5 research outputs found

    Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ смСшанной Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠΎΠΌΠ°Π½Π΄Ρ‹ Π² ΠΊΠΎΠ»Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ робототСхничСской систСмС

    Get PDF
    The study describes a collaborative robot (cobot) as one of the types of intelligent robotics and its distinctive features compared to other types of robots. The paper presents a collaborative robotic system as a single complex system in which actors of different types – cobots and human workers – perform collaborative actions to achieve a common goal. Elements of a collaborative robotic system, as well as processes and entities that directly influence it are represented. The key principles of Human-Robot Collaboration are described. A collaborative robotic system is analyzed both as a multi-agent system and as a mixed team, whose members are heterogeneous actors. The relevance of the work lies in a weak level of research on issues of formation of mixed teams of people and cobots and distribution of tasks in such teams, taking into account features of these two types of participants and requirements of their safe collaboration. This work focused on a formation of mixed teams of elements of a single complex human-cobot system, the distribution of tasks among the members of such teams, taking into account the need to minimize costs for its participants and the heterogeneity of the team. As part of the study, the problem of forming a mixed heterogeneous team of people and cobots, and distribution of work among its members, as well as the corresponding mathematical description are presented. Specific cases of the problem, including different cost functions of different types of participants, a limited activity of the team’s members, the dependence of the cost function of the participants of one type on the number of participants of another type, as well as an arbitrary number of works assigned to the team’s members are considered.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСны описаниС ΠΊΠΎΠ»Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ€ΠΎΠ±ΠΎΡ‚Π° (ΠΊΠΎΠ±ΠΎΡ‚Π°) ΠΊΠ°ΠΊ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· ΠΏΠΎΠ΄Π²ΠΈΠ΄ΠΎΠ² ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ€ΠΎΠ±ΠΎΡ‚ΠΎΡ‚Π΅Ρ…Π½ΠΈΠΊΠΈ ΠΈ Π΅Π³ΠΎ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ особСнности ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ Π²ΠΈΠ΄Π°ΠΌΠΈ Ρ€ΠΎΠ±ΠΎΡ‚ΠΎΠ². Π”Π°Π½ΠΎ описаниС ΠΊΠΎΠ»Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ робототСхничСской систСмы ΠΊΠ°ΠΊ Π΅Π΄ΠΈΠ½ΠΎΠΉ комплСксной систСмы, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΡΡƒΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ (Π°ΠΊΡ‚ΠΎΡ€Ρ‹) Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° – ΠΊΠΎΠ±ΠΎΡ‚Ρ‹ ΠΈ люди – Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚ дСйствия Π² Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΊΠΎΠ»Π»Π°Π±ΠΎΡ€Π°Ρ†ΠΈΠΈ для достиТСния Π΅Π΄ΠΈΠ½ΠΎΠΉ Ρ†Π΅Π»ΠΈ. Для ΠΊΠΎΠ»Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ робототСхничСской систСмы ΠΊΠ°ΠΊ Π΅Π΄ΠΈΠ½ΠΎΠΉ комплСксной систСмы прСдставлСны Π΅Π΅ составныС части, Π° Ρ‚Π°ΠΊΠΆΠ΅ процСссы ΠΈ сущности, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ нСпосрСдствСнноС влияниС Π½Π° эту систСму. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ ΠΊΠΎΠ»Π»Π°Π±ΠΎΡ€Π°Ρ†ΠΈΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈ Ρ€ΠΎΠ±ΠΎΡ‚Π° (Human-Robot Collaboration). ΠšΠΎΠ»Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΈΠ²Π½Π°Ρ робототСхничСская систСма ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π°, с ΠΎΠ΄Π½ΠΎΠΉ стороны, ΠΊΠ°ΠΊ многоагСнтная систСма, ΠΈ, с Π΄Ρ€ΡƒΠ³ΠΎΠΉ стороны, ΠΊΠ°ΠΊ смСшанная нСоднородная ΠΊΠΎΠΌΠ°Π½Π΄Π°, Ρ‡Π»Π΅Π½Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½Ρ‹ΠΌΠΈ Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ. ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² нСдостаточном ΡƒΡ€ΠΎΠ²Π½Π΅ исслСдованности вопроса формирования ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹Ρ… Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½Ρ‹Ρ… ΠΊΠΎΠΌΠ°Π½Π΄ ΠΈΠ· людСй ΠΈ ΠΊΠΎΠ±ΠΎΡ‚ΠΎΠ² ΠΈ распрСдСлСния Π·Π°Π΄Π°Ρ‡ Π² Π½ΠΈΡ… с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ спСцифики этих Π΄Π²ΡƒΡ… Ρ‚ΠΈΠΏΠΎΠ² участников ΠΈ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ ΠΈΡ… бСзопасного взаимодСйствия. ЦСлью Ρ€Π°Π±ΠΎΡ‚Ρ‹ являСтся исслСдованиС вопросов формирования ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹Ρ… ΠΊΠΎΠΌΠ°Π½Π΄ ΠΈΠ· числа элСмСнтов Π΅Π΄ΠΈΠ½ΠΎΠΉ комплСксной систСмы Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ-ΠΊΠΎΠ±ΠΎΡ‚, распрСдСлСния Π·Π°Π΄Π°Ρ‡ срСди участников ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… ΠΊΠΎΠΌΠ°Π½Π΄ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ нСобходимости ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Π·Π°Ρ‚Ρ€Π°Ρ‚ для Π΅Π΅ участников ΠΈ гСтСрогСнности Π΅Π΅ состава. Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… исслСдования прСдставлСна постановка Π·Π°Π΄Π°Ρ‡ΠΈ формирования смСшанной Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠΎΠΌΠ°Π½Π΄Ρ‹ ΠΈΠ· числа людСй ΠΈ ΠΊΠΎΠ±ΠΎΡ‚ΠΎΠ² ΠΈ распрСдСлСния Ρ€Π°Π±ΠΎΡ‚ ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‡Π»Π΅Π½Π°ΠΌΠΈ ΠΊΠΎΠΌΠ°Π½Π΄Ρ‹, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π΅Π΅ матСматичСскоС описаниС. Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ частныС случаи Π·Π°Π΄Π°Ρ‡ΠΈ, Π² Ρ‚ΠΎΠΌ числС ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… функциях Π·Π°Ρ‚Ρ€Π°Ρ‚ Ρƒ Ρ€Π°Π·Π½Ρ‹Ρ… Π²ΠΈΠ΄ΠΎΠ² участников, Π² случаС ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠΉ активности Ρ‡Π»Π΅Π½ΠΎΠ² ΠΊΠΎΠΌΠ°Π½Π΄Ρ‹, ΠΏΡ€ΠΈ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ зависимости Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π·Π°Ρ‚Ρ€Π°Ρ‚ участников ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° ΠΎΡ‚ числа Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π½Ρ‹Ρ… Π½Π° этот Π²ΠΈΠ΄ Ρ€Π°Π±ΠΎΡ‚ участников Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² случаС наличия ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ количСства Π²ΠΈΠ΄ΠΎΠ² Ρ€Π°Π±ΠΎΡ‚, Π½Π°Π·Π½Π°Ρ‡Π°Π΅ΠΌΡ‹Ρ… участникам смСшанной ΠΊΠΎΠΌΠ°Π½Π΄Ρ‹

    Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ смСшанной Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠΎΠΌΠ°Π½Π΄Ρ‹ Π² ΠΊΠΎΠ»Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ робототСхничСской систСмС

    Get PDF
    Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСны описаниС ΠΊΠΎΠ»Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ€ΠΎΠ±ΠΎΡ‚Π° (ΠΊΠΎΠ±ΠΎΡ‚Π°) ΠΊΠ°ΠΊ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· ΠΏΠΎΠ΄Π²ΠΈΠ΄ΠΎΠ² ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ€ΠΎΠ±ΠΎΡ‚ΠΎΡ‚Π΅Ρ…Π½ΠΈΠΊΠΈ ΠΈ Π΅Π³ΠΎ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ особСнности ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ Π²ΠΈΠ΄Π°ΠΌΠΈ Ρ€ΠΎΠ±ΠΎΡ‚ΠΎΠ². Π”Π°Π½ΠΎ описаниС ΠΊΠΎΠ»Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ робототСхничСской систСмы ΠΊΠ°ΠΊ Π΅Π΄ΠΈΠ½ΠΎΠΉ комплСксной систСмы, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΡΡƒΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ (Π°ΠΊΡ‚ΠΎΡ€Ρ‹) Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° – ΠΊΠΎΠ±ΠΎΡ‚Ρ‹ ΠΈ люди – Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚ дСйствия Π² Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΊΠΎΠ»Π»Π°Π±ΠΎΡ€Π°Ρ†ΠΈΠΈ для достиТСния Π΅Π΄ΠΈΠ½ΠΎΠΉ Ρ†Π΅Π»ΠΈ. Для ΠΊΠΎΠ»Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ робототСхничСской систСмы ΠΊΠ°ΠΊ Π΅Π΄ΠΈΠ½ΠΎΠΉ комплСксной систСмы прСдставлСны Π΅Π΅ составныС части, Π° Ρ‚Π°ΠΊΠΆΠ΅ процСссы ΠΈ сущности, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ нСпосрСдствСнноС влияниС Π½Π° эту систСму. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ ΠΊΠΎΠ»Π»Π°Π±ΠΎΡ€Π°Ρ†ΠΈΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈ Ρ€ΠΎΠ±ΠΎΡ‚Π° (Human-Robot Collaboration). ΠšΠΎΠ»Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΈΠ²Π½Π°Ρ робототСхничСская систСма ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π°, с ΠΎΠ΄Π½ΠΎΠΉ стороны, ΠΊΠ°ΠΊ многоагСнтная систСма, ΠΈ, с Π΄Ρ€ΡƒΠ³ΠΎΠΉ стороны, ΠΊΠ°ΠΊ смСшанная нСоднородная ΠΊΠΎΠΌΠ°Π½Π΄Π°, Ρ‡Π»Π΅Π½Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½Ρ‹ΠΌΠΈ Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ. ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² нСдостаточном ΡƒΡ€ΠΎΠ²Π½Π΅ исслСдованности вопроса формирования ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹Ρ… Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½Ρ‹Ρ… ΠΊΠΎΠΌΠ°Π½Π΄ ΠΈΠ· людСй ΠΈ ΠΊΠΎΠ±ΠΎΡ‚ΠΎΠ² ΠΈ распрСдСлСния Π·Π°Π΄Π°Ρ‡ Π² Π½ΠΈΡ… с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ спСцифики этих Π΄Π²ΡƒΡ… Ρ‚ΠΈΠΏΠΎΠ² участников ΠΈ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ ΠΈΡ… бСзопасного взаимодСйствия. ЦСлью Ρ€Π°Π±ΠΎΡ‚Ρ‹ являСтся исслСдованиС вопросов формирования ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹Ρ… ΠΊΠΎΠΌΠ°Π½Π΄ ΠΈΠ· числа элСмСнтов Π΅Π΄ΠΈΠ½ΠΎΠΉ комплСксной систСмы Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ-ΠΊΠΎΠ±ΠΎΡ‚, распрСдСлСния Π·Π°Π΄Π°Ρ‡ срСди участников ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… ΠΊΠΎΠΌΠ°Π½Π΄ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ нСобходимости ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Π·Π°Ρ‚Ρ€Π°Ρ‚ для Π΅Π΅ участников ΠΈ гСтСрогСнности Π΅Π΅ состава. Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… исслСдования прСдставлСна постановка Π·Π°Π΄Π°Ρ‡ΠΈ формирования смСшанной Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠΎΠΌΠ°Π½Π΄Ρ‹ ΠΈΠ· числа людСй ΠΈ ΠΊΠΎΠ±ΠΎΡ‚ΠΎΠ² ΠΈ распрСдСлСния Ρ€Π°Π±ΠΎΡ‚ ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‡Π»Π΅Π½Π°ΠΌΠΈ ΠΊΠΎΠΌΠ°Π½Π΄Ρ‹, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π΅Π΅ матСматичСскоС описаниС. Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ частныС случаи Π·Π°Π΄Π°Ρ‡ΠΈ, Π² Ρ‚ΠΎΠΌ числС ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… функциях Π·Π°Ρ‚Ρ€Π°Ρ‚ Ρƒ Ρ€Π°Π·Π½Ρ‹Ρ… Π²ΠΈΠ΄ΠΎΠ² участников, Π² случаС ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠΉ активности Ρ‡Π»Π΅Π½ΠΎΠ² ΠΊΠΎΠΌΠ°Π½Π΄Ρ‹, ΠΏΡ€ΠΈ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ зависимости Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π·Π°Ρ‚Ρ€Π°Ρ‚ участников ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° ΠΎΡ‚ числа Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π½Ρ‹Ρ… Π½Π° этот Π²ΠΈΠ΄ Ρ€Π°Π±ΠΎΡ‚ участников Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² случаС наличия ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ количСства Π²ΠΈΠ΄ΠΎΠ² Ρ€Π°Π±ΠΎΡ‚, Π½Π°Π·Π½Π°Ρ‡Π°Π΅ΠΌΡ‹Ρ… участникам смСшанной ΠΊΠΎΠΌΠ°Π½Π΄Ρ‹

    Optimised task allocation using dynamic production data in human-robot teams

    Get PDF
    The demand of both industrial and consumer customers for increasingly higher degrees of customisation in products will see greater amounts of high mix production in the future of manufacturing. Despite this, automation must be implemented to improve the efficiency and output of manufacturing processes. However, traditional automation methods are often unsuitable due to long lead times for setup and little flexibility to adapt them to new tasks. Human-Robot (HR) teams provide a potential way to implement easily reconfigurable automation into future factories by utilising the best characteristics of human workers such as adaptability and intelligence with those of robot workers such as strength and repeatability. Robust task planning is required to implement such HR teams. However, current approaches allow adaptation to change in performance or composition of HR teams or optimisation of tasks as a whole but not necessarily both. In this research, a novel generalised task planning framework is proposed that uses a semi-online task planning approach, utilising online production data to determine worker capabilities then planning a manufacturing task for the HR team offline between task iterations. A system architecture is defined for such a framework but the focus of this research is the development and testing of the core technologies required for the framework to function to assess its utility. These include dynamic cost functions utilising online production data to accurately quantify the capabilities of human and robot workers across a work shift. These use continuous variables to quantify gradual changes in worker performance across a work shift; and discrete variables to detect instantaneous changes in capabilities that occur during a single task iteration. Additionally, a dynamic task planner is developed that implements dual layers of the Discrete Gravitational Search Algorithm to search for an optimum set of task assignments and task plan for a HR team given worker costs. Finally, mechanisms are proposed to intelligently implement task replanning across a work shift to optimise a HR team’s performance whilst ensuring it does not occur too frequently or unnecessarily. These core technologies were tested individually in example cases then combined together to test the ability of the task planning framework to optimise the performance of a HR team in two example manufacturing tasks across simulated work shifts. This showed that the dynamic cost functions represent an effective way to quantify and detect any changes in a worker’s capabilities across a work shift. Additionally, task replanning was shown to improve the performance of the HR team in some scenarios, such as the human worker being over fatigued, by reassigning subtasks to the robot worker as their performance declines. Importantly, the proposed task planning framework represents a generalised methodology that can easily be redeployed to different manufacturing tasks or compositions of HR teams

    Optimised task allocation using dynamic production data in human-robot teams

    Get PDF
    The demand of both industrial and consumer customers for increasingly higher degrees of customisation in products will see greater amounts of high mix production in the future of manufacturing. Despite this, automation must be implemented to improve the efficiency and output of manufacturing processes. However, traditional automation methods are often unsuitable due to long lead times for setup and little flexibility to adapt them to new tasks. Human-Robot (HR) teams provide a potential way to implement easily reconfigurable automation into future factories by utilising the best characteristics of human workers such as adaptability and intelligence with those of robot workers such as strength and repeatability. Robust task planning is required to implement such HR teams. However, current approaches allow adaptation to change in performance or composition of HR teams or optimisation of tasks as a whole but not necessarily both. In this research, a novel generalised task planning framework is proposed that uses a semi-online task planning approach, utilising online production data to determine worker capabilities then planning a manufacturing task for the HR team offline between task iterations. A system architecture is defined for such a framework but the focus of this research is the development and testing of the core technologies required for the framework to function to assess its utility. These include dynamic cost functions utilising online production data to accurately quantify the capabilities of human and robot workers across a work shift. These use continuous variables to quantify gradual changes in worker performance across a work shift; and discrete variables to detect instantaneous changes in capabilities that occur during a single task iteration. Additionally, a dynamic task planner is developed that implements dual layers of the Discrete Gravitational Search Algorithm to search for an optimum set of task assignments and task plan for a HR team given worker costs. Finally, mechanisms are proposed to intelligently implement task replanning across a work shift to optimise a HR team’s performance whilst ensuring it does not occur too frequently or unnecessarily. These core technologies were tested individually in example cases then combined together to test the ability of the task planning framework to optimise the performance of a HR team in two example manufacturing tasks across simulated work shifts. This showed that the dynamic cost functions represent an effective way to quantify and detect any changes in a worker’s capabilities across a work shift. Additionally, task replanning was shown to improve the performance of the HR team in some scenarios, such as the human worker being over fatigued, by reassigning subtasks to the robot worker as their performance declines. Importantly, the proposed task planning framework represents a generalised methodology that can easily be redeployed to different manufacturing tasks or compositions of HR teams
    corecore