454 research outputs found

    Byzantine Attack and Defense in Cognitive Radio Networks: A Survey

    Full text link
    The Byzantine attack in cooperative spectrum sensing (CSS), also known as the spectrum sensing data falsification (SSDF) attack in the literature, is one of the key adversaries to the success of cognitive radio networks (CRNs). In the past couple of years, the research on the Byzantine attack and defense strategies has gained worldwide increasing attention. In this paper, we provide a comprehensive survey and tutorial on the recent advances in the Byzantine attack and defense for CSS in CRNs. Specifically, we first briefly present the preliminaries of CSS for general readers, including signal detection techniques, hypothesis testing, and data fusion. Second, we analyze the spear and shield relation between Byzantine attack and defense from three aspects: the vulnerability of CSS to attack, the obstacles in CSS to defense, and the games between attack and defense. Then, we propose a taxonomy of the existing Byzantine attack behaviors and elaborate on the corresponding attack parameters, which determine where, who, how, and when to launch attacks. Next, from the perspectives of homogeneous or heterogeneous scenarios, we classify the existing defense algorithms, and provide an in-depth tutorial on the state-of-the-art Byzantine defense schemes, commonly known as robust or secure CSS in the literature. Furthermore, we highlight the unsolved research challenges and depict the future research directions.Comment: Accepted by IEEE Communications Surveys and Tutoiral

    Block Outlier Methods for Malicious User Detection in Cooperative Spectrum Sensing

    Full text link
    Block outlier detection methods, based on Tietjen-Moore (TM) and Shapiro-Wilk (SW) tests, are proposed to detect and suppress spectrum sensing data falsification (SSDF) attacks by malicious users in cooperative spectrum sensing. First, we consider basic and statistical SSDF attacks, where the malicious users attack independently. Then we propose a new SSDF attack, which involves cooperation among malicious users by masking. In practice, the number of malicious users is unknown. Thus, it is necessary to estimate the number of malicious users, which is found using clustering and largest gap method. However, we show using Monte Carlo simulations that, these methods fail to estimate the exact number of malicious users when they cooperate. To overcome this, we propose a modified largest gap method.Comment: Accepted in Proceedings of 79th IEEE Vehicular Technology Conference-Spring (VTC-Spring), May 2014, Seoul, South Kore

    A Study on Techniques/Algorithms used for Detection and Prevention of Security Attacks in Cognitive Radio Networks

    Get PDF
    In this paper a detailed survey is carried out on the taxonomy of Security Issues, Advances on Security Threats and Countermeasures ,A Cross-Layer Attack, Security Status and Challenges for Cognitive Radio Networks, also a detailed survey on several Algorithms/Techniques used to detect and prevent SSDF(Spectrum Sensing Data Falsification) attack a type of DOS (Denial of Service) attack and several other  Network layer attacks in Cognitive Radio Network or Cognitive Radio Wireless Sensor Node Networks(WSNN’s) to analyze the advantages and disadvantages of those existing algorithms/techniques

    Detection And Prevention Of Types Of Attacks Using Machine Learning Techniques In Cognitive Radio Networks

    Get PDF
    A number of studies have been done on several types of data link and network layer attacks and defenses for CSS in CRNs, but there are still a number of challenges unsolved and open issues waiting for solutions. Specifically, from the perspective of attackers, when launching the attack, users have to take into account of the factors of attack gain, attack cost and attack risk, together.  From the perspective of defenders, there are also three aspects deserving consideration: defense reliability, defense efficiency and defense universality. The attacks and defenses are mutually coupled from each other. Attackers need to adjust their strategies to keep their negative effects on final decisions and avoid defenders’ detection, while defenders have to learn and analyze attack behaviors and designs effective defense rules. Indeed, attack and defense ought to be considered together. the proposed methodology overcomes the problems of several data link and network layer attacks and it effects in CSS(Co-operative Spectrum Sensing) of CNRs using Machine Learning based Defense, Cross layers optimization techniques and Defence based Prevention mechanisms

    Spectrum Sensing and Security Challenges and Solutions: Contemporary Affirmation of the Recent Literature

    Get PDF
    Cognitive radio (CR) has been recently proposed as a promising technology to improve spectrum utilization by enabling secondary access to unused licensed bands. A prerequisite to this secondary access is having no interference to the primary system. This requirement makes spectrum sensing a key function in cognitive radio systems. Among common spectrum sensing techniques, energy detection is an engaging method due to its simplicity and efficiency. However, the major disadvantage of energy detection is the hidden node problem, in which the sensing node cannot distinguish between an idle and a deeply faded or shadowed band. Cooperative spectrum sensing (CSS) which uses a distributed detection model has been considered to overcome that problem. On other dimension of this cooperative spectrum sensing, this is vulnerable to sensing data falsification attacks due to the distributed nature of cooperative spectrum sensing. As the goal of a sensing data falsification attack is to cause an incorrect decision on the presence/absence of a PU signal, malicious or compromised SUs may intentionally distort the measured RSSs and share them with other SUs. Then, the effect of erroneous sensing results propagates to the entire CRN. This type of attacks can be easily launched since the openness of programmable software defined radio (SDR) devices makes it easy for (malicious or compromised) SUs to access low layer protocol stacks, such as PHY and MAC. However, detecting such attacks is challenging due to the lack of coordination between PUs and SUs, and unpredictability in wireless channel signal propagation, thus calling for efficient mechanisms to protect CRNs. Here in this paper we attempt to perform contemporary affirmation of the recent literature of benchmarking strategies that enable the trusted and secure cooperative spectrum sensing among Cognitive Radios

    An Empirical Estimation of CSS Cognitive Radio Network Performance under Spectrum Sensing Data Falsification Attack

    Full text link
    Cooperative spectrum sensing (CSS) significantly improves the performance of spectrum sensing process in cognitive radio networks (CRNs). Individual spectrum sensing by a cognitive radio (CR) is often inaccurate as the channel often experiences fading and shadowing effects. CSS has been shown to have many advantages in terms of spectrum use and robustness. Despite these facts, a CSS scheme also vulnerable to many security attacks from Malicious users (MUs). In order to get unfair USAge of spectrum band, MUs can generate false spectrum sensing reports to disturb the good secondary users (SUs) decision about presence of primary user (PU). In this paper, we consider the spectrum sensing data falsification attack (SSDF) in CSS and propose the protocol to identify and eliminate the attacker or Malicious user (MU) to improve the network performance. In SSDF attack, MUs send the false spectrum sensing results to fusion center (FC) with the intension that it should make wrong decision about spectrum sensing. In this scenario, FC acts as a data collector to fuse the reports sent by SUs
    • …
    corecore