4 research outputs found

    LegOSC : mindstroms NXT robotics programming for artists

    Get PDF
    Robotics is an interesting but difficult area for digital artists who generally donā€™t have much academic background on electronics or computer programming. Digital art students normally use high-level application to program their visual and sonorous installations. This paper presents LegOSC - a tool that allows the control of the Mindstorms NXT robots from any application that uses the Open Sound Control protocol which is implemented by most of those high-level applications. This allows artists to create works which incorporate robotic parts using the familiar programming environment

    Investigation and development of a tangible technology framework for highly complex and abstract concepts

    Get PDF
    The ubiquitous integration of computer-supported learning tools within the educational domain has led educators to continuously seek effective technological platforms for teaching and learning. Overcoming the inherent limitations of traditional educational approaches, interactive and tangible computing platforms have consequently garnered increased interest in the pursuit of embedding active learning pedagogies within curricula. However, whilst Tangible User Interface (TUI) systems have been successfully developed to edutain children in various research contexts, TUI architectures have seen limited deployment towards more advanced educational pursuits. Thus, in contrast to current domain research, this study investigates the effectiveness and suitability of adopting TUI systems for enhancing the learning experience of abstract and complex computational science and technology-based concepts within higher educational institutions (HEI)s. Based on the proposal of a contextually apt TUI architecture, the research describes the design and development of eight distinct TUI frameworks embodying innovate interactive paradigms through tabletop peripherals, graphical design factors, and active tangible manipulatives. These computationally coupled design elements are evaluated through summative and formative experimental methodologies for their ability to aid in the effective teaching and learning of diverse threshold concepts experienced in computational science. In addition, through the design and adoption of a technology acceptance model for educational technology (TAM4Edu), the suitability of TUI frameworks in HEI education is empirically evaluated across a myriad of determinants for modelling studentsā€™ behavioural intention. In light of the statistically significant results obtained in both academic knowledge gain (Ī¼ = 25.8%) and student satisfaction (Ī¼ = 12.7%), the study outlines the affordances provided through TUI design for various constituents of active learning theories and modalities. Thus, based on an empirical and pedagogical analyses, a set of design guidelines is defined within this research to direct the effective development of TUI design elements for teaching and learning abstract threshold concepts in HEI adaptations

    Kinematics and Robot Design II (KaRD2019) and III (KaRD2020)

    Get PDF
    This volume collects papers published in two Special Issues ā€œKinematics and Robot Design II, KaRD2019ā€ (https://www.mdpi.com/journal/robotics/special_issues/KRD2019) and ā€œKinematics and Robot Design III, KaRD2020ā€ (https://www.mdpi.com/journal/robotics/special_issues/KaRD2020), which are the second and third issues of the KaRD Special Issue series hosted by the open access journal robotics.The KaRD series is an open environment where researchers present their works and discuss all topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. It aims at being an established reference for researchers in the field as other serial international conferences/publications are. Even though the KaRD series publishes one Special Issue per year, all the received papers are peer-reviewed as soon as they are submitted and, if accepted, they are immediately published in MDPI Robotics. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on ā€œmechanisms and roboticsā€.KaRD2019 together with KaRD2020 received 22 papers and, after the peer-review process, accepted only 17 papers. The accepted papers cover problems related to theoretical/computational kinematics, to biomedical engineering and to other design/applicative aspects
    corecore