3 research outputs found

    THE METHODOLOGY FOR INTEGRATING ROBOTIC SYSTEMS IN UNDEGROUND MINING MACHINES

    Get PDF
    Roof bolting is a critical operation in ensuring the safety and stability of underground mines by securing the roof strata with bolts. The process involves moving and manipulating heavy tools while being vigilant about the safety of the area. During the installation of roof bolts, operators are exposed to hazardous conditions due to challenging working conditions in underground mines, extensive working hours, and demanding shift schedules leading to personnel fatigue and influencing operators to take shortcuts that may increase the risk of injuries and fatal accidents. The successful completion of roof bolting tasks depends heavily on operator judgment and experience to perform these tasks. To mitigate the occupational hazards inherent in roof bolting operations, a six-axis ABB IRB 1600 robotic arm was integrated into the roof bolter machine to imitate human functions during the roof bolting operation. The integration process involves selecting a suitable robot that can perform human activities and has the potential to handle the tasks at hand. The ultimate goal of implementing the robotic system into the roof bolter machine is to minimize human involvement during the roof bolting operation by converting the machine from manual operations to a partially automated roof bolter machine. The integration enhances the safety of personnel by moving humans away from the face where roof bolting takes place to a safe distance. The operator is then assigned a new role to control and supervise all the operational tasks of the automated roof bolting operation via a human-machine interface (HMI). During the laboratory testing of the automation process, the robotic arm cooperates with some novel specialized technologies to imitate human activities during roof bolting operations. The developed systems include the plate feeder, the bolt feeder, and the wrench. These systems were built to support automation and minimize human intervention during roof bolting operations. These components were linked to the Programmable Logic Controller (PLC) and controlled by the HMI touchpad. An HMI was developed for the operator to control and monitor the automated process away from the active face. This study establishes robust communication paths among all the components. The design communication network links the robotic arm and other components of the roof bolter machine, leading to a smooth and sequential roof bolting process. The EtherNet/IP protocol is used to pass messages between the components of the automated roof bolter machine through a Controller Area Network (CAN) bus device installed to enable communication using CAN protocols. Establishing a robust communication network between the components prevents collision and manages the movement of the robotic arm and other developed automated systems during the bolting process. The outcome of the study shows that the robotic arm has the potential to mimic human activities during the roof bolting operation by performing bolt grasping, holding, lifting, placing, and removal of drill steels during the roof bolting operations. As a result, humans can be moved away from hazardous areas to a safe location and control the roof bolting operation through an Human Machine Interface (HMI) touchpad. The HMI controls the bolting process with start and stop buttons from the subroutine of all the components to perform the roof bolting operation. These buttons enable the operator to stop the operation in the event of unsafe acts

    Evaluation of the effects of user profile and interface characteristics on performance during robotic teleoperation.

    Get PDF
    Programa de P?s-Gradua??o em Instrumenta??o, Controle e Automa??o de Processos de Minera??o. Departamento de Engenharia de Controle e Automa??o, Escola de Minas, Universidade Federal de Ouro Preto.In the mining industry, operator safety has always been a crucial point, and therefore demands attention. In addition, given the high investments made in the enterprise, the search for a consistent and e cient production process is also relevant. To increase productivity and safety, teleoperation techniques can be used to allow the operator to be removed from the risk areas and operate the equipment from a safe distance. The work presented in this master's thesis was developed at the Instituto Tecnol?gico Vale (ITV) as a part of a broader project that aims the development of a conceptual framework that enables the analysis and validation of the application of teleoperation techniques in mining equipment. These equipment could be either used for exploration, engineering or extraction. More speci cally, this framework will permit the analysis of relevant information for teleoperation. This work represents the initial step taken, which comprises the execution of proof-of-concept tests in laboratory using a robotic system. Di erent teleoperation interfaces schemes consisting of video and haptic devices are analyzed under di erent aspects and the user point of view is taken into account. The goal is to analyze the e ects of the force feedback and of di erent visual feedback during teleoperation and to evaluate which prede ned users characteristics can contribute to better performance during teleoperation. Experimental tests were performed using a commercial mobile robotic platform Seekur Jr and teleoperation interfaces consisting of the haptic devices Novint Falcon and Geomagic Touch. This platform can be programmed in such a way that it operates emulating a mining equipment. For practical application-oriented tests, di erent operations from a mining process can be used as application of study (e.g. explosive charging or excavators operations). For the purposes of this work, interfaces for the control of the robotic platform locomotion were analyzed. In order to evaluate the in uence of interface characteristics and users pro le on performance during teleoperation two experiments were conducted. The experiments consisted of guiding the robotic platform in a scenario containing obstacles, using the di erent interfaces. In this work, delays in communication during teleoperation were not addressed. Results show that the use of force feedback e ectively contributes for better performances in term of task execution time, number of collisions with obstacles and task completion in teleoperation activities. Moreover, additional visual information, such as the environment map, can also increase perception of obstacles.Na ind?stria da minera??o, a seguran?a do operador sempre foi um ponto crucial, demandando, portanto, cuidadosa aten??o. Al?m disso, dados os altos investimentos realizados no empreendimento, a busca por um processo de produ??o consistente e e ciente ? tamb?m relevante. Com o objetivo de aumentar a produtividade e a seguran?a nas opera??es dentro da minera??o, t?cnicas de teleopera??o podem ser utilizadas para permitir que o operador seja removido das ?reas de risco e opere o equipamento ? dist?ncia. Em ess?ncia, a teleopera??o significa que ? poss?vel haver uma separa??o f?sica entre a unidade de comando (sistema local) e a unidade de execu??o (sistema remoto), ainda mantendo a rela??o entre os dois. Isto ?, apesar da separa??o f?sica, o sistema local ? ainda capaz de comandar o sistema remoto. Idealmente, para que tal comando seja feito de maneira mais e caz poss?vel, deseja-se prover ao operador uma experi?ncia com o ambiente remoto de forma natural e realista, de tal forma que ele tenha a sensa??o de estar interagindo diretamente com o ambiente remoto, por?m sem as perturba??es t?picas desses ambientes (ru?do, vibra??es, calor, etc.) e com a possibilidade de amplia??o dessa percep??o. Com a utiliza??o da teleopera??o, ? poss?vel, al?m de reduzir os riscos a que o operador est? exposto em suas atividades, melhorar seu desempenho na opera??o destes equipamentos durante a realiza??o das tarefas. O trabalho apresentado nesta disserta??o de mestrado foi desenvolvido no Instituto Tecnol?gico Vale (ITV) como parte de um projeto mais amplo que visa o desenvolvimento de um arcabou?o que permita a an?lise e valida??o da aplica??o de t?cnicas de teleopera??o a equipamentos de minera??o. Estes equipamentos podem ser usados tanto para tarefas de explora??o, quanto de engenharia ou extra??o. Mais especificamente, este arcabou?o permitir? a an?lise de qual informa??o ? relevante e auxilia o operador durante a opera??o do equipamento. No ?mbito deste projeto, o trabalho descrito nesta disserta??o de mestrado representa o primeiro passo dado, que compreende a execu??o de testes de conceito em laborat?rio usando um sistema rob?tico. Diferentes interfaces de teleopera??o compostas por dispositivos h?pticos e de v?deo s?o analisadas diante de diferentes aspectos e o ponto de vista do usu?rio ? levado em considera??o. O objetivo ? analisar os efeitos da realimenta??o de for?a e da realimenta??o visual durante a realiza??o de tarefas de maneira teleoperada e avaliar quais caracter?sticas predefinidas dos operadores podem contribuir para um melhor desempenho durante a teleopera??o de um equipamento. Para realizar os testes, a plataforma rob?tica m?vel comercial Seekur Jr e interfaces de teleopera??o compostas por dispositivos h?pticos Novint Falcon e Geomagic Touch s?o utilizados. Esta plataforma rob?tica pode ser programada de tal forma a operar emulando um equipamento de minera??o. Para a realiza??o de testes voltados a aplica??es pr?ticas, diferentes opera??es de um processo de minera??o podem ser utilizadas como aplica??o de estudo (carregamento de explosivos, opera??o de uma escavadeira, por exemplo). Para os fins de estudo deste trabalho, foram analisadas as interfaces para o controle da locomo??o da plataforma rob?tica. Para avaliar a influ?ncia das caracter?sticas da interface e do perfil dos usu?rios no desempenho durante a teleopera??o dois experimentos foram conduzidos. Os experimentos consistiram em comandar a plataforma rob?tica em um cen?rio contendo obst?culos utilizando as diferentes interfaces desenvolvidas. Neste trabalho, a presen?a de atrasos na comunica??o durante a teleopera??o n?o foi considerada. Os resultados mostram que o uso da realimenta??o de for?a efetivamente contribui para melhor desempenho durante a execu??o de tarefas de forma teleoperada, em termos do tempo de execu??o da tarefa, do n?mero de obst?culos colididos e do n?vel de conclus?o da tarefa. Al?m disso, informa??es visuais adicionais tais como um mapa do ambiente aumentam a percep??o de obst?culos

    Robotic explosive charging in mining and construction applications

    No full text
    Describes the development and testing of a robotic system for charging blast holes in underground mining. The automation system supports four main tactical functions: detection of blast holes; teleoperated arm pose control; automatic arm pose control; and human-in-the-loop visual servoing. We present the system architecture, and analyse the major components, Hole detection is crucial for automating the process, and we discuss theoretical and practical aspects in detail. The sensors used are laser range finders and cameras installed in the end effector. For automatic insertion, we consider image processing techniques to support visual servoing the tool to the hole. We also discuss issues surrounding the control of heavy-duty mining manipulators, in particular, friction, stiction, and actuator saturation
    corecore