3 research outputs found

    Modelado, simulación y control de un robot serial de dos eslabones con Matlab / Simulink

    Get PDF
    Relevant aspects of the kinematic position control of a serial two-link robot with revolute joints are presented. Presented formulation is supported with simulation and experimental results using the Matlab toolboxes Simulink and Simmechanics. Used hardware was built as course work of Mechatronic Engineering students. It integrated two linkages, two identical Maxon motors, to servo controllers and one EPOS2 circuit. Practical results simulated the drawing of a circle, a triangle and a rectangle, three key shapes in the industry manufacturing tasks or painting of industry elements. The joint error was lower than three degrees in the three cases, considered satisfactory for prototype hardware. The workspace error was calculated based on the real angles for the circle case. Developed control software for the Maxon motors is available on the internet (MathWorks File Exchange).Se presentan los aspectos relevantes del control cinemático de posición de un robot serial de dos eslabones con juntas rotatorias, soportados en simulación y experimentación con los toolboxes Simulink y SimMechanics de Matlab. El hardware fue construido como trabajo de curso de Ingeniería Mecatrónica, integrando dos eslabones, dos motores Maxon, dos tarjetas servo y un circuito EPOS2. Las pruebas ilustraron la descripción de un círculo, un triángulo y un rectángulo por parte del robot, escogidas por ser formas típicas de tareas cinemáticas de la manufactura o pintura de componentes industriales. En los tres ejemplos el error de juntas (espacio articular) es inferior a tres grados, resultados considerados satisfactorios para un hardware prototipo. Los valores reales de los ángulos obtenidos son utilizados para cuantificar el error en el espacio de la herramienta para el caso de la trayectoria circular. El software desarrollado para controlar los motores Maxon está disponible en internet (Intercambio de Archivos de MathWorks)

    Specification and installation of a robotic system to improve the production efficiency of a cutting station

    Get PDF
    Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do ParanáOne of the main technologies in Industry 4.0 are collaborative robots (cobot), which allow humans to work alongside them while respecting the necessary safety standards. The use of robots in industry is generally done to improve production, quality, reduce repetitive efforts and heavy manual labor. In order to save time and, consequently, money. With this, the Catraport company presented the problem of automating a cutting station consisting of two machines. In the development of the automated solution, simulations were used to analyze which would be the most viable option for the company. The company chose the hybrid solution formed by a robot and a worker. With the requirements defined, they purchased the robot, which they required to be a cobot. The model is the UR-10e, from Universal Robots, and also, as accessories, the adaptive gripper and the wrist camera, both from Robotiq. After the purchase, the hardware part of the robot was installed and the software for the accessories was configured. With this, the visual recognition of the part was calibrated to identify its position, the gripper was adjusted to better fit the piece and possible solutions to position the parts in the exit box. For the last step it was necessary to develop an individual programming case for each piece, because they have shapes that do not allow a simple fit between them. It was also used a resource of the camera to identify tags, which was used for the system to recognize the position and orientation of each pallet.Uma das principais tecnologias da Indústria 4.0 são robôs colaborativos (cobot), que permitem o trabalho ao lado de humanos respeitando as normas de segurança necessárias. O uso de robôs na indústria é geralmente feito para melhorar produção, qualidade, reduzir esforços repetitivos e trabalhos manuais pesados. De forma a economizar tempo e, consequentemente, dinheiro. Com isso, a empresa Catraport apresentou o problema de automatizar uma estação de corte composta por duas máquinas. No desenvolvimento da solução automatizada, foram utilizadas simulações para a análise de qual seria a opção mais viável para a empresa. A empresa optou pela solução híbrida formada por um robô e um trabalhador. Com os requisitos definidos, fez a aquisição do robô, que eles tinham como exigência ser um cobot. O modelo é o UR-10e, da Universal Robots, e também, como acessórios, a garra adaptativa e a câmera de pulso, ambos da Robotiq. Após a compra, a parte de hardware do robô foi instalada e os softwares para os acessórios configurados. Com isso, o reconhecimento visual da peça foi calibrado para identificar sua posição, a garra foi ajustada para encaixar melhor na peça e possíveis soluções para posicionar as partes na caixa de saída. Para a última etapa foi necessário desenvolver um caso de programação individual para cada peça, pois elas possuem formatos que não permitem um encaixe simples entre elas. Também foi utilizado um recurso da câmera de identificar tags, que foi utilizado para que o sistema reconhecesse a posição e orientação de cada pallet

    Robotic modeling and simulation of palletizer robot using Workspace5.

    Get PDF
    Employment of robots in manufacturing has been a value-added entity in a manufacturing industry. Robotic simulation is used to visualize entire robotic application system, to simulate the movement of robot arm incorporated with components consist in its environment and to detect collision between the robot and components. This paper presents result of a project in implementing a computer based model to simulate Okura A1600 palletizer robot. The application uses Okura A1600 robot for palletizing bags at the end of the production line and focuses on pick-and-place application. The project objective is to generate a computer simulated model to represent the actual robot model and its environment. The project simulates the robot's first four joints, namely as the Waist, Shoulder, Elbow and Waist and focuses on the position of the robot's end effector, regardless its orientation. Development of the model is using Workspace5 as a simulation tool. Two types of methodology are used, which are the methodology for developing the robotic workcell simulation model and the methodology for executing the robotic simulation. The output of the project will be a three-dimensional view of robot arm movement based on series of predefined Geometry Points, layout checking and robot's reachability by generating working envelope, collision and near miss detection, and monitoring on the cycle time upon completing a task. The project is an offline programming and no robot language is generated
    corecore