2,417 research outputs found

    Probabilistic Hybrid Action Models for Predicting Concurrent Percept-driven Robot Behavior

    Full text link
    This article develops Probabilistic Hybrid Action Models (PHAMs), a realistic causal model for predicting the behavior generated by modern percept-driven robot plans. PHAMs represent aspects of robot behavior that cannot be represented by most action models used in AI planning: the temporal structure of continuous control processes, their non-deterministic effects, several modes of their interferences, and the achievement of triggering conditions in closed-loop robot plans. The main contributions of this article are: (1) PHAMs, a model of concurrent percept-driven behavior, its formalization, and proofs that the model generates probably, qualitatively accurate predictions; and (2) a resource-efficient inference method for PHAMs based on sampling projections from probabilistic action models and state descriptions. We show how PHAMs can be applied to planning the course of action of an autonomous robot office courier based on analytical and experimental results

    Integrating deliberative planning in a robot architecture

    Get PDF
    The role of planning and reactive control in an architecture for autonomous agents is discussed. The postulated architecture seperates the general robot intelligence problem into three interacting pieces: (1) robot reactive skills, i.e., grasping, object tracking, etc.; (2) a sequencing capability to differentially ativate the reactive skills; and (3) a delibrative planning capability to reason in depth about goals, preconditions, resources, and timing constraints. Within the sequencing module, caching techniques are used for handling routine activities. The planning system then builds on these cached solutions to routine tasks to build larger grain sized primitives. This eliminates large numbers of essentially linear planning problems. The architecture will be used in the future to incorporate in robots cognitive capabilites normally associated with intelligent behavior

    Synthesizing Manipulation Sequences for Under-Specified Tasks using Unrolled Markov Random Fields

    Get PDF
    Abstract — Many tasks in human environments require performing a sequence of navigation and manipulation steps involving objects. In unstructured human environments, the location and configuration of the objects involved often change in unpredictable ways. This requires a high-level planning strategy that is robust and flexible in an uncertain environment. We propose a novel dynamic planning strategy, which can be trained from a set of example sequences. High level tasks are expressed as a sequence of primitive actions or controllers (with appropriate parameters). Our score function, based on Markov Random Field (MRF), captures the relations between environment, controllers, and their arguments. By expressing the environment using sets of attributes, the approach generalizes well to unseen scenarios. We train the parameters of our MRF using a maximum margin learning method. We provide a detailed empirical validation of our overall framework demonstrating successful plan strategies for a variety of tasks. 1 I

    An Expressive Language and Efficient Execution System for Software Agents

    Full text link
    Software agents can be used to automate many of the tedious, time-consuming information processing tasks that humans currently have to complete manually. However, to do so, agent plans must be capable of representing the myriad of actions and control flows required to perform those tasks. In addition, since these tasks can require integrating multiple sources of remote information ? typically, a slow, I/O-bound process ? it is desirable to make execution as efficient as possible. To address both of these needs, we present a flexible software agent plan language and a highly parallel execution system that enable the efficient execution of expressive agent plans. The plan language allows complex tasks to be more easily expressed by providing a variety of operators for flexibly processing the data as well as supporting subplans (for modularity) and recursion (for indeterminate looping). The executor is based on a streaming dataflow model of execution to maximize the amount of operator and data parallelism possible at runtime. We have implemented both the language and executor in a system called THESEUS. Our results from testing THESEUS show that streaming dataflow execution can yield significant speedups over both traditional serial (von Neumann) as well as non-streaming dataflow-style execution that existing software and robot agent execution systems currently support. In addition, we show how plans written in the language we present can represent certain types of subtasks that cannot be accomplished using the languages supported by network query engines. Finally, we demonstrate that the increased expressivity of our plan language does not hamper performance; specifically, we show how data can be integrated from multiple remote sources just as efficiently using our architecture as is possible with a state-of-the-art streaming-dataflow network query engine

    Dynamic Behavior Sequencing in a Hybrid Robot Architecture

    Get PDF
    Hybrid robot control architectures separate plans, coordination, and actions into separate processing layers to provide deliberative and reactive functionality. This approach promotes more complex systems that perform well in goal-oriented and dynamic environments. In various architectures, the connections and contents of the functional layers are tightly coupled so system updates and changes require major changes throughout the system. This work proposes an abstract behavior representation, a dynamic behavior hierarchy generation algorithm, and an architecture design to reduce this major change incorporation process. The behavior representation provides an abstract interface for loose coupling of behavior planning and execution components. The hierarchy generation algorithm utilizes the interface allowing dynamic sequencing of behaviors based on behavior descriptions and system objectives without knowledge of the low-level implementation or the high-level goals the behaviors achieve. This is accomplished within the proposed architecture design, which is based on the Three Layer Architecture (TLA) paradigm. The design provides functional decomposition of system components with respect to levels of abstraction and temporal complexity. The layers and components within this architecture are independent of surrounding components and are coupled only by the linking mechanisms that the individual components and layers allow. The experiments in this thesis demonstrate that the: 1) behavior representation provides an interface for describing a behavior’s functionality without restricting or dictating its actual implementation; 2) hierarchy generation algorithm utilizes the representation interface for accomplishing high-level tasks through dynamic behavior sequencing; 3) representation, control logic, and architecture design create a loose coupling, but defined link, between the planning and behavior execution layer of the hybrid architecture, which creates a system-of-systems implementation that requires minimal reprogramming for system modifications

    Model-driven engineering approach to design and implementation of robot control system

    Full text link
    In this paper we apply a model-driven engineering approach to designing domain-specific solutions for robot control system development. We present a case study of the complete process, including identification of the domain meta-model, graphical notation definition and source code generation for subsumption architecture -- a well-known example of robot control architecture. Our goal is to show that both the definition of the robot-control architecture and its supporting tools fits well into the typical workflow of model-driven engineering development.Comment: Presented at DSLRob 2011 (arXiv:cs/1212.3308
    • …
    corecore