2,926 research outputs found

    Preconditioning Kernel Matrices

    Full text link
    The computational and storage complexity of kernel machines presents the primary barrier to their scaling to large, modern, datasets. A common way to tackle the scalability issue is to use the conjugate gradient algorithm, which relieves the constraints on both storage (the kernel matrix need not be stored) and computation (both stochastic gradients and parallelization can be used). Even so, conjugate gradient is not without its own issues: the conditioning of kernel matrices is often such that conjugate gradients will have poor convergence in practice. Preconditioning is a common approach to alleviating this issue. Here we propose preconditioned conjugate gradients for kernel machines, and develop a broad range of preconditioners particularly useful for kernel matrices. We describe a scalable approach to both solving kernel machines and learning their hyperparameters. We show this approach is exact in the limit of iterations and outperforms state-of-the-art approximations for a given computational budget

    Composing Scalable Nonlinear Algebraic Solvers

    Get PDF
    Most efficient linear solvers use composable algorithmic components, with the most common model being the combination of a Krylov accelerator and one or more preconditioners. A similar set of concepts may be used for nonlinear algebraic systems, where nonlinear composition of different nonlinear solvers may significantly improve the time to solution. We describe the basic concepts of nonlinear composition and preconditioning and present a number of solvers applicable to nonlinear partial differential equations. We have developed a software framework in order to easily explore the possible combinations of solvers. We show that the performance gains from using composed solvers can be substantial compared with gains from standard Newton-Krylov methods.Comment: 29 pages, 14 figures, 13 table

    Robust Dropping Criteria for F-norm Minimization Based Sparse Approximate Inverse Preconditioning

    Full text link
    Dropping tolerance criteria play a central role in Sparse Approximate Inverse preconditioning. Such criteria have received, however, little attention and have been treated heuristically in the following manner: If the size of an entry is below some empirically small positive quantity, then it is set to zero. The meaning of "small" is vague and has not been considered rigorously. It has not been clear how dropping tolerances affect the quality and effectiveness of a preconditioner MM. In this paper, we focus on the adaptive Power Sparse Approximate Inverse algorithm and establish a mathematical theory on robust selection criteria for dropping tolerances. Using the theory, we derive an adaptive dropping criterion that is used to drop entries of small magnitude dynamically during the setup process of MM. The proposed criterion enables us to make MM both as sparse as possible as well as to be of comparable quality to the potentially denser matrix which is obtained without dropping. As a byproduct, the theory applies to static F-norm minimization based preconditioning procedures, and a similar dropping criterion is given that can be used to sparsify a matrix after it has been computed by a static sparse approximate inverse procedure. In contrast to the adaptive procedure, dropping in the static procedure does not reduce the setup time of the matrix but makes the application of the sparser MM for Krylov iterations cheaper. Numerical experiments reported confirm the theory and illustrate the robustness and effectiveness of the dropping criteria.Comment: 27 pages, 2 figure

    Preconditioned Locally Harmonic Residual Method for Computing Interior Eigenpairs of Certain Classes of Hermitian Matrices

    Full text link
    We propose a Preconditioned Locally Harmonic Residual (PLHR) method for computing several interior eigenpairs of a generalized Hermitian eigenvalue problem, without traditional spectral transformations, matrix factorizations, or inversions. PLHR is based on a short-term recurrence, easily extended to a block form, computing eigenpairs simultaneously. PLHR can take advantage of Hermitian positive definite preconditioning, e.g., based on an approximate inverse of an absolute value of a shifted matrix, introduced in [SISC, 35 (2013), pp. A696-A718]. Our numerical experiments demonstrate that PLHR is efficient and robust for certain classes of large-scale interior eigenvalue problems, involving Laplacian and Hamiltonian operators, especially if memory requirements are tight

    Scalable iterative methods for sampling from massive Gaussian random vectors

    Full text link
    Sampling from Gaussian Markov random fields (GMRFs), that is multivariate Gaussian ran- dom vectors that are parameterised by the inverse of their covariance matrix, is a fundamental problem in computational statistics. In this paper, we show how we can exploit arbitrarily accu- rate approximations to a GMRF to speed up Krylov subspace sampling methods. We also show that these methods can be used when computing the normalising constant of a large multivariate Gaussian distribution, which is needed for both any likelihood-based inference method. The method we derive is also applicable to other structured Gaussian random vectors and, in particu- lar, we show that when the precision matrix is a perturbation of a (block) circulant matrix, it is still possible to derive O(n log n) sampling schemes.Comment: 17 Pages, 4 Figure

    On the Singular Neumann Problem in Linear Elasticity

    Full text link
    The Neumann problem of linear elasticity is singular with a kernel formed by the rigid motions of the body. There are several tricks that are commonly used to obtain a non-singular linear system. However, they often cause reduced accuracy or lead to poor convergence of the iterative solvers. In this paper, different well-posed formulations of the problem are studied through discretization by the finite element method, and preconditioning strategies based on operator preconditioning are discussed. For each formulation we derive preconditioners that are independent of the discretization parameter. Preconditioners that are robust with respect to the first Lam\'e constant are constructed for the pure displacement formulations, while a preconditioner that is robust in both Lam\'e constants is constructed for the mixed formulation. It is shown that, for convergence in the first Sobolev norm, it is crucial to respect the orthogonality constraint derived from the continuous problem. Based on this observation a modification to the conjugate gradient method is proposed that achieves optimal error convergence of the computed solution
    • …
    corecore