retrieve sets of similar documents.

3. For each new document to annotate, the created index is queried using the indexable
representation of the new document.
The list of similar documents retrieved in this step together with their corresponding
similarity measures are used to determine the following results:

(a) expected number of labels to assign to the new document
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(b) ranked list of predicted labels (MeSH descriptors in our case)

The first aspect conforms to a regression problem, which aims to predict the number
of labels to be included in the final list, depending on the number of labels assigned to
the most similar documents identified during the query phase and on their respective
similarity scores. In our method the number of labels to be assigned is predicted by simply
averaging the length of label lists in neighbor samples.

The other task is a multi-label classification problem, which aims to predict an output
label list based on the labels manually assigned to the most similar documents. Our method
creates the ranked list of labels using a simple majority voting scheme. Since this is actually
a multi-label categorization task, there are as many voting tasks as there were candidate
labels extracted from the neighboring documents retrieved by the indexing data structure.
For each candidate label, positive votes come from similar documents annotated with it
and negative votes come from neighbors not including it. The topmost candidate labels are
returned as classification output.

3.2. Document Representation

As noted in the preceding section, our proposal indexes representations of the training
documents in order to implement the similarity function that provides the set of neighbors
and their similarity scores. In this work we have evaluated two different approaches in
document representation, which determine their respective indexing and query schemes,
together with document preprocessing.

• Sparse representations created by means of several NLP based linguistically motivated
index term extraction methods, employed as discrete index terms in an Apache Lucene
index (https://lucene.apache.org/, accessed on 24 July 2022).

• Dense representation created by using contextual sentence embeddings based on Deep
Learning language models, stored in a numeric vector index.

3.2.1. Sparse Representations

This approach is essentially a large multi-label k-NN classifier backed by an Apache
Lucene index. Lucene is an open-source indexing and searching engine, that implements a
vector space model for Information Retrieval, providing several similarity ranking func-
tions, such as BM25 [41]. Textual content of training documents is preprocessed in order
to extract a set of discrete index terms which Lucene conveniently stores in an inverted
index. When labeling, text from new documents is preprocessed and the extracted index
term are treated as query terms and linked together using a global OR operator to conform
the final query sent to the indexing engine to retrieve the most similar documents and their
corresponding similarity scores.

In our case, we have employed the BM25 similarity function. The scores provided
by the indexing engine are similarity measures resulting from the engine’s internal com-
putations and the weighting scheme being employed, which do not have a uniform and
predictable upper bound. In order for these similarity scores to behave like a real dis-
tance metric, we have applied a normalization procedure, that transforms them into a
pseudo-distance in [0, 1].

Regarding sparse document representation we have evaluated several linguistically
motivated index term extraction approaches as introduced in [40] for a similar problem in
Spanish. We employed the following methods:

Stemming based representation (STEMS). This was the simplest approach which em-
ploys stop-word removal, using a standard stop-word list and the default stemmer
from the Snowball project (http://snowball.tartarus.org, accessed on 24 July 2022).

Morphosyntactic based representation (LEMMAS). In order to deal with morphosyn-
tactic variation we have employed a lemmatizer to identify lexical roots and we
also replaced stop-word removal with a content-word selection procedure based on
part-of-speech (PoS) tags.

https://lucene.apache.org/
http://snowball.tartarus.org
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We have delegated the linguistic processing tasks to the tools provided by the spaCy
Natural Language Processing (NLP) toolkit (https://spacy.io/, accessed on 24 July
2022). In our case we have employed the PoS tagging and lemmatization information
provided by spaCy, using the biomedical English models from the ScispaCy project
(https://allenai.github.io/scispacy/, accessed on 24 July 2022).

Only lemmas from tokens tagged as a noun, verb, adjective, adverb or as unknown
words are taken into account to constitute the final document representation, since
these PoSs are considered to carry most of the sentence meaning.

Noum phrases based representation (NPS). In order to evaluate the contribution of more
powerful NLP techniques, we have employed a surface parsing approach to identify
syntactic motivated nominal phrases from which meaningful multi-word index terms
could be extracted.

Noun Phrase (NP) chunks identified by spaCy are selected and the lemmas of con-
stituent tokens are joined together to create a multi-word index term.

Dependencies based representation (DEPS). We have also employed as index terms
triples of dependence-head-modifier extracted by the dependency parser provided
by spaCy.

In our case the spaCy dependency parsing model identifies syntactic dependencies
following the Universal Dependencies(UD) scheme. The complex index terms were
extracted from the following UD relationships Detailed list of UD relationships
(available at https://universaldependencies.org/u/dep/, accessed on 24 July 2022):
acl , advcl, advmod, amod, ccomp, compound, conj, csuj, dep, flat, iobj, nmod , nsubj, obj,
xcomp, dobj and pobj.

Named entities representation (NERS). Another type of multi-word representation taken
into account is named entities. We have employed the NER module in spaCy and
the ScispaCy models to extract general and biomedical named entities from docu-
ment content.

Keywords representation (KEYWORDS). The last kind of multi-word representation
we have included is keywords extracted with statistical methods from the textual
content of articles. We have employed the implementation of the TextRank algo-
rithm [42] provided by the textacy library (https://textacy.readthedocs.io, accessed
on 24 July 2022).

3.2.2. Dense Representations

The recent rise of powerful contextual language models such as BERT and similar
approaches have boosted the performance of multiple language processing tasks and
Transformer based solutions dominate the state-of-the-art in many NLP areas. A nat-
ural evolution of these contextual word embeddings is to move them towards embed-
dings at the sentence-level with approaches such as those in the Sentence Transform-
ers [43] project (https://www.sbert.net/, accessed on 24 July 2022) that provides pre-
trained models to convert sentences in natural languages into fixed-size dense vectors with
enriched semantics.

We have taken advantage of dense semantic representations of whole sentences as a
basis for converting a search for similar documents into a search for similar vectors in the
dense vector space where documents from the training dataset are represented.

We have employed the sentence-transformers/allenai-specter model (https:
//huggingface.co/sentence-transformers/allenai-specter, accessed on 24 July 2022) to
represent a given MEDLINE abstract as a dense vector. This is a conversion of the AllenAI
SPECTER model [44], originally trained to estimate the similarity of two publications,
to SentenceTransformers, which exploits the citation graph to generate document-level
embeddings of scientific documents. This model returns a 768-dimension vector from
inputs in the form paper[title] + ’[SEP]’ + paper[abstract].

https://spacy.io/
https://allenai.github.io/scispacy/
https://universaldependencies.org/u/dep/
https://textacy.readthedocs.io
https://www.sbert.net/
https://huggingface.co/sentence-transformers/allenai-specter
https://huggingface.co/sentence-transformers/allenai-specter
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Once we have the dense representations of the training documents using this proce-
dure, we use the FAISS [45] library (https://github.com/facebookresearch/faiss, accessed
on 24 July 2022) to create a searchable index of these dense vectors. This index allows us to
efficiently calculate distances between dense vectors and determine for the dense vector
associated with a given test document (our query vector) the list of k closest training dense
vectors using the Euclidean distance or other similarity metrics.

With this mechanism of similarity between dense vectors we can apply the k-NN
classification procedure described previously. In this case we can use the real distances
provided by the FAISS library between the query vector generated from the text to be
annotated and the most similar k dense vectors directly.

3.3. Label Autoencoders

Our proposal is a special case of eXtream Multi-Label categorization (XML) using a
label embedding approach. In our case a lazy learning method works on a low dimensional
projection of the label space build with a label autoencoder (label-AE).

Our method is similar to MANIC [16]. Both of them learn a conventional AE. In
MANIC the encoder is applied to the entirety of labels from the training examples and uses
thresholds to convert their embeddings to a smaller binary label space in which Binary
Relevance classifiers are trained. In our case the encoder only acts on the subset of training
examples that are part of the neighbors set, N(x). The embedded vectors of neighbors are
averaged and the decoder transforms that average vector to the original label space. The
AEs used by C2AE [17] and Rank-AE [18] are very different to ours. They jointly train
two input subnets that share the inner embedding layer, one generates embeddings from
the input features and the other one generates the same embedding space from labels,
These two subnets are trained together with an output subnet that decodes the reduced
embedding space to the actual label space. In the annotation phase, only the subnet that
creates the embedding from input features and the decoding subnet are employed.

The first step of our proposal involves training a label-AE using the set of labels taken
from the training samples. In the experiments reported in this paper, those labels are the
lists of MeSH descriptors assigned to the MEDLINE citations in our training dataset. For
MeSH, this results in a very large label-AE, with >29 K units in the input layer and another
>29 K output neurons. Also, input and output vectors are extremely sparse, with an
average of 12 values set to 1. On the other hand, the set of training samples is very large
and can reach several million if the entire MEDLINE collection is used.

A tentative preliminary study was performed on a portion of the MEDLINE and
MeSH datasets. In those preliminary runs we assessed the reconstruction capability of the
trained AEs. As a result, the topology and main parameters of the label-AE scheme used in
the experiments reported in this paper have been defined as follows:

• Encoder with 2 hidden layers of decreasing size.
• Inner hidden embedding layer.
• Decoder with 2 hidden layers of increasing size, symmetrical to the encoder.
• ReLU (Rectified Linear Unit) activation function in hidden layer neurons.
• Feed-forward fully connected layers with a 0.2 Dropout in each hidden layer and

batch normalization.
• Output layer with SIGMOID activation function (operating as a multi-label classifier).
• Binary cross-entropy loss function.

The second step of our method is to extract the internal representations for the training
documents and store them in the corresponding index. As is shown in Section 3.2 an
Apache Lucene textual index is employed for NLP based sparse representations and an
FAISS index stores the dense contextual vector representations.

Once we have trained our label-AE and a properly indexed version of the training
dataset is available, to annotate a new MEDLINE citation x, we apply the following
procedure, illustrated in Figure 2:

https://github.com/facebookresearch/faiss
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1. The index is queried and the set N(x) = {n1, n2, . . . , nk} with the k documents closest
to x is retrieved, along with their respective distances to x, (di for each ni ∈ N(x)).

• Depending on the representation being used, title and abstract of x are converted
into a sparse set of Lucene indexing terms or into a dense vector.

• Once the respective index (Lucene or FAISS) is queried, an ordered list of most
similar citations is available, together with an estimate of their distances to the
query document x.

– BM25 scores converted to a pseudo-distance in [0, 1] with Lucene index
– euclidean distance between dense representations with FAISS index

2. The encoder is applied to translate the set of labels assigned to each neighbor ni ∈
N(x) into the reduced semantic space, computing ~zi = Enc(yni )) ∀xi ∈ N(x), with yni

the set of labels in neighbor ni.
3. We create the weighted average vector~z′ = ∑k

i=1
wi

wTOTAL
· ~zi in the embedding space,

where wTOTAL = ∑k
j=1 wj.

Several distance weighting schemes have been discussed in k-NN literature [38].
In our case we have employed two: (1) weight neighbors by 1 minus their distance
(wi = 1 − di) and (2) weight neighbors by the inverse of their distance squared
(wi =

1
d2

i
).

4. The decoder is used to convert this average vector~z′ from the embedding space to the
original label space as y′ = Dec(~z′)
Various cutting and thresholding schemes can be used to binarize this vector and
return the list of predicted labels.

• Estimate the number of labels to return, r, from the sizes of label sets of docu-
ments in N(x), as described in citecual, and return the r predicted labels with
the highest score.

• Apply a threshold on the activation of decoder output neurons to decide which
labels have an excitation level high enough to be part of the final prediction.

Figure 2. Categorization using k-NN with label autoencoders.

4. Results and Discussion

This section conducts an exhaustive set of experiments on a large portion of the
MEDLINE collection. In these experiments we validate the effectiveness of our proposal of
a multi-label k-NN text classifier assisted by a label-AE in a complex semantic indexing task.
Different parameters and options were evaluated on the test dataset in order to determine
the best setting for our system with the aim to answer the following research questions:

• What is the effect on classification performance of the choice of training document rep-
resentations? Are there substantial differences between sparse term-based similarity
and dense vector-based similarity?
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• What are the best parameterizations for label-AEs (size of embedding representation
layer, sizes of encoder and decoder layers, etc)? What are the effects of retrieving
different number of neighbor documents on the classification performance and how
affects the weighting scheme employed when creating the average embedded vector?

In this section we provide a description of our evaluation data and the performance
metrics being employed and discuss the experimental results. The source code used to carry
out the reported experiments is available at https://github.com/fribadas/labelAE-MeSH
(accessed on 8 August 2022).

4.1. Dataset Details and Evaluation Metrics

Our experiments were conducted on a large textual multi-label dataset created as a
subset of the 2021 edition of MEDLINE/PubMed baseline files (ftp://ftp.ncbi.nlm.nih.
gov/pubmed/baseline, accessed on 24 July 2022), which comprises over 6 million cita-
tions from 2010 onwards. For convenience, the actual dataset was retrieved from the
BioASQ challenge [29] repository (http://www.bioasq.org/, accessed on 24 July 2022)
rather than from the original sources. BioASQ organizers retrieved the citations from the
MEDLINE sources, extracting the relevant elements (PMID, ARTICLETITLE, ABSTRACT-
TEXT, MESHHEADINGSLIST, JOURNALNAME and YEAR) and distributed then conveniently
formatted as a JSON document. Table 2 summarizes the most relevant characteristics of the
resulting dataset.

Table 2. Evaluation dataset statistics and MeSH descriptor distribution.

Collection statistics

# citations 6,791,951
# citations in dev dataset 10,000
# citations in test dataset 10,000
# MeSH descriptors 29,483

min max avg
descriptors per citation 1 19 12.90
descriptor occurrences 1 4,621,007 † 2972.26

MeSH descriptor distribution

occurrences number of descriptors
≥ 1 M 7
≥ 100 K 65
≥ 10 K 1314
≥ 1 K 8752
≥ 100 21,310

† Descriptor D006801: Humans.

In our study we have employed two complementary sets of evaluation metrics that
are commonly used in evaluating multi-label and XML problems.

• The evaluation of binary classifiers typically employs Precision (P), which measures
how many predicted labels are correct, Recall (R), which counts how many correct
labels the evaluated model is able to predict, and F-score (F), which combines both
metrics by calculating the harmonic mean of P and R. In multi-class and multi-label
problems these metrics are generalized by calculating their Macro-averaged and Micro-
averaged variants. A Macro-averaged measure computes a class-wide average of
the corresponding measure while a Micro-averaged one computes the corresponding
measure on all examples at once and, in the general case, uses to have the advan-
tage of adequately handling the class imbalance. In our evaluation we followed the
BioASQ challenge proposal [29] that employs the Micro-averaged versions of Precision
(MiP), Recall (MiR) and F-score (MiF) as main performance metrics, using MiP as a
ranking criteria.

https://github.com/fribadas/labelAE-MeSH
ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline
ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline
http://www.bioasq.org/
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• In XML, where the number of candidate labels is very large, metrics that focus on
evaluating the effectiveness in predicting correct labels and generating an adequate
ranking in the predicted label set are frequently used. Precision at top k (P@k) com-
putes the fraction of correct predictions in the top k predicted labels. Normalized
Discounted Cummulated Gain at top k (nDCG@k) [46] is a measure of the ranking
quality at the top k predicted labels, which evaluates the usefulness of a predicted
label according its position in the result list. In our experimental results, we report
the average P@k and nDCG@k on the testing set with k = 5 and k = 10, in order to
provide a measure of prediction effectiveness.

4.2. Experimental Results

In the first place we have evaluated the performance of the different approaches
described in Section 3.2 for document representations. Secondly, another set of experiments
has evaluated the performance of the k-NN method assisted with label-AEs described in
Section 3.3 using different AE configurations.

4.2.1. Dense vs. Sparse Representations

In order to evaluate the influence of the document representation being used on the
categorization performance we have performed a battery of experiments comparing the use
of the dense representations with contextual vectors (runs DENSE) and the use of different
alternatives for extracting sparse representations. In particular, we have evaluated the
performance of single terms extracted by stemming (runs STEMS) and lemmatization (runs
LEMMAS), the combination of the different methods for extracting compound terms (runs
MULTI where we combine NERS, NPS and KEYWORDS) and the joint use of the terms
extracted using all the methods described in Section 3.2 (runs ALL). The effect of the
number of neighbors considered in each case has also been evaluated, taking k values in
{5, 10, 20, 30, 50.100}.

As can be seen from the results shown in Table 3 and summarized in Figure 3, for these
experiments the dense representation performs worse than most sparse representations
in all performance metrics being considered and for all values of k. The contribution of
multi-word terms in the sparse representations is very limited. Although the best results
are obtained by combining all term extraction methods (runs ALL), it is observed that in all
metrics the results obtained using single-word terms of type STEMS and LEMMAS dominate.
We hypothesize that when applying this kind of k-NN method on a relatively large dataset
(>6 M documents in our case) the contribution of more sophisticated representation meth-
ods is diluted. In smaller datasets the use of very specific and precise multi-word terms can
help to greatly improve the representation of a document when searching for similar ones.

STEMS
k = 20

LEMMAS
k = 20

MULTI
k = 30

ALL
k = 20

DENSE
k = 30

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0.55 MiF, MiP, MiR for best k
MiF
MiP
MiR

STEMS
k = 20

LEMMAS
k = 20

MULTI
k = 30

ALL
k = 20

DENSE
k = 30

0.50

0.55

0.60

0.65

0.70

0.75

0.80 P@5, P@10 for best k
P@5
P@10

STEMS
k = 20

LEMMAS
k = 20

MULTI
k = 30

ALL
k = 20

DENSE
k = 30

0.60

0.65

0.70

0.75

0.80

0.85 nDCG@5, nDCG@10 for best k
nDCG@5
nDCG@10

Figure 3. Summary of performance metrics with sparse vs. dense representations for values of k
with best MiF values.
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Table 3. Performance metrics with sparse vs. dense representations.

k MiF MiP MiR P@5 P@10 nDCG@5 nDCG@10

STEMMS 5 0.4943 0.4855 0.5035 0.7299 0.5527 0.7706 0.6613
10 0.5191 0.5082 0.5305 0.7550 0.5804 0.7999 0.6925
20 0.5259 0.5151 0.5371 0.7574 0.5849 0.8043 0.6986
30 0.5240 0.5129 0.5355 0.7579 0.5837 0.8045 0.6974
50 0.5223 0.5111 0.5340 0.7527 0.5805 0.7991 0.6934

100 0.5147 0.5031 0.5269 0.7413 0.5731 0.7898 0.6857

LEMMAS 5 0.4920 0.4823 0.5020 0.7226 0.5496 0.7644 0.6574
10 0.5182 0.5078 0.5290 0.7485 0.5768 0.7931 0.6878
20 0.5220 0.5114 0.5330 0.7538 0.5819 0.8010 0.6951
30 0.5219 0.5107 0.5336 0.7544 0.5822 0.8018 0.6959
50 0.5197 0.5087 0.5312 0.7488 0.5780 0.7960 0.6906

100 0.5143 0.5029 0.5262 0.7370 0.5704 0.7854 0.6821

MULTI 5 0.4587 0.4492 0.4686 0.6909 0.5175 0.7329 0.6230
10 0.4875 0.4777 0.4977 0.7111 0.5441 0.7584 0.6529
20 0.4972 0.4875 0.5072 0.7223 0.5540 0.7709 0.6646
30 0.4981 0.4884 0.5082 0.7165 0.5536 0.7670 0.6639
50 0.4945 0.4845 0.5049 0.7133 0.5500 0.7643 0.6605

100 0.4897 0.4796 0.5002 0.7026 0.5437 0.7531 0.6519

ALL 5 0.4945 0.4856 0.5036 0.7276 0.5530 0.7681 0.6610
10 0.5207 0.5111 0.5307 0.7544 0.5795 0.8003 0.6930
20 0.5276 0.5166 0.5390 0.7649 0.5894 0.8103 0.7035
30 0.5274 0.5163 0.5389 0.7611 0.5861 0.8079 0.7009
50 0.5237 0.5127 0.5352 0.7552 0.5821 0.8022 0.6958

100 0.5176 0.5064 0.5293 0.7453 0.5753 0.7933 0.6884

DENSE 5 0.4779 0.4725 0.4834 0.7056 0.5299 0.7479 0.6380
10 0.4996 0.4936 0.5058 0.7348 0.5541 0.7800 0.6675
20 0.5030 0.4970 0.5093 0.7327 0.5575 0.7826 0.6728
30 0.5034 0.4970 0.5100 0.7350 0.5556 0.7843 0.6718
50 0.5016 0.4950 0.5084 0.7291 0.5554 0.7789 0.6697

100 0.4918 0.4848 0.4991 0.7161 0.5451 0.7672 0.6586

In this context it is surprising that an apriori simpler approach such as the extraction
of sparse representations and the use of the Apache Lucene similarity performs better
than the transformer-based contextual representations that currently dominate in the NLP
research. An in-depth review of this phenomenon is beyond the scope of this paper, it may
be due to the lack of a prior fine-tuning phase with the employed MEDLINE dataset, a poor
suitability as a similarity metric of the Euclidean distance computed by the FAISS library or
an inherent limitation of large pre-trained language models based on transformers as is
discussed in [47].

With respect to the number of neighbors to consider in the k-NN classification, the best
results are usually obtained with k = 20 and k = 30, which is in line with previous
publications [39] in MeSH semantic indexing.

4.2.2. k-NN Prediction with Label Autoencoders

Regarding the experiments evaluating the performance of our proposal of a label-AE
as a mechanism for improving k-NN classification, our objective has been to evaluate three
aspects: (1) the performance of different label-AE topologies (2) the effect of the distance
weighting scheme used to create the average vectors feeding the decoder and (3) the most
appropriate threshold values to generate the list of predicted labels from the reconstruction
of the label space provided by the decoder.

Table 4 shows the characteristics of the label-AEs we have used in this series of experi-
ments We have employed a fixed neural network architecture, using two fully connected
layers in both encoder and decoder and one fully connected layer as embedding layer. We
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have trained and evaluated an encoder, named SMALL label-AE, that uses a 64-dimensional
embedding vector and an initial encoder and final decoder layer with 1024 neurons. We
have also employed two AE architectures with a 128-dimensional embedding space with
two encoder-decoder sizes, one with layers of 2048 and 256 neurons, called MEDIUM label-
AE, and another with encoder-decoder layers of 4096 and 512 neurons, denoted as LARGE

label-AE. We aimed to evaluate the effect of the size and the number of parameters in the
learned label-AEs on their quality in the label encoding and reconstruction tasks.

Table 4. Configuration of label autoencoders in our experiments.

Input/Output Encoder-1 Encoder-2 Embedding Decoder-1 Decoder-2 # Parameters

SMALL 29,483 1024 256 64 256 1024 60,975,467
MEDIUM 29,483 2048 512 128 512 2048 123,035,563
LARGE 29,483 4096 1024 128 1024 4096 250,256,299

The detailed results obtained with the SMALL label-AE are shown in Table 5, those for
the MEDIUM label-AE in Table 6 and those for the LARGE label-AE in Table 7. Regarding
the thresholds to be applied on the decoder output to create the list of predicted labels,
two values have been evaluated, selecting those labels whose output activation exceed the
value 0.5 in one case and the value 0.75 in the other. In this way we intended to evaluate
the effect of considering more or less demanding selection criteria in conforming the
predicted label list. Finally, the effect of the two distance weighting schemes introduced in
Section 3.3 to combine the embedded vectors has been evaluated in the different scenarios.
In both cases, weighting by 1 minus distance (DIFFERENCE) and weighting by the inverse
of distance squared (SQUARE), the DENSE representation and the SPARSE representation
using all of the term extraction methods have been employed, using a number of neighbors
k ∈ {5, 10, 20, 30, 50, 100}. Figure 4 summarizes the MiF, MiP and MiR results for the best
configurations of label-AE, threshold, distance weighting scheme and k.
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Figure 4. Summary of MiF, MiP, MiR metrics for values of k and distance weighting with best MiF
values in each label-AE configuration (SMALL, MEDIUM, LARGE).

As can be seen in Table 6 the best results in all metrics are obtained with the MEDIUM

label-AE, showing the 64-dimensional embedding space of the SMALL label-AE as apparently
incapable of adequately capturing relationships between MeSH descriptors and reconstruct-
ing them later. The comparison between the performances of MEDIUM label-AE and LARGE

label-AE apparently confirms that 2048 dimensions in the input layer of the encoder are
sufficient to provide an embedded representation capable, once reconstructed by the de-
coder, of offering a performance in terms of MiF similar to that of a basic k-NN method,
improving its precision values at the cost of a slightly reduced recall. Regarding the P@k
values and the measurement of ranking quality using nDCG@k, the label-AE results are also
able to equal those of the basic k-NN method. However, in this case it is noteworthy that
the label-AE method does not exceed the basic k-NN approach despite its good performance
with respect to the MiP metric.
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Table 5. Performance with SMALL label-AE.

Threshold Neighbors Weighting k MiF MiP MiR P@5 P@10 nDCG@5 nDCG@10

0.50 SPARSE(ALL) DIFFERENCE 5 0.4940 0.5338 0.4597 0.7042 0.5218 0.7492 0.6330
10 0.4981 0.5388 0.4632 0.7153 0.5256 0.7620 0.6408
20 0.4914 0.5299 0.4581 0.7094 0.5209 0.7566 0.6362
30 0.4886 0.5290 0.4540 0.7081 0.5173 0.7546 0.6322
50 0.4826 0.5250 0.4466 0.6992 0.5095 0.7475 0.6248

100 0.4719 0.5190 0.4326 0.6909 0.4956 0.7396 0.6120

0.50 SPARSE(ALL) SQUARE 5 0.4950 0.5319 0.4629 0.7045 0.5221 0.7477 0.6318
10 0.5038 0.5434 0.4696 0.7168 0.5302 0.7625 0.6439
20 0.4999 0.5399 0.4655 0.7189 0.5278 0.7640 0.6426
30 0.4965 0.5367 0.4619 0.7193 0.5256 0.7638 0.6405
50 0.4906 0.5329 0.4545 0.7114 0.5180 0.7581 0.6342

100 0.4810 0.5265 0.4427 0.7018 0.5048 0.7492 0.6218

0.50 DENSE DIFFERENCE 5 0.4821 0.5140 0.4539 0.6929 0.5129 0.7390 0.6234
10 0.4874 0.5168 0.4611 0.7019 0.5207 0.7493 0.6331
20 0.4857 0.5142 0.4601 0.7026 0.5192 0.7500 0.6321
30 0.4822 0.5101 0.4571 0.6987 0.5171 0.7467 0.6297
50 0.4755 0.5040 0.4501 0.6931 0.5104 0.7420 0.6236

100 0.4688 0.4969 0.4437 0.6850 0.5039 0.7349 0.6169

0.50 DENSE SQUARE 5 0.4825 0.5142 0.4545 0.6943 0.5126 0.7402 0.6234
10 0.4873 0.5168 0.4609 0.7024 0.5202 0.7497 0.6328
20 0.4850 0.5130 0.4599 0.7045 0.5187 0.7516 0.6321
30 0.4811 0.5089 0.4561 0.6954 0.5153 0.7440 0.6279
50 0.4734 0.5017 0.4481 0.6884 0.5069 0.7386 0.6204

100 0.4631 0.4903 0.4388 0.6782 0.4963 0.7291 0.6097

0.75 SPARSE(ALL) DIFFERENCE 5 0.4893 0.6281 0.4007 0.6900 0.4836 0.7384 0.6024
10 0.4956 0.6433 0.4030 0.6985 0.4869 0.7495 0.6100
20 0.4898 0.6411 0.3963 0.6928 0.4805 0.7441 0.6036
30 0.4857 0.6405 0.3911 0.6883 0.4749 0.7398 0.5982
50 0.4794 0.6397 0.3833 0.6787 0.4662 0.7320 0.5896

100 0.4677 0.6350 0.3702 0.6682 0.4508 0.7219 0.5749

0.75 SPARSE(ALL) SQUARE 5 0.4915 0.6247 0.4051 0.6941 0.4874 0.7401 0.6051
10 0.4998 0.6436 0.4085 0.7038 0.4914 0.7527 0.6131
20 0.4985 0.6496 0.4044 0.7046 0.4889 0.7532 0.6116
30 0.4941 0.6488 0.3989 0.7007 0.4840 0.7498 0.6071
50 0.4879 0.6460 0.3919 0.6922 0.4759 0.7437 0.6002

100 0.4773 0.6426 0.3796 0.6787 0.4608 0.7316 0.5855

0.75 DENSE DIFFERENCE 5 0.4828 0.6109 0.3991 0.6828 0.4793 0.7316 0.5971
10 0.4842 0.6172 0.3983 0.6885 0.4813 0.7394 0.6020
20 0.4850 0.6220 0.3974 0.6900 0.4814 0.7407 0.6025
30 0.4817 0.6196 0.3941 0.6851 0.4778 0.7367 0.5988
50 0.4753 0.6130 0.3881 0.6789 0.4712 0.7315 0.5926

100 0.4673 0.6083 0.3794 0.6692 0.4616 0.7232 0.5834

0.75 DENSE SQUARE 5 0.4831 0.6106 0.3997 0.6836 0.4794 0.7323 0.5973
10 0.4851 0.6182 0.3991 0.6893 0.4820 0.7399 0.6026
20 0.4842 0.6210 0.3967 0.6911 0.4807 0.7417 0.6022
30 0.4803 0.6176 0.3930 0.6818 0.4760 0.7340 0.5970
50 0.4718 0.6096 0.3849 0.6742 0.4677 0.7280 0.5894

100 0.4617 0.6031 0.3740 0.6611 0.4552 0.7163 0.5768
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Table 6. Performance with MEDIUM label-AE.

Threshold Neighbors Weighting k MiF MiP MiR P@5 P@10 nDCG@5 nDCG@10

0.50 SPARSE(ALL) DIFFERENCE 5 0.5136 0.5532 0.4793 0.7265 0.5435 0.7717 0.6559
10 0.5261 0.5781 0.4827 0.7421 0.5498 0.7896 0.6681
20 0.5223 0.5845 0.4720 0.7428 0.5444 0.7914 0.6650
30 0.5208 0.5903 0.4660 0.7402 0.5396 0.7889 0.6606
50 0.5153 0.5915 0.4565 0.7347 0.5302 0.7841 0.6525

100 0.5056 0.5936 0.4403 0.7217 0.5157 0.7739 0.6396

0.50 SPARSE(ALL) SQUARE 5 0.5114 0.5387 0.4867 0.7195 0.5435 0.7646 0.6539
10 0.5280 0.5716 0.4905 0.7420 0.5556 0.7890 0.6718
20 0.5298 0.5873 0.4826 0.7492 0.5544 0.7962 0.6732
30 0.5274 0.5924 0.4752 0.7448 0.5477 0.7931 0.6677
50 0.5240 0.5967 0.4670 0.7432 0.5409 0.7919 0.6627

100 0.5155 0.5997 0.4521 0.7335 0.5282 0.7839 0.6513

0.50 DENSE DIFFERENCE 5 0.4980 0.5279 0.4713 0.7109 0.5303 0.7566 0.6417
10 0.5077 0.5514 0.4705 0.7233 0.5356 0.7713 0.6513
20 0.5074 0.5583 0.4650 0.7234 0.5322 0.7737 0.6507
30 0.5063 0.5613 0.4611 0.7194 0.5290 0.7708 0.6478
50 0.5002 0.5593 0.4524 0.7152 0.5216 0.7676 0.6418

100 0.4924 0.5573 0.4411 0.7061 0.5117 0.7592 0.6317

0.50 DENSE SQUARE 5 0.4992 0.5287 0.4728 0.7113 0.5307 0.7567 0.6420
10 0.5080 0.5512 0.4710 0.7221 0.5345 0.7702 0.6502
20 0.5063 0.5569 0.4641 0.7211 0.5310 0.7722 0.6497
30 0.5051 0.5607 0.4595 0.7179 0.5282 0.7700 0.6473
50 0.4977 0.5579 0.4492 0.7109 0.5178 0.7634 0.6377

100 0.4864 0.5532 0.4340 0.6983 0.5041 0.7527 0.6245

0.75 SPARSE(ALL) DIFFERENCE 5 0.5152 0.6111 0.4453 0.7217 0.5264 0.7682 0.6426
10 0.5251 0.6403 0.4450 0.7348 0.5288 0.7841 0.6515
20 0.5203 0.6494 0.4340 0.7324 0.5198 0.7838 0.6454
30 0.5167 0.6560 0.4261 0.7285 0.5131 0.7801 0.6394
50 0.5090 0.6574 0.4152 0.7209 0.5016 0.7736 0.6291

100 0.4965 0.6587 0.3985 0.7076 0.4851 0.7630 0.6143

0.75 SPARSE(ALL) SQUARE 5 0.5127 0.5943 0.4509 0.7163 0.5269 0.7622 0.6411
10 0.5265 0.6316 0.4514 0.7374 0.5341 0.7858 0.6553
20 0.5286 0.6512 0.4448 0.7416 0.5320 0.7907 0.6557
30 0.5260 0.6594 0.4375 0.7365 0.5239 0.7868 0.6490
50 0.5189 0.6631 0.4261 0.7324 0.5128 0.7838 0.6404

100 0.5071 0.6651 0.4097 0.7191 0.4973 0.7731 0.6264

0.75 DENSE DIFFERENCE 5 0.5018 0.5884 0.4374 0.7081 0.5139 0.7546 0.6292
10 0.5072 0.6122 0.4330 0.7175 0.5155 0.7670 0.6356
20 0.5071 0.6245 0.4268 0.7166 0.5103 0.7685 0.6335
30 0.5026 0.6246 0.4204 0.7117 0.5047 0.7650 0.6288
50 0.4956 0.6257 0.4103 0.7052 0.4952 0.7601 0.6206

100 0.4875 0.6247 0.3998 0.6952 0.4849 0.7510 0.6104

0.75 DENSE SQUARE 5 0.5025 0.5881 0.4387 0.7082 0.5145 0.7545 0.6297
10 0.5075 0.6122 0.4334 0.7164 0.5144 0.7660 0.6346
20 0.5070 0.6250 0.4265 0.7147 0.5097 0.7674 0.6330
30 0.5005 0.6233 0.4181 0.7104 0.5032 0.7643 0.6276
50 0.4918 0.6231 0.4062 0.7010 0.4910 0.7560 0.6164

100 0.4807 0.6198 0.3926 0.6869 0.4772 0.7440 0.6030

With respect to the thresholds, both values have similar performance without great
differences, being slightly better to prefer the stricter output criterion provided by the value
0.75. Performance with sparse representations is still better than with dense context vectors,
and there is a slight tendency to get better results using fewer neighbors than the basic
k-NN method. Finally, the results using the inverse of distance squared as the distance
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weighting scheme are superior in all scenarios, because it boosts the contribution of the
most similar examples when constructing the average embedded vector.

Table 7. Performance with LARGE label-AE.

Threshold Neighbors Weighting k MiF MiP MiR P@5 P@10 nDCG@5 nDCG@10

0.50 SPARSE(ALL) DIFFERENCE 5 0.4962 0.6457 0.4029 0.6934 0.4866 0.7439 0.6077
10 0.4959 0.6733 0.3925 0.7006 0.4796 0.7558 0.6082
20 0.4899 0.6857 0.3812 0.6971 0.4702 0.7534 0.6011
30 0.4843 0.6901 0.3731 0.6890 0.4621 0.7469 0.5935
50 0.4747 0.6932 0.3610 0.6778 0.4488 0.7370 0.5811

100 0.4601 0.6981 0.3431 0.6609 0.4297 0.7226 0.5631

0.50 SPARSE(ALL) SQUARE 5 0.4973 0.6285 0.4114 0.6924 0.4952 0.7427 0.6132
10 0.5006 0.6662 0.4010 0.7064 0.4860 0.7584 0.6123
20 0.4972 0.6864 0.3897 0.7078 0.4792 0.7613 0.6090
30 0.4921 0.6917 0.3819 0.7030 0.4715 0.7580 0.6030
50 0.4835 0.6960 0.3704 0.6896 0.4594 0.7473 0.5917

100 0.4700 0.7017 0.3534 0.6727 0.4406 0.7333 0.5742

0.50 DENSE DIFFERENCE 5 0.4874 0.6179 0.4024 0.6889 0.4859 0.7414 0.6065
10 0.4897 0.6473 0.3939 0.6943 0.4801 0.7496 0.6063
20 0.4868 0.6609 0.3853 0.6911 0.4746 0.7479 0.6024
30 0.4822 0.6646 0.3783 0.6879 0.4666 0.7453 0.5958
50 0.4754 0.6667 0.3694 0.6797 0.4572 0.7386 0.5873

100 0.4659 0.6661 0.3582 0.6696 0.4450 0.7305 0.5763

0.50 DENSE SQUARE 5 0.4884 0.6181 0.4036 0.6894 0.4868 0.7414 0.6069
10 0.4899 0.6466 0.3944 0.6946 0.4803 0.7498 0.6065
20 0.4862 0.6606 0.3846 0.6894 0.4733 0.7462 0.6008
30 0.4814 0.6642 0.3776 0.6867 0.4651 0.7439 0.5941
50 0.4723 0.6656 0.3660 0.6749 0.4535 0.7352 0.5839

100 0.4600 0.6629 0.3521 0.6627 0.4383 0.7241 0.5694

0.75 SPARSE(ALL) DIFFERENCE 5 0.4795 0.6912 0.3671 0.6779 0.4541 0.7322 0.5811
10 0.4755 0.7212 0.3546 0.6772 0.4424 0.7377 0.5769
20 0.4677 0.7358 0.3428 0.6655 0.4296 0.7280 0.5651
30 0.4616 0.7450 0.3344 0.6584 0.4209 0.7228 0.5577
50 0.4508 0.7481 0.3226 0.6446 0.4064 0.7111 0.5441

100 0.4339 0.7511 0.3051 0.6262 0.3868 0.6945 0.5245

0.75 SPARSE(ALL) SQUARE 5 0.4822 0.6758 0.3749 0.6792 0.4611 0.7328 0.5863
10 0.4821 0.7143 0.3638 0.6854 0.4510 0.7427 0.5836
20 0.4771 0.7378 0.3526 0.6819 0.4418 0.7412 0.5770
30 0.4714 0.7468 0.3444 0.6735 0.4322 0.7353 0.5689
50 0.4611 0.7510 0.3326 0.6599 0.4190 0.7239 0.5564

100 0.4432 0.7532 0.3140 0.6373 0.3974 0.7053 0.5360

0.75 DENSE DIFFERENCE 5 0.4746 0.6679 0.3681 0.6741 0.4541 0.7304 0.5811
10 0.4729 0.6971 0.3578 0.6771 0.4461 0.7369 0.5790
20 0.4675 0.7157 0.3471 0.6691 0.4360 0.7314 0.5706
30 0.4623 0.7186 0.3408 0.6643 0.4289 0.7277 0.5645
50 0.4545 0.7199 0.3321 0.6533 0.4185 0.7188 0.5550

100 0.4448 0.7226 0.3212 0.6410 0.4052 0.7085 0.5425

0.75 DENSE SQUARE 5 0.4761 0.6681 0.3698 0.6754 0.4560 0.7309 0.5822
10 0.4734 0.6983 0.3581 0.6760 0.4461 0.7361 0.5788
20 0.4668 0.7149 0.3466 0.6672 0.4346 0.7295 0.5690
30 0.4621 0.7197 0.3403 0.6626 0.4280 0.7256 0.5630
50 0.4516 0.7182 0.3294 0.6498 0.4152 0.7162 0.5519

100 0.4381 0.7215 0.3146 0.6328 0.3975 0.7010 0.5344

When comparing the MEDIUM label-AE best results from Table 6 with the basic k-NN
best results from Table 3 we can see that they show very similar MiF values, which in the
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case of the MEDIUM label-AE model is obtained with relatively high values of MiP at the
expense of lower values in MiR, whereas the basic k-NN method offers values more uniform
in both metrics. After a detailed analysis of the predictions made by both models we have
found that the number of labels predicted by the MEDIUM label-AE model is substantially
smaller. In our study we have obtained that the average number of labels predicted for
each document by the simple k-NN method is 13.34 for the sparse representation and 13.13
for the dense representation. For the MEDIUM label-AE model with a threshold of 0.50
its average length is 10.44 labels with the sparse representation and 10.61 with the dense
representation, whereas with a threshold of 0.75 we have, respectively, 8.65 and 8.69 labels.
This behavior makes the basic k-NN method start with an initial advantage in providing
better values for MiR.

We hypothesize that the proposed label-AE assisted k-NN method is capable of (1)
providing faithful embedded vectors via its encoder and (2) acceptably reconstructing
the output labels from the averaged embedded vectors using its decoder, hence offering
high values in MiP, but it leaves behind the less frequent labels, which have few training
examples to assert their presence in the encoder and decoder weights. On the other hand,
the results seem to indicate that the basic k-NN method is able to satisfactorily circumvent
the treatment of infrequent labels, at least in a large datasets such as the one we are dealing
with. This is probably due to the very nature of the k-NN method. These infrequent labels
appear in documents with very specific contents, which leads to a very particular set of
neighbors that target the k-NN classifier to these rare labels.

In order to try to combine the best aspects of both approaches, which are the high MiP
of our proposed k-NN with label-AE and the best recall capabilities of the classical k-NN
method, we have carried out a battery of additional tests. For this purpose, we have taken
as a starting point the labels predicted by the label-AE method and combined them with
the predictions provided by the basic k-NN method. To build the final set of output labels,
to the labels predicted by the label-AE based method we add labels taken from the basic
k-NN prediction until the number of output labels predicted by the basic k-NN is reached.

Table 8 shows the results obtained by combining according to the described scheme the
predictions of the basic k-NN model with the predictions provided by the MEDIUM label-AE.
In the case of the MiF, MiP and MiR metrics all of them are substantially improved with
respect to the values obtained with these methods separately. In contrast, the values of P@k
and nDCG@k are penalized.

Although these results improve those provided by the basic k-NN method and those of
the k-NN method assisted with our label-AE, they are far from those offered by the best state-
of-the-art semantic indexing systems for MeSH. If we take as a reference the latest editions
of the BioASQ challenge [29,48], which proposes an evaluation scenario very similar to the
one presented in this work, we see that the best systems are capable of reaching MiF scores
somewhat higher than 70%, while the Default MTI (Medical Text Indexer) reached values
between 53% in the first edition of the challenge and values in the range 62–64% in the last
two editions. The baseline used in the first editions of this challenge, which performed a
simple string match of the label text, reached values around 26%.
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Table 8. Performance mixing results from basic k-NN with MEDIUM label-AE.

Threshold Neighbors Weighting k MiF MiP MiR P@5 P@10 nDCG@5 nDCG@10

0.50 SPARSE(ALL) DIFFERENCE 5 0.5109 0.5018 0.5204 0.5159 0.5076 0.5152 0.5341
10 0.5309 0.5208 0.5414 0.5384 0.5301 0.5398 0.5598
20 0.5345 0.5236 0.5460 0.5530 0.5383 0.5534 0.5694
30 0.5330 0.5218 0.5448 0.5554 0.5382 0.5564 0.5706
50 0.5304 0.5191 0.5422 0.5571 0.5371 0.5586 0.5705

100 0.5243 0.5130 0.5361 0.5590 0.5346 0.5605 0.5694

0.50 SPARSE(ALL) SQUARE 5 0.5063 0.4973 0.5155 0.4993 0.4968 0.4987 0.5205
10 0.5294 0.5197 0.5395 0.5306 0.5277 0.5303 0.5536
20 0.5385 0.5277 0.5498 0.5484 0.5404 0.5496 0.5700
30 0.5408 0.5299 0.5522 0.5562 0.5432 0.5554 0.5732
50 0.5399 0.5286 0.5517 0.5578 0.5429 0.5583 0.5743

100 0.5355 0.5239 0.5476 0.5555 0.5390 0.5537 0.5688

0.50 DENSE DIFFERENCE 5 0.4942 0.4885 0.5002 0.4825 0.4864 0.4803 0.5065
10 0.5098 0.5038 0.5159 0.5050 0.5037 0.5033 0.5275
20 0.5152 0.5089 0.5217 0.5101 0.5116 0.5071 0.5339
30 0.5148 0.5085 0.5212 0.5130 0.5134 0.5093 0.5359
50 0.5122 0.5059 0.5187 0.5080 0.5095 0.5070 0.5333

100 0.5067 0.4998 0.5139 0.5078 0.5065 0.5042 0.5290

0.50 DENSE SQUARE 5 0.4944 0.4886 0.5003 0.4828 0.4854 0.4804 0.5056
10 0.5095 0.5036 0.5156 0.5043 0.5033 0.5033 0.5273
20 0.5146 0.5083 0.5211 0.5086 0.5112 0.5053 0.5330
30 0.5136 0.5072 0.5200 0.5096 0.5113 0.5067 0.5339
50 0.5088 0.5022 0.5155 0.5066 0.5068 0.5041 0.5296

100 0.4993 0.4921 0.5066 0.5021 0.5007 0.4979 0.5227

0.75 SPARSE(ALL) DIFFERENCE 5 0.5135 0.5043 0.5230 0.5706 0.5354 0.5694 0.5714
10 0.5346 0.5244 0.5452 0.5984 0.5612 0.5997 0.6010
20 0.5412 0.5301 0.5528 0.6138 0.5692 0.6163 0.6124
30 0.5409 0.5295 0.5528 0.6199 0.5712 0.6233 0.6166
50 0.5377 0.5262 0.5496 0.6199 0.5697 0.6227 0.6147

100 0.5308 0.5193 0.5427 0.6153 0.5625 0.6206 0.6097

0.75 SPARSE(ALL) SQUARE 5 0.5055 0.4966 0.5148 0.5500 0.5235 0.5478 0.5546
10 0.5321 0.5223 0.5423 0.5873 0.5549 0.5883 0.5923
20 0.5446 0.5337 0.5560 0.6108 0.5729 0.6126 0.6136
30 0.5483 0.5372 0.5599 0.6172 0.5768 0.6208 0.6198
40 0.5492 0.5378 0.5612 0.6193 0.5755 0.6217 0.6188
50 0.5482 0.5367 0.5601 0.6185 0.5743 0.6208 0.6173

100 0.5430 0.5313 0.5552 0.6080 0.5654 0.6086 0.6064

0.75 DENSE DIFFERENCE 5 0.4952 0.4894 0.5011 0.5384 0.5143 0.5346 0.5433
10 0.5133 0.5073 0.5194 0.5663 0.5320 0.5628 0.5660
20 0.5221 0.5157 0.5287 0.5756 0.5446 0.5717 0.5778
30 0.5201 0.5138 0.5266 0.5744 0.5443 0.5717 0.5781
50 0.5181 0.5117 0.5246 0.5768 0.5433 0.5727 0.5773

100 0.5146 0.5075 0.5219 0.5751 0.5378 0.5695 0.5718

0.75 DENSE SQUARE 5 0.4951 0.4894 0.5011 0.5387 0.5134 0.5335 0.5416
10 0.5142 0.5082 0.5203 0.5654 0.5320 0.5616 0.5654
20 0.5211 0.5147 0.5277 0.5757 0.5443 0.5722 0.5780
30 0.5200 0.5136 0.5266 0.5722 0.5425 0.5690 0.5759
50 0.5155 0.5088 0.5223 0.5730 0.5378 0.5691 0.5725

100 0.5085 0.5013 0.5160 0.5686 0.5316 0.5633 0.5654

5. Conclusions and Future Work

In this paper we propose a novel multi-label text categorization method able to deal
with a very large and structured label space, that it is suitable to be applied in semantic
indexing tasks using controlled vocabularies, such it is the case of the Medical Subject
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Headings (MeSH) thesaurus. The proposed method trains a large label-AE capable of
simultaneously learning an encoder function that transforms the original label space into a
reduced-dimensional space, along with a decoder function that transforms vectors from that
space back into the original label space. The proposal adapts classical k-NN categorization
to work in the semantic latent space learned by this label-AE.

We have proposed and evaluated several document representation approaches, using
both sparse textual features and dense contextual representations. We have evaluated their
contribution in finding neighboring documents employed in the k-NN classification.

An exhaustive study on a large portion of MEDLINE collection has been carried out
to evaluate different strategies in the definition and training of label-AEs for the MeSH
thesaurus and to verify the suitability of the proposed classification method. The results
obtained confirm the ability of the learned label-AEs to capture the latent semantics of MeSH
thesaurus descriptors and leverage that representation space in the k-NN classification.

As a future work, a direct application of the method described in this paper is to test
the usefulness of the label-AEs learned for MeSH on related thesauri in other languages.
An example of such a thesaurus is the DeCS (Descriptores en Ciencias de la Salud, Health
Sciences Descriptors) controlled vocabulary (http://decs.bvsalud.org/, accessed on 24
July 2022), which is a trilingual (In Portuguese, Spanish and English) version of MeSH,
retaining its structure and adding a collection of specific descriptors. We hypothesize that
it is possible to leverage the semantic information about MeSH condensed in the learned
encoders and decoders to advantage of it in multilingual biomedical environments.
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