142 research outputs found

    Fitted non-polynomial spline method for singularly perturbed differential difference equations with integral boundary condition

    Get PDF
    The aim of this paper is to present fitted non-polynomial spline method for singularly perturbed differential-difference equations with integral boundary condition. The stability and uniform convergence of the proposed method are proved. To validate the applicability of the scheme, two model problems are considered for numerical experimentation and solved for different values of the perturbation parameter, ε and mesh size, h. The numerical results are tabulated in terms of maximum absolute errors and rate of convergence and it is observed that the present method is more accurate and uniformly convergent for h ≥ ε where the classical numerical methods fails to give good result and it also improves the results of the methods existing in the literature

    Mixed finite difference method for singularly perturbed differential difference equations with mixed shifts via domain decomposition

    Get PDF
    AbstractIn this paper, a mixed finite difference method is proposed to solve singularly perturbed differential difference equations with mixed shifts, solutions of which exhibit boundary layer behaviour at the left end of the interval using domain decomposition. A terminal boundary point is introduced into the domain, to decompose it into inner and outer regions. The original problem is reduced to an asymptotically equivalent singular perturbation problem and with the terminal point the singular perturbation problem is treated as inner region and outer region problems separately. The outer region and the modified inner region problems are solved by mixed finite difference method. The method is repeated for various choices of the terminal point. To validate the computational efficiency of the method model examples have been solved for different values of perturbation, delay and advanced parameters. Convergence of the proposed scheme has also been investigated

    Higher order numerical methods for singular perturbation problems

    Get PDF
    Philosophiae Doctor - PhDIn recent years, there has been a great interest towards the higher order numerical methods for singularly perturbed problems. As compared to their lower order counterparts, they provide better accuracy with fewer mesh points. Construction and/or implementation of direct higher order methods is usually very complicated. Thus a natural choice is to use some convergence acceleration techniques, e.g., Richardson extrapolation, defect correction, etc. In this thesis, we will consider various classes of problems described by singularly perturbed ordinary and partial differential equations. For these problems, we design some novel numerical methods and attempt to increase their accuracy as well as the order of convergence. We also do the same for existing numerical methods in some instances. We find that, even though the Richardson extrapolation technique always improves the accuracy, it does not perform equally well when applied to different methods for certain classes of problems. Moreover, while in some cases it improves the order of convergence, in other cases it does not. These issues are discussed in this thesis for linear and nonlinear singularly perturbed ODEs as well as PDEs. Extrapolation techniques are analyzed thoroughly in all the cases, whereas the limitations of the defect correction approach for certain problems is indicated at the end of the thesis.South Afric

    Aproximación de ecuaciones diferenciales mediante una nueva técnica variacional y aplicaciones

    Get PDF
    [SPA] En esta Tesis presentamos el estudio teórico y numérico de sistemas de ecuaciones diferenciales basado en el análisis de un funcional asociado de forma natural al problema original. Probamos que cuando se utiliza métodos del descenso para minimizar dicho funcional, el algoritmo decrece el error hasta obtener la convergencia dada la no existencia de mínimos locales diferentes a la solución original. En cierto sentido el algoritmo puede considerarse un método tipo Newton globalmente convergente al estar basado en una linearización del problema. Se han estudiado la aproximación de ecuaciones diferenciales rígidas, de ecuaciones rígidas con retardo, de ecuaciones algebraico‐diferenciales y de problemas hamiltonianos. Esperamos que esta nueva técnica variacional pueda usarse en otro tipo de problemas diferenciales. [ENG] This thesis is devoted to the study and approximation of systems of differential equations based on an analysis of a certain error functional associated, in a natural way, with the original problem. We prove that in seeking to minimize the error by using standard descent schemes, the procedure can never get stuck in local minima, but will always and steadily decrease the error until getting to the original solution. One main step in the procedure relies on a very particular linearization of the problem, in some sense it is like a globally convergent Newton type method. We concentrate on the approximation of stiff systems of ODEs, DDEs, DAEs and Hamiltonian systems. In all these problems we need to use implicit schemes. We believe that this approach can be used in a systematic way to examine other situations and other types of equations.Universidad Politécnica de Cartagen

    Linear continuous interior penalty finite element method for Helmholtz equation With High Wave Number: One-Dimensional Analysis

    Get PDF
    This article addresses the properties of continuous interior penalty (CIP) finite element solutions for the Helmholtz equation. The h-version of the CIP finite element method with piecewise linear approximation is applied to a one-dimensional (1D) model problem. We first show discrete well posedness and convergence results, using the imaginary part of the stabilization operator, for the complex Helmholtz equation. Then we consider a method with real valued penalty parameter and prove an error estimate of the discrete solution in the H1-norm, as the sum of best approximation error plus a pollution term that is the order of the phase difference. It is proved that the pollution effect can be eliminated by selecting the penalty parameter appropriately. As a result of this analysis, thorough and rigorous understanding of the error behavior throughout the range of convergence is gained. Numerical results are presented that show sharpness of the error estimates and highlight some phenomena of the discrete solution behavior. In particular, we give numerical evidence that the optimal penalty parameter obtained in the 1D case also works very well for the CIP-FEM on two-dimensional Cartesian grids

    A vision-based optical character recognition system for real-time identification of tractors in a port container terminal

    Get PDF
    Automation has been seen as a promising solution to increase the productivity of modern sea port container terminals. The potential of increase in throughput, work efficiency and reduction of labor cost have lured stick holders to strive for the introduction of automation in the overall terminal operation. A specific container handling process that is readily amenable to automation is the deployment and control of gantry cranes in the container yard of a container terminal where typical operations of truck identification, loading and unloading containers, and job management are primarily performed manually in a typical terminal. To facilitate the overall automation of the gantry crane operation, we devised an approach for the real-time identification of tractors through the recognition of the corresponding number plates that are located on top of the tractor cabin. With this crucial piece of information, remote or automated yard operations can then be performed. A machine vision-based system is introduced whereby these number plates are read and identified in real-time while the tractors are operating in the terminal. In this paper, we present the design and implementation of the system and highlight the major difficulties encountered including the recognition of character information printed on the number plates due to poor image integrity. Working solutions are proposed to address these problems which are incorporated in the overall identification system.postprin
    corecore