3,196 research outputs found

    A Model that Predicts the Material Recognition Performance of Thermal Tactile Sensing

    Get PDF
    Tactile sensing can enable a robot to infer properties of its surroundings, such as the material of an object. Heat transfer based sensing can be used for material recognition due to differences in the thermal properties of materials. While data-driven methods have shown promise for this recognition problem, many factors can influence performance, including sensor noise, the initial temperatures of the sensor and the object, the thermal effusivities of the materials, and the duration of contact. We present a physics-based mathematical model that predicts material recognition performance given these factors. Our model uses semi-infinite solids and a statistical method to calculate an F1 score for the binary material recognition. We evaluated our method using simulated contact with 69 materials and data collected by a real robot with 12 materials. Our model predicted the material recognition performance of support vector machine (SVM) with 96% accuracy for the simulated data, with 92% accuracy for real-world data with constant initial sensor temperatures, and with 91% accuracy for real-world data with varied initial sensor temperatures. Using our model, we also provide insight into the roles of various factors on recognition performance, such as the temperature difference between the sensor and the object. Overall, our results suggest that our model could be used to help design better thermal sensors for robots and enable robots to use them more effectively.Comment: This article is currently under review for possible publicatio

    Multimodal human hand motion sensing and analysis - a review

    Get PDF

    Gated-Attention Architectures for Task-Oriented Language Grounding

    Full text link
    To perform tasks specified by natural language instructions, autonomous agents need to extract semantically meaningful representations of language and map it to visual elements and actions in the environment. This problem is called task-oriented language grounding. We propose an end-to-end trainable neural architecture for task-oriented language grounding in 3D environments which assumes no prior linguistic or perceptual knowledge and requires only raw pixels from the environment and the natural language instruction as input. The proposed model combines the image and text representations using a Gated-Attention mechanism and learns a policy to execute the natural language instruction using standard reinforcement and imitation learning methods. We show the effectiveness of the proposed model on unseen instructions as well as unseen maps, both quantitatively and qualitatively. We also introduce a novel environment based on a 3D game engine to simulate the challenges of task-oriented language grounding over a rich set of instructions and environment states.Comment: To appear in AAAI-1

    Multi-Modal Trip Hazard Affordance Detection On Construction Sites

    Full text link
    Trip hazards are a significant contributor to accidents on construction and manufacturing sites, where over a third of Australian workplace injuries occur [1]. Current safety inspections are labour intensive and limited by human fallibility,making automation of trip hazard detection appealing from both a safety and economic perspective. Trip hazards present an interesting challenge to modern learning techniques because they are defined as much by affordance as by object type; for example wires on a table are not a trip hazard, but can be if lying on the ground. To address these challenges, we conduct a comprehensive investigation into the performance characteristics of 11 different colour and depth fusion approaches, including 4 fusion and one non fusion approach; using colour and two types of depth images. Trained and tested on over 600 labelled trip hazards over 4 floors and 2000m2\mathrm{^{2}} in an active construction site,this approach was able to differentiate between identical objects in different physical configurations (see Figure 1). Outperforming a colour-only detector, our multi-modal trip detector fuses colour and depth information to achieve a 4% absolute improvement in F1-score. These investigative results and the extensive publicly available dataset moves us one step closer to assistive or fully automated safety inspection systems on construction sites.Comment: 9 Pages, 12 Figures, 2 Tables, Accepted to Robotics and Automation Letters (RA-L

    RABBIT: A Robot-Assisted Bed Bathing System with Multimodal Perception and Integrated Compliance

    Full text link
    This paper introduces RABBIT, a novel robot-assisted bed bathing system designed to address the growing need for assistive technologies in personal hygiene tasks. It combines multimodal perception and dual (software and hardware) compliance to perform safe and comfortable physical human-robot interaction. Using RGB and thermal imaging to segment dry, soapy, and wet skin regions accurately, RABBIT can effectively execute washing, rinsing, and drying tasks in line with expert caregiving practices. Our system includes custom-designed motion primitives inspired by human caregiving techniques, and a novel compliant end-effector called Scrubby, optimized for gentle and effective interactions. We conducted a user study with 12 participants, including one participant with severe mobility limitations, demonstrating the system's effectiveness and perceived comfort. Supplementary material and videos can be found on our website https://emprise.cs.cornell.edu/rabbit.Comment: 10 pages, 8 figures, 19th Annual ACM/IEEE International Conference on Human Robot Interaction (HRI
    • …
    corecore