19 research outputs found

    Contactless Controlled Low-cost Robotic System

    Get PDF
    This paper presents and depicts a realization of a robotic arm with four degrees of freedom based on cheap components and software for its control with hand gestures. A position of the arm is determined by processing the acquired data from the sensor. The application is developed using free software packages. Results of this project could find use in industrial robotics, therapeutic biofeedback, telemanipulation systems, etc

    Diseño, construccuón y control de un brazo robótico

    Get PDF
    The current project consists in the design, construction and control of an automated robotic arm with four degrees of freedom. Principles of mechanics are used to construct the design and simulation of the system, along with an extensive knowledge in electronics and programming in order to optimally achieve the movements of the structure. The construction and mounting of the arm are described step by step, with its necessary actuators and sensors. An Arduino Mega card is being used as a controller, which allows wireless commands by using its WiFi module, and also a simple control with its H-bridge type modules. A graphical interface is also programmed for control via Web of two types, and a circuit is employed for manual control with selectable rotation direction and motor speeds. Finally, geometric and kinematic models are employed for the necessary inverse kinematics calculation to translate the geometric coordinates into rotation angles for each engine.El presente proyecto consiste en el diseño, construcción y control de un brazo robótico automatizado con cuatro grados de libertad. Se utilizan principios de mecánica para realizar el diseño y simulación del sistema, además de un amplio conocimiento en electrónica y programación para lograr automatizar de manera óptima los movimientos de la estructura. Paso a paso se detalla la construcción y montaje del brazo, con sus actuadores y sensores necesarios. Se utiliza como controlador una tarjeta Arduino Mega, la cual permite comandos inalámbricos utilizando su módulo WiFi, además de un control sencillo con sus módulos tipo puente H. Se programa también una interfaz gráfica para realizar el control vía Web de 2 tipos, y se emplea también un circuito para el control manual con selección de sentido de rotación y velocidad de motores. Finalmente, se utilizan modelos cinemáticos y modelos geométricos para el cálculo de la cinemática inversa necesaria para traducir las coordenadas geométricas en ángulos de rotación de cada motor

    Real-Time Robot Control Using Leap Motion A Concept of Human-Robot Interaction

    Get PDF
    © ASEE 2015With the advent of robots in various industries, countless tasks that are complex for humans are made easier than ever before. Thanks to their functionality and accuracy we are able to achieve high productivity while investing less cost. As we see into our future of manufacturing industries, we also see that robots will replace most of the human workers to achieve faster production. All these areas use automated robotic arms which do certain tasks assigned to them with amazing speeds and pin point accuracy, because of the mathematical calculations done by the computer and are not manually controlled by humans. However, no robot can match the dexterity of a human hand. In order to control a robotic arm manually, the operator should carefully manipulate every joint in the arm to a perfect angle. Just as it sounds, it is very tedious to control them manually, that’s why they are left to the computers. But, areas such as medicine, space research, and military robotics require robot arms to be manually controlled to operate with objects that cannot be dealt with human hands. Existing systems provide traditional controllers that are not efficient to handle a robotic arm and is time consuming. To achieve speed and accuracy like automated robots, we need a new approach that can bridge this gap. Here comes the Leap Motion Technology, a latest invention in Human-Computer interaction area. Using this device we track a human hand in air accurate to millimeter. The position of hand is then used to calculate the joint angles that in turn help us to rotate the robotic arm joints by the computer with blazing speeds

    System Identification and Control of Valkyrie through SVA--Based Regressor Computation

    Get PDF
    This paper demonstrates simultaneous identification and control of the humanoid robot, Valkyrie, utilizing Spatial Vector Algebra (SVA). In particular, the inertia, Coriolis-centrifugal and gravity terms for the dynamics of a robot are computed using spatial inertia tensors. With the assumption that the link lengths or the distance between the joint axes are accurately known, it will be shown that inertial properties of a robot can be directly evaluated from the inertia tensor. An algorithm is proposed to evaluate the regressor, yielding a run time of O(n^2). The efficiency of this algorithm yields a means for online system identification via the SVA--based regressor and, as a byproduct, a method for accurate model-based control. Experimental validation of the proposed method is provided through its implementation in three case studies: offline identification of a double pendulum and a 4-DOF robotic leg, and online identification and control of a 4-DOF robotic arm

    Desarrollo Diseño y optimización de la estructura mecánica de un brazo robótico antropomórfico desarrollado con fines educativos

    Get PDF
    En el siguiente artículo se presenta el diseño y construcción de la estructura mecánica de un brazo robótico antropomórfico de cuatro grados de libertad con fines didácticos. El proyecto inició con una fase de desarrollo de conceptos obteniendo seis propuestas diseñadas para satisfacer las necesidades del cliente. Posteriormente se realizó la selección del concepto a desarrollar tomando como referencia las especificaciones del producto. Para el concepto propuesto se llevaron a cabo siete fases de rediseño que permitieron alcanzar la propuesta de diseño definitiva. Específicamente, se realizaron sucesivas etapas de simulación para analizar la respuesta dinámica de la estructura bajo la aplicación de cargas a través del tiempo, observar el estado de esfuerzos aplicado a cada parte y redimensionar los eslabones considerando las limitaciones y especificaciones previamente definidas. Con los resultados obtenidos, se generó una estructura que cumple con las especificaciones de diseño establecidas inicialmente, tomando en consideración las limitantes relacionadas con los servomotores a emplear y la carga máxima a manipular. Por último, se muestra el modelo cinemático directo e inverso del brazo además del producto final desarrollado.The following article presents the design and construction of the mechanical structure of an anthropomorphic robotic arm with four degrees of freedom for teaching purposes. The project started with a concept development phase obtaining six proposals designed to meet the customer needs. Subsequently, the selection of the concept to be developed was made taking as reference the product specifications. For the proposed concept were conducted seven phases of redesign that allowed achieving the proposed final design. Specifically, successive stages of simulation were carried out to analyze the dynamic response of the structure under the application of loads over time, to observe the stress state applied to each part and resize the links considering the previously defined limitations and specifications. With the results obtained, a structure was generated that meets the design specifications initially established, taking into consideration the constraints related to the servo motors to be used and the maximum load to be manipulated. Finally, the direct and inverse kinematic model of the arm is shown in addition to the final product developed

    Design and optimization of the mechanical structure of an anthropomorphic robotic arm developed for educational purposes

    Get PDF
    The following article presents the design and construction of the mechanical structure of an anthropomorphic robotic arm with four degrees of freedom for teaching purposes. The project started with a concept development phase obtaining six proposals designed to meet the customer needs. Subsequently, the selection of the concept to be developed was made taking as reference the product specifications. For the proposed concept were conducted seven phases of redesign that allowed achieving the proposed final design. Specifically, successive stages of simulation were carried out to analyze the dynamic response of the structure under the application of loads over time, to observe the stress state applied to each part and resize the links considering the previously defined limitations and specifications. With the results obtained, a structure was generated that meets the design specifications initially established, taking into consideration the constraints related to the servo motors to be used and the maximum load to be manipulated. Finally, the direct and inverse kinematic model of the arm is shown in addition to the final product developed.En el siguiente artículo se presenta el diseño y construcción de la estructura mecánica de un brazo robótico antropomórfico de cuatro grados de libertad con fines didácticos. El proyecto inició con una fase de desarrollo de conceptos obteniendo seis propuestas diseñadas para satisfacer las necesidades del cliente. Posteriormente se realizó la selección del concepto a desarrollar tomando como referencia las especificaciones del producto. Para el concepto propuesto se llevaron a cabo siete fases de rediseño que permitieron alcanzar la propuesta de diseño definitiva. Específicamente, se realizaron sucesivas etapas de simulación para analizar la respuesta dinámica de la estructura bajo la aplicación de cargas a través del tiempo, observar el estado de esfuerzos aplicado a cada parte y redimensionar los eslabones considerando las limitaciones y especificaciones previamente definidas. Con los resultados obtenidos, se generó una estructura que cumple con las especificaciones de diseño establecidas inicialmente, tomando en consideración las limitantes relacionadas con los servomotores a emplear y la carga máxima a manipular. Por último, se muestra el modelo cinemático directo e inverso del brazo además del producto final desarrollado

    Diseño e implementación de un robot móvil tipo oruga para exploración en terrenos irregulares.

    Get PDF
    El objetivo fue diseñar e implementar un robot móvil tipo oruga para exploración en terrenos irregulares, utilizando varios sistemas de control que permiten una mayor estabilidad y maniobrabilidad del robot, que posee un conjunto de sistemas tales como: sistema de tracción tipo oruga, sistemas de comunicación con tecnología de punta para obtener una mayor autonomía en su funcionamiento, a través de control remoto mediante radio frecuencia para una óptima teleoperación sin interferencias externa e interna. Está dotado con una base de control con monitores para la operación en tiempo real. La manipulación de objetos se realiza mediante un brazo robótico de cuatro grados de libertad (GDL) obteniendo libertad de movimientos, logrando una mayor versatilidad de trabajo al momento de manipular objetos. Los sensores empotrados en la placa de control del robot permiten visualizar parámetros de rendimiento del prototipo como son velocidad y temperatura. El prototipo demostró en las pruebas de tracción y comunicación una eficiencia del 98% de aceptabilidad. Los robots de tracción tipo oruga presentan una mayor eficiencia a diferencia de los sistemas de tracción por llantas, en base a que el sistema de orugas permite una mayor adaptabilidad en terrenos irregulares logrando tener una mayor estabilidad en la plataforma. Es recomendable dimensionar el sistema de electrónica de potencia (IFI VEX VICTOR 885), en base a la potencia de los motores AmpFlow, para obtener un mayor grado de control y maniobrabilidad del cambio de giro de los motores.The proposal was to design and implement a mobile robot type caterpillar for exploration on rough ground, by using several control systems which alow greater stability and handling of the robot. It has a set of systems such as: a traction system type caterpillar, a communication system with updated technology to get a big autonomy in its operation, through a remote control via radio frequency for a best teleoperation without external and internal interferences. The robot is equipped with a base control with monitors for the operation in real time. The object manipulation is performed by a robotic arm with four degrees of freedom (DOF), obtaining the freedom of movement and achieving a greater versatility work to manipulate objects. Sensors built into the robot control plate allow viewing prototype performance parameters such as: speed and temperature. The prototype demostrated an efficiency of 98% acceptability in traction and communication teste. Robots of traction type Caterpillar have a greater efficiency unlike wheels’ traction system, because of Caterpillar systems allow a greater adaptability on irregular ground achieving a greater stability on the platform. It is recommended to size the power electronics system (IFI VEX VICTOR 885) based on the engine powers Ampflow to obtain a greater degree of control and handling change of motor rotation

    System Identification and Control of Valkyrie through SVA--Based Regressor Computation

    Get PDF
    This paper demonstrates simultaneous identification and control of the humanoid robot, Valkyrie, utilizing Spatial Vector Algebra (SVA). In particular, the inertia, Coriolis-centrifugal and gravity terms for the dynamics of a robot are computed using spatial inertia tensors. With the assumption that the link lengths or the distance between the joint axes are accurately known, it will be shown that inertial properties of a robot can be directly evaluated from the inertia tensor. An algorithm is proposed to evaluate the regressor, yielding a run time of O(n^2). The efficiency of this algorithm yields a means for online system identification via the SVA--based regressor and, as a byproduct, a method for accurate model-based control. Experimental validation of the proposed method is provided through its implementation in three case studies: offline identification of a double pendulum and a 4-DOF robotic leg, and online identification and control of a 4-DOF robotic arm

    Projeto de um braço robótico para fins didáticos

    Get PDF
    TCC(graduação) - Universidade Federal de Santa Catarina. Centro Tecnológico. Engenharia de Controle e Automação.O desenvolvimento do presente trabalho está associado ao projeto de extensão “ações para o museu de ciência e tecnologia ufsc/jville”e foi realizado no grupo Multidesign do Laboratório Pronto3D/CCE/UFSC – Laboratório de Prototipagem e Novas Tecnologias orientadas ao 3D – cujo espaço é destinado ao ensino, pesquisa e extensão na área da materialização da forma por meio de equipamentos automatizados, tais como impressão 3D, corte a laser e fresadoras CNC. Os principais objetivos do trabalho foram projetar e implementar um robô manipulador para fins didáticos, como uma forma de popularizar a tecnologia no espaço de ciência da UFSC/Joinville, buscando alcançar o público do ensino médio, técnico e superior. O projeto seguiu a metodologia de desenvolvimento de produto de Bonsiepe adaptada para o trabalho, a qual inclui: pesquisa e análise de produtos similares (análise sincrônica) presentes no mercado e de projetos no estado da arte; levantamento de requisitos estruturais, de hardware e software; desenvolvimento de uma interface de programação e de um firmware interpretador. Como resultados, obteve-se um braço robótico de baixa complexidade com quatro graus de liberdade do tipo antropomórfico materializado via impressora 3D, além de possuir funções similares aos braços utilizados em indústrias, como a função teach e um tentativa de implementação de movimentos retilíneos, desenvolvida a partir de conceitos de cinemática de robôs manipuladores. A interface de programação possui um campo para comando direto do robô através de um terminal e outro, para a programação de códigos mais extensos, os quais são gravados no cartão SD e executados pelo Firmware.The present work development is associated to an extension Project called “Actions for the science and technology museum of Ufsc/jville” and was conducted at the Multidesign group of Pronto3D Laboratory – Prototyping and New Technologies Oriented to 3D Laboratory – a space intended for education, research and extension in the form materialization area through automated equipment such as 3D printing, laser cutting and CNC milling machines. The main objectives of this Project were to design and implement a robotic arm for teaching purposes, as a way to popularize the technology in the Science Space at Ufsc/Joinville, aiming to reach the high school, technical and college students. The Project followed the Bonsiepe product development methodology, adapted to this work, which includes: Market research of similar products (Synchronic Analysis); analysis of such products to get structural, hardware and software requirements; development of a programming interface and a interpreter firmware. As a result, we obtained a low complexity robotic arm with four degrees of freedom of anthropomorphic type manufactured by a 3D printer, besides having similar functions to the arms used in industries such as teaching functions and an attempt to have rectilinear motion implementation, developed from robotic kinematics concepts. The programming interface has a field to directly command the robot through a terminal and another to program extensive codes. These are recorded on the SD card and run in the firmware
    corecore