14 research outputs found

    Multi-objective path planning using spline representation

    Get PDF
    Off-line point to point navigation to calculate feasible paths and optimize them for different objectives is computationally difficult. Path planning problem is truly a multi-objective problem, as reaching the goal point in short time is desirable for an autonomous vehicle while ability to generate safe paths in crucial for vehicle viability. Path representation methodologies using piecewise polynomial and B-splines have been used to ensure smooth paths. Multi-objective path planning studies using NSGA-II algorithm to optimize path length and safety measures computed using one of the three metrics (i) an artificial potential field, (ii) extent of obstacle hindrance and (iii) a measure of visibility are implemented. Multiple tradeoff solutions are obtained on complex scenarios. The results indicate the usefulness of treating path planning as a multiobjective problem

    Disordered and Multiple Destinations Path Planning Methods for Mobile Robot in Dynamic Environment

    Get PDF

    The comparison of steepest ascent hill climbing and a-star for classic game

    Get PDF
    Tic-tac-toe is a classic game that remains popular today. This game requires two players. When applied to software, of course this game requires an AI-integrated bot as an opponent to play. Several algorithms can be used as artificial intelligence in tic-tac-toe games such as Steepest Ascent Hill Climbing and A-star. The purpose of this research is to find a more effective and efficient algorithm for this game. The components used to compare the two algorithms are the elapsed time and also the performance of the two algorithms. SAHC recorded a shorter elapsed time with 0.0448 ms compared to the A-star which recorded an average of 1.192 ms. However, based on other tests case, A-star performs better than SAHC

    Comparison of 3D Versus 4D Path Planning for Unmanned Aerial Vehicles

    Get PDF
    This research compares 3D versus 4D (three spatial dimensions and the time dimension) multi-objective and multi-criteria path-planning for unmanned aerial vehicles in complex dynamic environments. In this study, we empirically analyse the performances of 3D and 4D path planning approaches. Using the empirical data, we show that the 4D approach is superior over the 3D approach especially in complex dynamic environments. The research model consisting of flight objectives and criteria is developed based on interviews with an experienced military UAV pilot and mission planner to establish realism and relevancy in  unmanned aerial vehicle flight planning. Furthermore, this study incorporates one of the most comprehensive set of criteria identified during our literature search. The simulation results clearly show that the 4D path planning approach is able to provide solutions in complex dynamic environments in which the 3D approach could not find a solution

    Disordered and Multiple Destinations Path Planning Methods for Mobile Robot in Dynamic Environment

    Get PDF
    In the smart home environment, aiming at the disordered and multiple destinations path planning, the sequencing rule is proposed to determine the order of destinations. Within each branching process, the initial feasible path set is generated according to the law of attractive destination. A sinusoidal adaptive genetic algorithm is adopted. It can calculate the crossover probability and mutation probability adaptively changing with environment at any time. According to the cultural-genetic algorithm, it introduces the concept of reducing turns by parallelogram and reducing length by triangle in the belief space, which can improve the quality of population. And the fallback strategy can help to jump out of the "U" trap effectively. The algorithm analyses the virtual collision in dynamic environment with obstacles. According to the different collision types, different strategies are executed to avoid obstacles. The experimental results show that cultural-genetic algorithm can overcome the problems of premature and convergence of original algorithm effectively. It can avoid getting into the local optimum. And it is more effective for mobile robot path planning. Even in complex environment with static and dynamic obstacles, it can avoid collision safely and plan an optimal path rapidly at the same time

    Risk-aware Path and Motion Planning for a Tethered Aerial Visual Assistant in Unstructured or Confined Environments

    Get PDF
    This research aims at developing path and motion planning algorithms for a tethered Unmanned Aerial Vehicle (UAV) to visually assist a teleoperated primary robot in unstructured or confined environments. The emerging state of the practice for nuclear operations, bomb squad, disaster robots, and other domains with novel tasks or highly occluded environments is to use two robots, a primary and a secondary that acts as a visual assistant to overcome the perceptual limitations of the sensors by providing an external viewpoint. However, the benefits of using an assistant have been limited for at least three reasons: (1) users tend to choose suboptimal viewpoints, (2) only ground robot assistants are considered, ignoring the rapid evolution of small unmanned aerial systems for indoor flying, (3) introducing a whole crew for the second teleoperated robot is not cost effective, may introduce further teamwork demands, and therefore could lead to miscommunication. This dissertation proposes to use an autonomous tethered aerial visual assistant to replace the secondary robot and its operating crew. Along with a pre-established theory of viewpoint quality based on affordances, this dissertation aims at defining and representing robot motion risk in unstructured or confined environments. Based on those theories, a novel high level path planning algorithm is developed to enable risk-aware planning, which balances the tradeoff between viewpoint quality and motion risk in order to provide safe and trustworthy visual assistance flight. The planned flight trajectory is then realized on a tethered UAV platform. The perception and actuation are tailored to fit the tethered agent in the form of a low level motion suite, including a novel tether-based localization model with negligible computational overhead, motion primitives for the tethered airframe based on position and velocity control, and two differentComment: Ph.D Dissertatio

    Risk-aware Path and Motion Planning for a Tethered Aerial Visual Assistant in Unstructured or Confined Environments

    Get PDF
    This research aims at developing path and motion planning algorithms for a tethered Unmanned Aerial Vehicle (UAV) to visually assist a teleoperated primary robot in unstructured or confined environments. The emerging state of the practice for nuclear operations, bomb squad, disaster robots, and other domains with novel tasks or highly occluded environments is to use two robots, a primary and a secondary that acts as a visual assistant to overcome the perceptual limitations of the sensors by providing an external viewpoint. However, the benefits of using an assistant have been limited for at least three reasons: (1) users tend to choose suboptimal viewpoints, (2) only ground robot assistants are considered, ignoring the rapid evolution of small unmanned aerial systems for indoor flying, (3) introducing a whole crew for the second teleoperated robot is not cost effective, may introduce further teamwork demands, and therefore could lead to miscommunication. This dissertation proposes to use an autonomous tethered aerial visual assistant to replace the secondary robot and its operating crew. Along with a pre-established theory of viewpoint quality based on affordances, this dissertation aims at defining and representing robot motion risk in unstructured or confined environments. Based on those theories, a novel high level path planning algorithm is developed to enable risk-aware planning, which balances the tradeoff between viewpoint quality and motion risk in order to provide safe and trustworthy visual assistance flight. The planned flight trajectory is then realized on a tethered UAV platform. The perception and actuation are tailored to fit the tethered agent in the form of a low level motion suite, including a novel tether-based localization model with negligible computational overhead, motion primitives for the tethered airframe based on position and velocity control, and two different approaches to negotiate tether with complex obstacle-occupied environments. The proposed research provides a formal reasoning of motion risk in unstructured or confined spaces, contributes to the field of risk-aware planning with a versatile planner, and opens up a new regime of indoor UAV navigation: tethered indoor flight to ensure battery duration and failsafe in case of vehicle malfunction. It is expected to increase teleoperation productivity and reduce costly errors in scenarios such as safe decommissioning and nuclear operations in the Fukushima Daiichi facility
    corecore