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Abstract

Hybrid robot control architectures separate plans, coordination, and actions

into separate processing layers to provide deliberative and reactive functionality. This

approach promotes more complex systems that perform well in goal-oriented and dy-

namic environments. In various architectures, the connections and contents of the

functional layers are tightly coupled so system updates and changes require major

changes throughout the system. This work proposes an abstract behavior representa-

tion, a dynamic behavior hierarchy generation algorithm, and an architecture design

to reduce this major change incorporation process. The behavior representation pro-

vides an abstract interface for loose coupling of behavior planning and execution com-

ponents. The hierarchy generation algorithm utilizes the interface allowing dynamic

sequencing of behaviors based on behavior descriptions and system objectives with-

out knowledge of the low-level implementation or the high-level goals the behaviors

achieve. This is accomplished within the proposed architecture design, which is based

on the Three Layer Architecture (TLA) paradigm. The design provides functional

decomposition of system components with respect to levels of abstraction and tempo-

ral complexity. The layers and components within this architecture are independent

of surrounding components and are coupled only by the linking mechanisms that the

individual components and layers allow. The experiments in this thesis demonstrate

that the: 1) behavior representation provides an interface for describing a behavior’s

functionality without restricting or dictating its actual implementation; 2) hierarchy

generation algorithm utilizes the representation interface for accomplishing high-level

tasks through dynamic behavior sequencing; 3) representation, control logic, and ar-

chitecture design create a loose coupling, but defined link, between the planning and

behavior execution layer of the hybrid architecture, which creates a system-of-systems

implementation that requires minimal reprogramming for system modifications.
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Dynamic Behavior Sequencing

in a

Hybrid Robot Architecture

I. Introduction

Modern day mobile robots are becoming more advanced and capable of per-

forming very complex tasks. These tasks range from the mundane to very

dangerous and require that the robot react and make intelligent decisions about

the environment and the intended task. To complete these tasks, the system re-

quires reducing the human-in-the-loop control and a move towards a more reactive

and goal-driven control. Hybrid robot control architectures separate plans, coordina-

tion, and actions into separate processing layers to provide deliberative and reactive

functionalities. This approach promotes more complex systems that perform well in

goal-oriented and dynamic environments.

In various hybrid architectures, the connections and contents of the functional

layers are typically hardcoded, so changes within one layer require modifications in

other layers. As systems grow and requirements change, the coupling of layers must

not require major changes throughout the system to incorporate the change. This

thesis proposes a layered architecture design using robust connections at each layer.

By creating robust connections at each layer, the coupling between components and

layers is less dependent, the software becomes more maintainable, and updates within

layers cause minimal updating of others. The design of this proposed architecture is

identified as the first of four Research Goals.

Research Goal 1: Design an architecture that has distinct transitions between com-

ponents (or layers) and can be implemented as a robust, modular software package

that runs on different system configurations without major recoding.

1



The majority of hybrid architectures link planning and execution layers through

the use of task-level control languages [48]. These languages require that each behav-

ior, or underlying functional characteristic, be expressed explicitly by the syntax of the

language. This limits the implementation to the constructs of the language. This the-

sis also proposes an abstract representation that provides an interface for generically

describing a behavior for sequencing (Research Goal 2), with the actual implementa-

tion left to the creativity of the behavior architect. Since the planning and execution

of most hybrid architectures is controlled through the task-level control languages,

the planning and execution layers are tightly coupled by the language. To loosen the

coupling of the planning and execution layers, this thesis presents a dynamic behav-

ior hierarchy generation algorithm that utilizes the behavior representation interface

for translating high-level tasks through dynamically sequenced behaviors (Research

Goal 3). By using the representation in a uniform manner, the planning and execution

layers are loosely coupled by an abstract interface rather than an entire language. The

behavior representation and hierarchy generation algorithm’s implementation within

the proposed architecture design enables a modular, robust system that requires re-

duced overall system maintenance during system modifications (Research Goal 4).

Research Goal 2: Create an abstract behavior representation that provides an inter-

face for describing a behavior’s functionality without restricting or dictating the actual

implementation or the use of the representation.

Research Goal 3: Describe a dynamic behavior hierarchy generation algorithm that

utilizes the behavior representation interface for accomplishing high-level tasks by dy-

namically sequencing behaviors (i.e. dynamic hierarchy generation).

Research Goal 4: Combine Research Goals(1-3) to demonstrate a behavior repre-

sentation that enables dynamic behavior sequencing within a robust and modular au-

tonomous mobile robot architecture design, which requires minimal reprogramming for

system modifications.

2



All layered architecture creators describe the layers in detail [5, 11, 29, 46] and

have shown that a layered architecture accomplishes the merging of reactive execution

with deliberative planning. Although these accounts are detailed, many authors gloss

over the actual mechanism used in transferring plans and state information between

layers. For example, the establishment and selection of the connection between the

sequencing and the controlling layers is never discussed by the creators. Even when the

layer separations of the sequencing and controlling layers are clear, the mechanism

for actual selection of behaviors for activation and deactivation and its translation

to behavior execution is typically ignored. By all accounts, this appears to be the

case because the connection is a mixture of trial and error or simply programmer

hard-coding, and either approach is susceptible to programmer errors. By creating a

representation for behaviors and linking the properties of the behavior functionality

to the environment it expects and the tasks that it completes, this connection can

be automated. Also, a control loop can be created that uses the representation in a

uniform manner so that its functionality and the connection between sequencing and

controlling will remain virtually unchanged during system modifications.

The remainder of this chapter provides an overview of the research presented in

this thesis. First, a more detailed description of the problem to be solved is presented

in Section 1.1. This is followed by the thesis objectives that aid in accomplishing

Research Goals (1-4), and the general assumptions used.

1.1 Problem Statement

Autonomous robot systems are becoming more complex and more desirable for

use in dynamic and unpredictable environments. These systems receive high-level

taskings and attempt to complete the task using a combination of deliberative plan-

ning and reactive execution. However, most systems are designed for use in a specific

environment and require major code restructuring when the environment or functional

specifications change. Since these systems are designed explicitly for one purpose, the

architectural design and implementation is very specific as well. The connections be-
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tween different layers of a hybrid architecture are tightly coupled where small changes

in one layer may result it major changes in another. This thesis proposes that using

an abstract behavior representation to describe the behaviors increases the modular-

ity of hybrid robot architectures and provides a means for a more robust functional

decomposition of robot architecture design. This thesis also proposes a hierarchy

generation algorithm that utilizes the abstract behavior description to dynamically

select an arbitrated behavior hierarchy that accomplishes high-level goals and taskings

without knowledge of the underlying behaviors’ implementations. The architecture

design, behavior representation, and hierarchy generation logic proposed in this thesis

create a loose coupling, but defined link, between the planning layers and behavior

execution layer of a hybrid architecture and its components. The accomplishment

of the Objectives presented in the next section demonstrate the effectiveness of the

proposed components at satisfying the Research Goals.

1.2 Thesis Objectives

The Research Goals presented above describe the high-level goals that guide the

efforts of this thesis in solving the problem statement of Section 1.1. To satisfy the

Research Goals, thesis Objectives are established that further guide this investigation.

Since the Research Goals are high-level descriptions, each Objective aids in satisfying

one or more goals. The following discusses each objective and its role in achieving the

Research Goals.

Objective 1: Show that the behavior representation and associated hierarchy gener-

ation algorithm can be applied in a hybrid robot architecture while adhering to the

integrity of the three layer architecture (TLA) paradigm.

Objective 2: Show that there is a defined link between the Sequencer and Controller.

This link must be an abstract mechanism that is robust and seamless.
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To satisfy Research Goal 1, a functional decomposition of a hybrid architecture

is described with defined, robust coupling between components. Additionally, Objec-

tives 1 and 2 also aid in accomplishing this goal by establishing a guideline for design

and implementation. Since the case studies of Chapter V describe trial experiments

for an implementation of the proposed architecture, behavior representation, and hi-

erarchy generation logic, the successful results presented meet these Objectives and

therefore satisfy Research Goal 4 as well.

Objective 3: Show that an abstract behavior representation, which does not require

the knowledge of low-level implementation details, can be applied as an interface to

simple, complex and concurrent behaviors.

Objective 3 aids in satisfying Research Goal 2 in that it does not rely on im-

plementation details. Furthermore, by creating an abstract interface for behavior

representation, other components can interact with the interface in a uniform manner

without knowledge of its concrete implementation. This characteristic of the behavior

representation leads to Objective 4.

Objective 4: Show that a hierarchy generation algorithm can use the behavior repre-

sentation to dynamically generate an arbitrated behavior hierarchy for accomplishing

desired goals without a priori knowledge of system capabilities and behavior function-

alities.

Objective 4 aids in satisfying Research Goals 1 and 3 in that using the behavior

representation without knowledge of the underlying implementation suggests that

the hierarchy generation algorithm is not dependent upon behavior implementation.

Additionally, the behavior representation acts as the defined mechanism for linking

the planning of the behavior hierarchies to its actual execution. Objectives 3 and 4

are met together in the experiment described in Section 5.2, which:

1. Demonstrates that the behavior representation and hierarchy generation algo-

rithm are independent of system capabilities and behavior implementation.
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2. Demonstrates that the software implementation can be transferred from systems

with the same behaviors but different capabilities and resource availabilities

without code modifications.

3. Demonstrates that different system capabilities generate different behavior hi-

erarchies.

Objective 5: Show that a sequence of plans generates appropriate behavior hierar-

chies that are assigned at appropriate times to accomplish complex high-level tasking.

Objective 6: Show that dynamic system changes, such as hardware failures, or en-

vironment conditions generate new hierarchies if necessary.

Objectives 5 and 6 aid in satisfying Research Goal 3 in that high-level tasks

are accomplished through dynamic sequencing of behaviors in response to plans and

unpredictable environments. These Objectives are met through the results of the

experiments presented in Sections 5.3 and 5.4 respectively. These experiments address

each Objective individually and show dynamic behavior sequencing through sequential

plans and random hardware failures.

The successful completion of the Objectives set forth in this section satisfy the

overall Research Goals for this investigation. To summarize, the Objectives that sat-

isfy the Research Goals are: Objectives 1, 2, and 4 satisfy Research Goal 1; Objective 3

satisfies Research Goal 2; Objectives 4, 5, and 6 satisfy Research Goal 3; Objectives 1-

6 collectively satisfy Research Goal 4. Therefore, case studies are developed to ensure

that the Objectives are met.

1.3 Sponsor

This research is sponsored by the Cooperative Autonomous Navigation and

Sensing (CANIS) lab task for the Air Force Office of Scientific Research (AFOSR).

CANIS is located at the Precision Navigation and Time division of the Air Force

Research Laboratories (AFRL/RYR) at Wright-Patterson Air Force Base. CANIS

6



requires autonomous navigation in dynamic environments to accomplish high-level

tasks and goals for multiple agents. By creating the robust mechanism presented

in this thesis for sequencing behavior execution within the agent architecture, the

architecture can be applied to various systems with minimal change to the sequencing

mechanism.

1.4 Assumptions

Although the techniques and methods presented in this thesis do not dictate the

implementation language, we do assume that they are implemented using an object

oriented design model. Since the research goals stress a robust and modular design,

this paradigm is currently the accepted practice for accomplishing these goals. When

possible, a generalized design concept is presented. However, when discussing exper-

imental implementation, the C/C++ language is used. Therefore, a basic knowledge

of the C/C++ language is assumed.

The design of the behavior representation and hierarchy generation logic antici-

pates that the Controller is implemented using the Unified Behavior Framework (UBF)

described in [52] for its behavior execution. This framework promotes modularity

within behaviors and is the foundation for this thesis’s proposed behavior representa-

tion. Without the UBF, the seamless connection from the Sequencer to the Controller

is lost. Other assumptions that are made about different components of the proposed

architecture are discussed when necessary throughout the document.

1.5 Thesis Overview

This thesis is structured in the following format. This chapter introduces the

problem and research goals at a high-level view. Chapter II provides an overview

of behavior-based robotics and how they have evolved from strictly reactive control

architectures to layered hybrid architectures that combine reactive control with de-

liberative planning and reasoning. Chapter III presents an overview of the various

methods and techniques for representing and sequencing behaviors, as well as the link-
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ing mechanism for coupling the layers of various architectures. The development of

the behavior representation is presented in Chapter IV which also details the hierar-

chy generation logic that accomplishes the dynamic sequencing of behaviors utilizing

the behavior representation. Three case study implementations are detailed in Chap-

ter V, which demonstrate a proof of concept and validates the claims of dynamic

sequencing, robustness and modularity. These case studies are presented as detailed

experiments that include the purpose, implementation, results and a discussion of

how the results support the claims of this thesis. Finally, Chapter VI concludes with

closing remarks and possible future investigation for the complete implementation of

the concepts addressed in this thesis and possible expansions to these concepts.
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II. Behavior-Based Robotics Research

In autonomous mobile robot control architectures, the development has evolved

from strictly reactive to behavior-based hybrid architectures. This chapter presents

previous and current research in the area of reactive and behavior-based robot control

architectures and their constructs for translating goals or desired functionality to

robot motor settings (or behaviors). The focus is on architectures that implement a

layered approach where a functional separation has been made between the sequencing

element and the controlling element.

The background areas discussed in this chapter are divided into two sections.

The first section discusses reactive robot control architectures and is followed by a

discussion on hybrid/three-layer robot control architectures.

2.1 Reactive Control Architectures

Reactive control architectures emerged in response to the shortcomings of the

Sense-Plan-Act (SPA) approach, prevalent in robot architectures previous to 1985 [17].

The SPA approach is a unidirectional and linear approach, Figure 2.1a. The linear

control loop of SPA receives the sensor data (sense), computes a plan (plan), and sets

motor settings accordingly (act). This paradigm requires an accurate world model

and limits robot reaction times to the time required for updating the world model,

computing an action plan, and appling the motor settings to react to the environment.

The SPA approach does not perform well in dynamic and unpredictable environments,

because the world model requirement forces strict environments that are known a pri-

ori. Additionally, the planning bottleneck from sensor input to computing plans limits

the architecture to simple functionalities that require minimal environment or goal de-

composition. Researchers identified that concurrent execution, rather than sequential

execution, of the SPA paradigm components reduces the planning bottleneck within

SPA.

To combat the shortcomings of sequential processing between sensing, planning,

and applying motor settings, robot architectures began implementing concurrent pro-
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gramming techniques. By programming the planning mechanisms in parallel and

using different arbitration techniques, the computation bottleneck of maintaining a

world model is reduced to the time required by the longest computational entity. With

this new paradigm, planning mechanisms are decomposed into low-level entities that

are identified as simple behaviors that accomplish specific functions. At the time, this

type of decomposition was labeled with the contradictory term, reactive planning [17].

Reactive planning tightly couples sensing with action, which allows for the creation of

behaviors that use sensor data to compute, in parallel with other behaviors, the motor

settings appropriate for their functionality, Figure 2.1b. These specialized behaviors

follow the idealized argument made by researchers, such as Braitenberg, that complex

tasks are describable and performable by the combination of many simple tasks [7].

By eliminating the world model entirely and thus the internal state, there is more

time for behavior computation, and each behavior uses only the sensor data needed

for its computations. The actions are then based on the perceptions that are directly

linked to the behavior and the actions become reflexive to the environment instead

of trying to model it. Tasks are decomposed into a collection of low-level primitive

behaviors that are typically stimulus-response pairs [3].

The first architecture to diverge from the SPA approach was the Subsumption

architecture developed by Brooks [8]. Figure 2.1 shows the paradigm shift from the

sequential flow of information processing from the sensors to the motor settings to

a paradigm that uses concurrent task-achieving behaviors. In this architecture, each

level (or behavior) independently processes the sensor data and suggests motor set-

tings to achieve its intended functionality. Behaviors are an approximation process

that works by dismantling world states into sub-states. The arbitration technique

used is priority based where the higher levels, which are more complex behaviors,

subsume the lower levels, or the lower levels, which respond to faster environment

changes, inhibit the higher levels. Arbitration mechanisms are the main component

for differences between the reactive control architectures that followed Subsumption.
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(a) SPA (b) SPA Paradigm Shift

Figure 2.1: Paradigm shift from the a) sequential sense-plan-
act paradigm to the b) concurrent, task-based action decompo-
sition

By changing how active behaviors are selected and motor commands are set, a system

gives the appearance of different functionality.

The arbitration techniques of reactive architectures consist of selecting the mo-

tor setting recommendations from behaviors based on highest priority [26], highest

utility [40], and/or selecting combinations of motor setting [4]. Therefore, the deci-

sion as to which behavior’s recommendation to execute is dependent upon the arbiter

employed. Arbiters are typically characterized as competitive or cooperative. Com-

petitive arbiters use a winner-takes-all technique to select one action recommendation.

The Circuit architecture uses a hierarchical prioritization that is applied to different

behavioral categorizations where each category contains either reactive behaviors or

logical formalizations [26]. Action Selection allows the behaviors to enact an activa-

tion level when specific preconditions are met [31]. Of all the behaviors that have

activation levels set, the behavior with the highest activation is selected. The Colony

architecture differs from the Subsumption architecture by eliminating the ability of

lower levels to inhibit higher levels [10]. Cooperative arbiters use action recommenda-

tions from multiple behaviors to generate one compiled action recommendation. The
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Utility Fusion architecture evaluates the utility that results from taking a particular

action and selects the motor settings from the actions with the highest utility that

corresponds to each motor setting recommendation [40]. A Motor Schema architec-

ture uses a vector summation of the action recommendations from each behavior [4].

The method used in selecting the active behavior dictates how the behaviors are

preprogrammed and used.

Although the reactive architectures are shown to respond well in dynamic envi-

ronments by using low-level task decompositions, they lack deliberation and planning

abilities required to accomplish different or multiple long-term goals. These archi-

tectures were designed for specific tasks and environments and were bound by the

architecture’s inherent limitations. In [52], Woolley describes a software system called

the Unified Behavior Framework (UBF) that allows seamless switching between ar-

biters and arbiter hierarchies. By establishing behavior architectures in the context

of the UBF, one can dynamically interchange between architectures, capitalizing on

the strengths of popular reactive-control architectures, such as Subsumption [8], Util-

ity Fusion [41] and Colony architectures [9]. Thus, exploiting the tight coupling of

sensors to actions that reactive-control architectures achieve. However, reactive con-

trollers have the short-sighted mission of reacting to current environmental conditions

and thus require deliberative and planning capabilities. In response to the capability

ceiling, which is the lack of mechanisms for managing complexity, layered/hybrid ar-

chitectures were developed to add multiple layers of planning and deliberation to the

reactive control element of an architecture [17].

2.2 Layered Architectures

Layered architectures were created in response to the capability ceiling of reac-

tive control architectures. Reactive architectures use a task-based decomposition to

perform well in dynamic environments but lack the ability to deliberate and develop

plans for goal accomplishment. Layered architectures utilize deliberative planning and

reactive control together. Since deliberative planning and reactive control are equally
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important for mobile robot navigation, when used appropriately, each complements

the other and compensates for the others’ deficiencies [41].

The following well-known architectures are presented as layered architectures.

However, some are more of an analog to the layered paradigm and thus described

accordingly. In all cases, each architecture is described and analyzed as it maps

to the generic three-layer architecture presented by Gat [17]. This by no means

covers all implemented layered architectures but provides an overview of the different

motivations and approaches used in successful layered architecture implementations.

Although the following presents an overview of the architectures, the main focus is

on the connection between the “Sequencer” and “Controller” as plans are translated

to behavior activation and deactivation.

2.2.1 Three-Layer Architectures. With the advent of hybrid robot control

architectures that bridge reactive and deliberative functionality, many hybrid robot

control systems have separated plans, coordination, and actions into separate pro-

cessing layers. These layers can be generalized into three composite layers based on

increasing levels of abstraction and temporal complexity: A reactive feedback control

mechanism (Controller), a slow deliberative planner (Deliberator), and a sequencing

mechanism that connects the first two components (Sequencer) [17]. The idea be-

hind three-layer architectures(TLAs) is to merge deliberative planning and reasoning

with a reactive control unit to accomplish complex, goal-directed tasks while quickly

responding to dynamic environment changes. Figure 2.2 shows the layout of a TLA

and how the layers interact with other layers. As shown, the architecture is hierar-

chical and its functional decomposition is based on temporal complexity. In [17], Gat

introduces the TLA paradigm and describes how many researchers, up until 1998,

collectively or independently migrated to this paradigm. Since then, layered architec-

tures are still widely employed. Although not the only robot architecture employed,

layered architectures have grown in complexity and have shown to be successful at

producing robots with deliberative and reactive functionality.
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Figure 2.2: Three-Layer Architecture Hierarchy

Along with the three component layers, TLA focuses on minimizing the use

of internal state. Minimizing the internal state reduces concurrency issues with the

possibility that the environment represented in the internal state is not the current

real-world situation. This may occur when the real-world situation changes before

the internal state has completed its processing of the current state. Therefore the

architecture relies on the functioning of the three layers/components. The following

sections discuss the three layers: Controller, Deliberator, and Sequencer [17]. These

layer descriptions are the basis for comparison and analogy for other layered archi-

tectures in the remainder of this chapter.

2.2.1.1 Controller. Layers within hybrid architectures are typically

separated by abstraction and temporal complexity. The Controller is responsible for

the low-level, reactive functionality that is accomplished in real-time without knowl-

edge of high-level goals. The Controller is a reactive feedback control mechanism that

performs the behavior-based functionality that is most commonly associated with the

reactive control architectures discussed in Section 2.1. It maintains a library of primi-
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tive behaviors that are the simplest decomposition of all the robot’s functions. These

primitives often ignore notions of internal state and instead focus on what is required

in performing its intended behavior and most often rely on stateless sensor-based al-

gorithms. The Controller is also tasked with anomaly detection and error handling.

The primitive behaviors are typically execution threads that tightly couple sensor

readings to actuators (i.e. motor settings). Each behavior reflects an appearance of a

simple task, function or trait. Two examples of behaviors are wall-following and

obstacle-avoidance. Behaviors are activated individually, or in combination, by

the Sequencer or arbitration techniques producing simple or complex behaviors that

perform desired tasks or accomplish specific goals.

The typical metric for identifying a behavior or function as a component in the

Controller is temporal complexity. Since the function of the Controller is to utilize a

library of sensor-to-actuator pairs, the computation time of the behavior cannot out

live the actual state that it is reacting upon. Additionally, each behavior must allow

bandwidth for other behaviors to react to the same environment. The likelihood of

a dynamic state that changes before a behavior reacts is motivation for avoiding the

use of an internal state. Behaviors are reactive to the current state and ideally avoid

any internal state calculations. Other mechanisms within the layered architecture are

charged with monitoring the state, namely the Sequencer and Deliberator.

2.2.1.2 Deliberator. The highest layer in a TLA is the Deliberator.

The Deliberator is used for planning and predicting the future. This layer is the mech-

anism for deliberative computations that are time-consuming and consist of decom-

posing the high-level goals into discrete steps. In some architectures, the Deliberator

may also answers queries made by the Sequencer. Goals and plans are decomposed by

the Deliberator to the abstraction level of the Sequencer. Then, these decompositions

are passed to the Sequencer for further decomposition. Since the Sequencer is at a

lower level of abstraction and temporal complexity, the Sequencer accomplishes many

iterations of behavior transitions before any results occur. This allows for the Delib-
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erator to perform time-intensive computations through multiple threads of execution

for future plans while the Sequencer executes and monitors current plans.

2.2.1.3 Sequencer. The sequencing layer (or Sequencer) transforms

the plan output from the Deliberator to the actions of the Controller and maintains

the state as the controller modifies it. The Sequencer also maintains the abstract

represention of the state and when it notices events in the environment that conflict

with the plans of the Deliberator, it sets a replanning trigger within the state for

the Deliberator to handle. The Sequencer’s job is to select the behaviors that the

controller uses to accomplish the objectives set forth by the Deliberator [17]. This

requires that the Sequencer set parameters for the behaviors and activates (and deac-

tivates) the behaviors at strategic times to meet objectives. To do this, the Sequencer

must monitor and update the state as appropriate. As seen in Figure 2.2, aside from

sensors updating their data in the state, the Sequencer also sends information into

the state. This allows for the setting of parameters and state variables that behaviors

and other layers use. It responds to the current situation, or short-term past, and

generates an appropriate behavior hierarchy to act upon the situation. The Sequencer

has the ability to work on multiple, parallel interacting tasks and thus dispatches be-

haviors to accomplish each task in parallel. Although the Sequencer is afforded more

computation time than the Controller, it performs computations relative to the rate

of environmental change. The Sequencer selects behavior hierarchies that accomplish

desired goals/objectives within the current environment. If the environment changes,

the Sequencer is responsible for activating a different behavior hierarchy as appropri-

ate.

This thesis focuses on the communication link between the Sequencer and the

Controller. Therefore, the sequencing mechanism of other architectures, or the behav-

ior activation/deactivation techniques are discussed more thoroughly in the following

sections.
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2.2.2 Saphira. The Saphira architecture integrates three concepts required

for robot autonomy: The ability to attend to another agent, to take advice about the

environment, and to carry out assigned tasks. To succeed in these areas, Saphira uses

the concepts of coordination of behavior, coherence of modeling, and communication

with other agents [29].

Saphira achieves coordination by coordinates its activities through a layered

abstraction that helps to make the complexities of activities more manageable. How-

ever, just the control level, which is the layer that achieves coordination, is explic-

itly defined in [29]. At the control level, Saphira uses a behavior-base methodology.

Each behavior creates a desirability function and is combined using fuzzy logic and

“defuzzified” to create an action for execution. The architecture makes use of two

respresentations of space, these are the Local Perceptual Space (LPS) and the Global

Map Space (GMS) [27]. The LPS is an egocentric coordinate system that is useful for

controlling purposeful movement by keeping short-term track of the robot’s motion,

fusing sensor readings, and registering obstacles to be avoided. The GMS represents

the global environment by keeping track of artifacts, objects within the environment

to include among others doors, rooms, and corridors. These artifacts are used in de-

termining the action to take, thus combining strategic goals and prior knowledge that

the Controller utilizes. Although not explicitly identified in the Saphira architecture,

a sequencing layer could use these artifacts to dispatch appropriate behaviors accord-

ing to real world and internally represented environments. The sequencing layer is

loosely represented by the Procedural Reasoning System (PRS) (see Section 3.1.4).

Additionally, these artifacts are maintained by the planning/Deliberator layer and are

used for planning complex goals. If the authors in [29] separated these actual layers,

then the need for the behavior itself to have a “context of applicability” is eliminated.

However, Saphira’s implementation of simple behaviors and fuzzy logic enables con-

text dependent blending of simple behaviors to create complex composite behaviors.

Figure 2.3 shows the Saphira architecture and highlights how the architecture fits the

three-layer architecture paradigm.
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Figure 2.3: Saphira system architecture. Perceptual routines
are on the left, action routines on the right. The vertical di-
mension gives an indication of the cognitive level of processing,
with high-level behaviors and perceptual routines at the top.
Control is coordinated by PRS-Lite, which instantiates routines
for navigation, planning, execution monitoring, and perceptual
coordination [28].
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Saphira’s Controller layer contains the Advanced Robotics Interface for Ap-

plications (ARIA) software package that controls lower-level routines [27]. These

routines range from the hardware specifics of setting motor settings to the selection

of behaviors. ARIA uses a resolver class to act as an arbiter for selecting the ac-

tion recommendations of the active behaviors. Although the user can create custom

arbiters, just one resolver can be used on the robot during execution [33]. The be-

haviors within the control layer of the Saphira architecture are behavior-based [29].

These behaviors are either reactive or goal-seeking behaviors that use inputs from the

state reflector to accomplish the intended task. To build more complex behaviors,

the Saphira architecture uses context dependent blending of simpler behaviors. The

Controller uses the arbitration of the current activated behaviors to affect the motor

settings. Therefore, a controlling executive (or Sequencer) is responsible for activating

and deactivating behaviors.

PRS-Lite provides the sequencing component for the Saphira architecture [29].

PRS-Lite is Saphira’s controlling executive that responds to the changing environment

by instantiating routines for navigation, planning, execution monitoring, and percep-

tual coordination. While remaining responsive to the changing environment, the

PRS-Lite attempts to accomplish event-driven and goal-driven activities. Saphira’s

sequencing layer also monitors behavior performance and activates and deactivates

the behaviors when they are accomplished. Monitoring allows for sequential acti-

vation of behaviors to accomplish tasks or to identify failures. For instance, if the

goal is to enter a room and pick up a cup of coffee. The Sequencer would activate

a go-through-door behavior before activating the pick-up-cup behavior since the

robot must go into the room before it can pick up the coffee. However, if the door

is closed, then the Sequencer must identify that the go-through-door behavior has

failed and update the state to indicate a closed door. This functionality requires that

the Sequencer “know” everything about each behavior. Whenever a new behavior is

added, the Sequencer must be modified. This is undesirable since the ideal sequencing

mechanism is a modular programming entity.
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The closest analog to a Deliberator is Saphira’s mechanism for communicat-

ing with other agents and decomposing the input to attainable goals. Saphira uses

speech recognition and text-to-speech to communicate with other agents [29]. The

problem of communication is decomposed into the types of commands that the robot

can receive: direct motion, sensor-based movement, task, and information. The di-

rect motion commands require basic mechanical features such as move forward, turn

around and stop. A sensor-based command requires sensors to accomplish the task

such as following, avoiding, etc. Task commands require setting goals to be accom-

plished, such as “go get . . . .” Finally, information commands are the most abstract

since they require the robot-centered representation of the world to coincide with the

human-centered representation. If the information command was “this is a car”, the

robot and human representation of a car must be the same to make any sense.

2.2.3 Three Tier Robot Control (3T). The 3T architecture’s name is derived

from its separation of the general robot intelligence problem into three interacting

layers or tiers (3T). This architecture was designed from the outset to control physical

agents and mobile robots [5]. 3T combines deliberation and reactivity to enable robots

to perform tasks in unpredictable environments. The three tiers, or layers, of the

architecture are: Deliberation, Sequencing and Reactive Skills (Figure 2.4).

Figure 2.4: The 3T Intelligent Control Architecture [5]
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The first, or lowest of the three tiers is a reactive skills tier that is coordinated

by a skill manager (Controller). This skill manager is used as an interface between

the skills (behaviors) and the rest of the architecture. It acts as a wrapper for im-

plementing specific skills into the architecture. It also forces a standard interface to

ensure a seamless connection within the rest of the architecture. Although this forced

standard is convenient for this architecture’s development, it requires the inputs and

outputs of all skills. The skill manager then routes these outputs to the inputs of

other skills. This dependence can cause a domino effect of problems within the skills

if a skill’s outputs are modified, therefore, not making each skill entirely independent.

The second tier within the 3T architecture is the sequencing tier (Sequencer).

This tier activates and deactivates skills to accomplish specific tasks and to react to

the environment with the use of Reactive Action Packages (RAPs). Each RAP is a

description of how to react to the environment or accomplish a task(s). This requires

the Sequencer to have a library of RAPs that are appropriate for specific situations

and tasks that the robot must routinely perform. The Sequencer (or RAP interpreter)

decomposes RAPs into other RAPs and activates a specific set of skills in the Con-

troller based on the RAP decomposition and the intended tasks to be accomplished.

RAPs are discussed more thoroughly in Section 3.1.1. The Sequencer also monitors

the actions and environment for specific world conditions and events that require new

behavior activations. In [5], Bonasso never mentions how the Sequencer reacts if it

cannot find a RAP that can handle a given situation. This may occur as a result of

the initial intended environment changing or the developer overlooking the specific

situation. Since the RAP interpreter is simply a hard-coded description of how to

accomplish common tasks, any changes to the environment or intended purpose of

the robot requires code modification in the Sequencer.

The deliberation layer (Deliberator) is the third tier and the highest level of ab-

straction in the 3T architecture. The Deliberator handles the planning capability. It

reasons in-depth about goals, resources and timing constraints. This reasoning is ac-

complished through the use of an adversarial-planner. The adversarial-planner allows

21



for the option of multi-agent coordination. 3T also has support for three types of plan-

ner control: top-down, problem-solving, and concurrent planning and execution [6].

This support adds for the ability of robust sequencing between planning methods

for the accomplishment of different goals/tasks. However, there is some ambiguity

in the Deliberator’s error checking responsibilities. Since the Deliberator operates at

the highest level of abstraction, it may not anticipate a low-level error condition of

possible future states or the decomposition of an employed RAP. When the Sequencer

decomposes the RAP issued by the Deliberator, it should notify the Deliberator of

specific goal altering events instead of relying on the Deliberator checking the state.

2.2.4 Task Control Architecture (TCA). The architecture known as the

Task Control Architecture (TCA) was specifically developed for achieving multiple,

complex tasks in a rich environment [45]. Simmons, et al. [46] discuss how TCA is used

with the development of an office delivery robot named Xavier. TCA consists of four

independent abstraction layers (Figure 2.5). The highest layer has the most abstrac-

tion, looking at the big picture, and the lowest layer has the least abstract dealing with

low-level details. These four layers, from highest abstraction to lowest abstraction, are

task planning, path planning, navigation and obstacle avoidance. Layer independence

allows each layer to be implemented without the other layers, which enables the layers

to perform independently and reject any “advice” from higher levels if that advice

inhibits the desired functionality of the layer. For example, if the path planner ad-

vises a path that has an obstacle, the obstacle avoidance layer can reject the “advice”

and veer off course to avoid the obstacle. Although Simmons suggests and describes

just four layers, he ignores the fact that the very basic behavior-level controls of the

servomotors could be considered another layer. However, for the TCA architecture,

the servo controls were supplied commercially. Additionally, the claim of independent

layers is used loosely since there is bidirectional communication between the layers.

When signals are propagated up the hierarchy (e.g. avoid obstacles trapped in local

minima), this cross communication suggests dependence rather than independence.
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Task Planning
(PRODIGY)

Path Planning
(Decision-Theoretic Planning)

Navigation
(POMDP)

Obstacle Avoidance
(CVM)

Figure 2.5: The Task Control Architecture (TCA) [47]

In regards to error handling/avoidance, the high layers aid the lower layers by

avoiding situations that potentially result in difficulty for lower layers to handle. This

may help with initial avoidance of errors, but leaving the error handling/avoidance

at such a high level of abstraction may cause unsolvable failures at the lower levels.

Another form of error handling could be seen in the heavy use of models and internal

representation. This can help within the higher (deliberative) layers to correct for

noisy or incorrect sensor readings. However, too much reliance on models and internal

representation may move the robot further away from a reactive behavior and more

towards the task-plan-act robots, which may reduce efficiency.

Although this architecture has four control layers that interact with a web in-

terface and commercial servo control software, some claim that there are essentially

no layers in regards to a three-layer architecture [5]. To the contrary, by separating

out different functionalities of the control layers, the architecture is analogous to the

three-layer architecture paradigm. The deliberative layer contains TCAs opportunis-

tic scheduling and probability portion of the path planning. The sequencing layer

contains the mechanism for monitoring the progress of the robot and making action

adjustments for errors in task completion (e.g. failed to meet a waypoint) and, also

contains the functionality of the navigation layer. The Controller layer contains be-

haviors based on the obstacle avoidance techniques and any motion activation that

performs basic movements. The main drawback of this architecture is the lack of

a programming model for adding system functionality and the lack of an explicit

representation for expressing relationships among tasks [5]. Therefore, all changes
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within the system requires the programmer to mentally compile and implement the

appropriate control structures into the correct function calls.

2.2.5 SSS. The architecture discussed in this section is an acronym for

“servo, subsumption, symbolic” system (SSS) [11]. SSS is a subsumption-based,

three-layer architecture that capitalizes on the features of servo-systems and signal

processing with multi-agent reactive Controllers and state-based symbolic AI systems.

The layer hierarchy is established through quantizing space then time. At the lowest

level (servo), the domain of space and time are continuous where the domain of space

and time are discrete at the highest level (symbolic). The symbolic layer is responsible

for strategic navigation where it maintains a map and a mechanism for activating and

deactivating the subsumption layer modules (behaviors) after calculating the appro-

priate path. The symbolic layer also monitors for errors such as a path-blocked event

where the robot has not reached its goal and has not made any forward progress.

The subsumption layer contains a library of behaviors that it arbitrates just as the

Subsumption architecture described in Section 2.1 based on the parameters set by the

symbolic layer. Additionally, the servo layer contains behaviors that the subsump-

tion layer activates and deactivates. The main functionality of the servo layer is to

translate the desired translation and rotation speeds to actual motor settings.

Figure 2.6: The SSS architecture combines three control tech-
niques which can be characterized by their treatment of times
and space. Special interfaces allow the layers of this system to
cooperate effectively. [11]
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Although the SSS architecture appears to have three layers, when applying the

structure of TLA discused in Section 2.2.1, it has just two analogous layers. For the

SSS architecture, the deliberative layer is only in charge of map generation and setting

waypoints to navigate the terrain. The Sequencer monitors progress and sets the

parameters for a Subsumption architecture. Since the subsumption arbitration and

behavior selection is actually in a Controller’s functional domain, the mapping can be

moved to the sequencing layer, eliminating the need for an explicit deliberative layer.

By organizing the layers according to computational time complexity, this architecture

can benefit from current processor speeds and therefore capable of implementing a

more sophisticated deliberative layer. Additionally, SSS has only been demonstrated

on tasks involving pure navigation and its response to contingencies is limited by

Subsumption’s finite state machine model [5].

2.2.6 Overlooked Layer Connections. All layered architecture creators de-

scribe the layers in detail. However, many authors gloss over the actual mechanism

used in passing from one layer to another. For example, none of the authors explic-

itly state how the connections are established and selected for linking the sequencing

layer to the Controller. Even if the sequencing and controlling layer separation are not

clear, the mechanism for actual selection of behaviors for activation and deactivation

is typically ignored. By all accounts, this appears to be the case, because the con-

nection is a mixture of trial and error or simply programmer hard-coding, which are

both susceptible to programmer errors. By creating a representation for behaviors

and linking the properties of the behavior functionality to state and goals, we can

automate this connection and create a dynamic behavior hierarchy generation loop

that remains unchanged during system modifications.

2.3 Summary

The capability ceiling of reactive controllers identifies the need for deliberative

planning in conjunction with reactive control. This is accomplished through layered
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architectures that have proven effective in solving problems and performing complex

tasks. Each layered architecture uses some form of arbitration of behaviors that can

be implemented uses the UBF described in [52], which is an ideal defining line of

the Controller. Although not all of the layered architectures explicitly followed Gat’s

description of a TLA in [17], we have shown that they still have the elements to be

categorized as a TLA. The difficulty in describing the architectures using the TLA

paradigm is identifying the actual connection between the layers and how these lay-

ers communicate. Typically, the connections are hard-coded constructs like RAPs

or trial and error programming until the system functions as expected. Specifically,

the connection between the Sequencer and Controller layers usually required recoding

whenever system modifications are made. Making modifications within the layered

hierarchy in response to simple behavior changes requires extensive testing of mod-

ules that should not require changes as a result of changes outside of its focus. By

creating a representation of lower-layer functionalities (or behaviors), we can create a

dynamic behavior hierarchy generation loop that is not effected by addition, deletion

or modification of behaviors within the Controller layer. Chapter III presents the

current research in autonomous agent planning with a focus on planning algorithms

used to select behaviors for activation and deactivation. Included in the chapter are

the current constructs used for behavior representation.
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III. Agent Behavior Planning Background

Component integration in hybrid architectures translate high-level planning to

low-level executing using various techniques. However, as identified in Sec-

tion 2.2.6, descriptions of Three Layer Architectures do not explicitly address the

connections between these components (namely the Sequencer and Controller). Ad-

ditionally, the connections are sometimes interleaved and the division of control is

unclear. Our mechanism for formalizing these connections creates a distinct division

between layers. This facilitates in the development of a robust and modular hybrid ar-

chitecture. The mechanisms and techniques described in this chapter address various

concerns and considerations in regards to the translation from planning to execution

to goal completion.

This chapter presents previous and current research in the area of translating

goals or desired functionality to robot motor settings (or behaviors). In other words,

coupling the sequencing layer (Sequencer) to the Controller using different planning

techniques and behavior representations. The following sections present the tech-

niques used in various systems to interface deliberation and control, as-well-as the

different methods for describing or representing actions/behaviors.

3.1 Plan Execution Languages

Many autonomous robot systems employ sophisticated plan execution systems

that continuously interleave planning and execution [20], also referred to as task-level

control languages [48]. The following plan execution systems typically support con-

current execution, decomposition of tasks into sequences of subtasks, resource man-

agement, execution monitoring, failure detection and analysis, exception handling,

and execution recovery strategies [20]. The majority of hybrid architectures link the

Sequencer and Controller through the use of these languages. These languages re-

quire that each behavior (e.g. task-net [16]) is expressed explicitly by the syntax of

the language. Although the behaviors are limited to the constructs of each language,

they demonstrate the benefit a behavior representation can have toward automated
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CONTEXT - 1 CONTEXT - · · · CONTEXT - N
TASK-NET - 1 TASK-NET - · · · TASK-NET - N

Figure 3.1: Typical makeup of a RAP entity

behavior sequencing. The following sections describe some common plan execution

languages implemented in various hybrid architectures, including [12,16,18,24,32,51].

3.1.1 Reactive Action Packages (RAPs). RAPs (Reactive Action Pack-

ages) [16] are described as the basic blocks for building a situation-driven execution

system. A RAP is a representation that groups together all known ways to accom-

plish a task in various situations. The task that a RAP accomplishes acts as the index

for identifying the RAP. Since the RAP is a collection of methods for accomplishing

a particular task, the environment at the time of RAP selection acts as the index-

ing method for selecting the most appropriate RAP. Therefore, the RAP selected is

the one that most effectively accomplishes the task for a given environment. The

three major components of a RAP are: Index, Success Clause, and the Methods that

accomplish the task for different situations. The index directly corresponds to the

task-goal that a particular RAP achieves. The success clause describes the test that

indicates when the goal of the task is completed, thus indicating that the task is com-

plete. The methods within the RAP describe how to accomplish the task for different

environments, or situations.

Each method of a RAP consist of a context and a task-net. The context describes

the test used to indicate if the method, given the current situation, is appropriate

for accomplishing the task. If this method is appropriate for the current situation,

the task-net gives the detailed steps (behavior activations) required for successfully

accomplishing the task. The steps to accomplish the task are either subtasks or

primitive actions that the robot can apply. Figure 3.1 shows the break-down of

components for a typical RAP.
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The components of RAPs enable a fixed execution algorithm within the RAP

interpreter to coordinate task execution. Figure 3.2 shows the control loop for RAP

execution. The RAP interpreter, which is the Sequencer in early implementations of

the 3T architecture, selects each RAP in the task agenda for consideration. After

querying the current state, the interpreter selects the appropriate method and either

decomposes the subtasks or sends primitive actions to the robot. If the method

contains subtasks, the task indices are used to select the appropriate RAP from the

RAP library and this RAP (or task) is added to the task agenda. This control loop

continues until the RAPs are decomposed to robot primitives and the plan, or task-

goals, are met. This process allows each RAP to pursue its goals concurrently and

each will only act in the appropriate environment.

Figure 3.2: The RAP Execution System [16]

The major drawback of the RAPs system is that the programmer must know

all the tasks that the system must accomplish and develop task-net descriptions to

accomplish these tasks for every possible situation the system may encounter. Know-

ing every situation that a system encounters for each task in a dynamic environment

is unrealistic. Since each RAP is hard-coded for a particular environment for accom-

plishing very specific tasks with limited flexibility, everytime the system environment

changes, the RAPs must be reprogrammed and tested, which does not conform to the

goals of robustness and modularity.
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3.1.2 Reactive Plan Language (RPL). Reactive Plan Language (RPL) is a

descendant of the RAP notation with the following differences [32]:

• RPL plans look like Lisp programs and thus the syntax is more recursive

• Explicit constructs for high-level concepts (e.g. interrupts and monitors)

• World state is not maintained by the interpreter

Although many Lisp programs are viewable as valid RPL plans, the intent of an RPL

plan is to describe a behavior that is driven by the environment. To accomplish this,

the agent’s behavior is govern by temporal changes, or fluents. Fluents are conditional

statements that detail a condition that must be true for an action to be executed.

These fluents are controlled by state model variables or direct sensor input.

RPL “mentally executes” a plan to test if the current plan can achieve the

desired goals. This is called projection mode in RPL. This type of internal simulation

can be difficult or impossible in dynamic environments. The computation time alone

may require more time than the changing environment allows. Therefore, this mode in

dynamic environments is less than useful for reactive behavior planning and execution.

Like RAPs, RPL suffers from the requirement that the programmer has a priori

knowledge of the language, system capabilities and intended environment. Changing

the system capabilities or intended environment may require a complete code rewrite.

3.1.3 Executive Support Language (ESL). The Executive Support Lan-

guage (ESL) is a language for encoding execution knowledge in embedded autonomous

agents [18]. Gat presents ESL as an implementation substrate for the sequencing com-

ponent of a TLA, such as later 3T implementations. Unlike RAPs and RPL, ESL is

not intended for automated reasoning or formal analysis. It was intended to be an

easy-to-use tool that is powerful and flexible. ESL uses a cognizant failure concept to

handle errors and failures. Assuming failures are inevitable, ESL can fail and recover

from errors, which includes recovering from infinite loops. The behaviors in ESL are

identified by the goals that they achieve and the conditions that make the behav-
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ior’s method appropriate. Allowing for behaviors, or tasks, to wait for events, ESL

supports multiple concurrent behavior execution.

The strength of ESL is the design for a lightweight, flexible plan execution

language. However, it suffers from the detailed behavior description of the behavior’s

execution and the a priori knowledge of the working environment.

3.1.4 Procedural Reasoning System (PRS). The Procedural Reasoning Sys-

tem (PRS) is a high-level control and supervision language adapted to autonomous

robots to represent and execute procedures, scripts, and plans in dynamic environ-

ments [24]. Ingrand et al. describe the PRS as the link between the high-level plan-

ning and the low-level modules. The LAAS architecture [1] uses the PRS language

within its Sequencer. Like RAPs, PRS uses behavior libraries that explicitly map out

low-level plans. Therefore, the Sequencer selects the appropriate library entry and

executes its associated motor commands. There is no reuse of code and no actual

handoff to a control layer.

The PRS provides the tools for representing and executing plans and procedures

to accomplish intended goals or tasks. The world model, or the system’s current belief

is maintained by the PRS with derived belief’s or user entered static belief’s [25]. The

behaviors of the robot system are described by the goals in the PRS. Knowledge for

accomplishing these goals are stored in knowledge areas (KAs).

KAs are declarative procedure specifications that describe the conditions for

which the KA is useful and steps for accomplishing the goals of the KA. Each KA can

be viewed as a task-tree that requires certain goals to be true in order to activate the

next step. Additionally, each step of a KA may activate other goals that may activate

additional KAs. Therefore, facilitating concurrent execution of KAs for accomplishing

multiple goals. Since one KA can activate another KA, it is feasible to anticipate a

situation where one KA is negating another KA thus neither KA will ever accomplish

its intended behavior or goals.
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PRS must access a library of plans that satisfy all the tasks that the robot is

intended to accomplish [24]. The plans in the library are not combined to create other

plans and thus does not promote behavior, or plan reuse. Modular planning systems

and robust constructs are ideal for multi-layer architectures and therefore requires

extensions to the PRS for optimal effectiveness.

3.1.5 Proprice-Plan. In [12], Despouys and Ingrand propose an approach

that couples planning with plan execution. This approach is called Proprice-Plan

and integrates plan supervision and execution with different planning techniques.

The authors claim that the transition between planning activities and execution are

seamless. The execution model of Propice-Plan is based on PRS. Many planning

techniques are implemented in Propice-Plan but for the scope of this thesis, the focus

is on the execution model.

An aim of Proprice-Plan is to unify the representation for planning and exe-

cution control. The representation uses the PDDL formalism (Section 3.2.2) and is

denoted as an operational-plan. The algorithms of the execution module are largely

inspired by PRS but the functionality of the execution module differs in two ways.

The execution module may request a new operational-plan from the planner if there

are no operational-plans that currently achieve the desired task or goal. Additionally,

the execution module receives and considers the recommendation of an anticipation

structure that simulates the outcome of operational-plans employed in the current

state. However, the system is implemented with a procedural context that limits

robust and flexible execution.

The LAAS architecture uses Propice as a procedural executive to close the loop

between the levels of the architecture, but Propice does not directly interpret the plan

built by the temporal planner (IXTET ) [30]. IXTET has no a priori knowledge about

execution. Thus, a temporal executive called IXTET −E XEC was added to IXTET

to interleave more closely planning and temporal execution, especially to: regularly
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update the plan under execution, reactively replan in case of failure, and incrementally

replan upon arrival of new goals [30].

3.1.6 Reactive Model-Based Prog. Language (RMPL). The Reactive Model-

Based Programming Language (RMPL) [51] is an object-oriented, constraint-based

language in a similar style to Java that follows a model-based programming approach.

A model-based programming approach refers to embedded programming languages

that can control and reason about underlying entities from engineering models. RMPL

control programs can be viewed as robot behaviors that accomplish a task or resem-

ble a behavior. The constructs of RMPL provide behaviors with the capability for

conditional branching, preemption, iteration, and concurrent and sequential compo-

sition. These constructs enable behaviors that range from simple, reactive behaviors

to complex, multi-task achieving behaviors. Therefore, RMPL can offer some of the

goal-directed tasking and monitoring capabilities that RAPs and ESL offer. However,

RMPL constructs also offer synchronous programming.

Figure 3.3: Architecture for a model-based executive using
RMPL [51]

The strength of RMPL control programs is that state assignments are used as

both assertions and as execution conditions. This allows for the state to contain

33



values that are not directly observable and promotes multiple levels of abstraction

for planning and behavior execution. This language employs a dedicated executive

for controlling robot behavior, named Titan. Titan uses a reactive control loop to

continually monitor the current state for failures and transition from the current state

to the desired configuration goals. The executive used with RMPL actually spans the

Sequencer and Controller layer of the TLA paradigm (Figure 3.3). It consists of a

Control Sequencer and a Deductive Controller. Many low-level reasonings, which can

be coded within a behavior, are deduced and analyzed within the deductive controller.

This implies that behavior descriptions are created and maintained in the sequencing

layer. This convention does not promote a reactive sensor-to-action pair behavior

implementation since the behavior is decomposed further in the Controller. Further-

more, the decomposition of the behavior model may limit a behavior’s reactivity since

it must be decomposed every cycle.

3.1.7 Common Weaknesses. Plan execution languages all suffer from similar

weaknesses. The primary weakness is that these languages do not follow modular soft-

ware coding practices and rely heavily on language understanding and syntax. The be-

haviors and the associated planning are programmed using language constructs. This

dictates behavior implementation where the description of the behavior, through lan-

guage constructs, is its implementation rather than the description being an abstract

representation that does not restrict the implementation. Therefore, systems with

task-control languages cannot change a behavior’s implementation without changing

its description, which causes a change in the planning components. This suggests

an inability for software component reused within different robot systems or environ-

ments. These languages all have their own specific syntax and control semantics that

require the programmer to know how the system functions as a whole and dictates how

behaviors are described, implemented and planned. Additionally, behaviors, plans or

procedures must be painstakingly detailed to include all environment conditions and

all possible system tasks. Programming behaviors then becomes less intuitive and
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more about fitting it to a language that requires an intimate knowledge of its syn-

tax and semantics to create any behavior. Conversely, this thesis proposes (Research

Goal 2) that developing a representation for a behavior and describing a behavior

within an object lends itself to a formal selection process that can be analyzed and

robustly implemented.

Another weakness of these languages is their tight coupling and interleaving of

the sequencing and control layer’s functional components. Since these languages are

most appropriately implemented in the sequencing layer of the TLA paradigm where

the layering is hierarchical, a modular and robust mechanism for plan execution is

ideal. However, plan execution languages often perform the functions of both the

Sequencer and Controller without a clean division between the two layers. Therefore,

changing the intended environment or system capability requires an almost complete

rewrite of the sequencing layer. In response to this tight coupling, this thesis proposes

a robust and modular architecture design with defined links that loosely couple system

components and functional layers (Research Goal 1).

3.2 Planning Domain Languages

The motivation for creating a planning problem representation is to have a way

of describing a problem and solving it by taking advantage of its logical structure.

Action representation has been researched since the early 1970’s with the introduction

of the STRIPS language [15]. By creating a representation that accurately describes

a behavior, the Sequencer can automate the behavior selection control loop without

knowledge of the underlying implementation of the behavior. The following sections

describe the evolution of planning domain languages and action representations from

its introduction (STRIPS) to the current problem specification language (PDDL).

3.2.1 STRIPS. In 1971, Richard Fikes and Nils Nilsson proposed an au-

tomated planner called Stanford Research Institute Problem Solver (STRIPS) [15].

STRIPS is a goal-based planner that uses first-order predicate calculus well-formed-
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formulas (WFFS) as the goals (and subgoals) within a world model represented by

first-order predicate calculus. The basic element for building solutions is by using

the concept of an operator. These operators are viewable as actions (or behaviors)

of how the robot functions in an environment and how these actions affect the world

state. The aim of the planning system is to generate a sequence of operators that will

affect the environment to a desired world state. In order to generate these plans, the

operators must be described, or represented, in a way that can be searched.

STRIPS operators are described in three major components: Name of operator

and its parameters, preconditions, and effects. the first component is simply the name

of the operator an the parameters that the routine accepts. These parameters are

objects that the operator affects (for example, boxes that are moved) or just a constant

value used by the operator’s routine (for example, the desired move location). The

preconditions component is a formula in first-order logic. The precondition formula

must be a theorem in the world model for the operator to be applicable, otherwise the

operator cannot be activated. The effects component defines the effects on a set of

WFFS after the application of the operator. More generally, the preconditions are the

list of world requirements that must be true in order for the operator to become active,

and the effects component is a list of effects on the world state after the operator has

completed. Since the effects can change current beliefs in a state model, like box

A that was current on box B is now on box C, the effects component has a list of

added beliefs and removed beliefs. The components of operators implies that a plan

consists of a sequence of operators that must be run sequentially where one operator

cannot begin until another one finishes. Additionally, all effects must be added in the

operator’s description. In dynamic and complex environments (stochastic domains),

this could be impossible to determine and thus makes STRIPS insufficiently expressive

for some real domains [42].

3.2.2 PDDL. Although its algorithmic approach has been less influential

than the action representation, most planning systems use one variant or another from
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the STRIPS language [42]. These STRIPS variants and the notable benefits of other

planning formalizations have given rise to the standardized syntax called the Planning

Domain Definition Language (PDDL) [42]. PDDL is the problem-specification lan-

guage originally developed by the AIPS-98 Competition Committee for use in defining

problem domains and has since been used in planning competitions [21]. The authors

identify that PDDL supports the following syntactic features:

• Basic STRIPS-style actions

• Conditional effects

• Universal quantification over dynamic universes (i.e., object creation and de-

struction),

• Domain axioms over stratied theories,

• Specification of safety constraints.

• Specification of hierarchical actions composed of subactions and subgoals.

• Management of multiple problems in multiple domains using differing subsets of

language features (to support sharing of domains across different planners that

handle varying levels of expressiveness).

PDDL’s aim was to provide an empirical comparison of planning systems and

the sharing of problems and algorithms. By having a language standard within the

planning community, benchmarks and system comparisons can be empirically evalu-

ated. To accomplish this goal, PDDL contains subsets of different planning techniques.

PDDL is a good tool for expressing deterministic environments but most environments

are dynamic and uncertain and thus a planner may require extensions to the notation.

Although the constructs of PDDL alone cannot accurately describe all concurrent be-

haviors that behavior-based systems implement, the existence of PDDL validates the

overall community approval of the benefits for formal representation in AI planning

problems.
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3.3 Deliberation to Control Interfaces

This section presents past and current research of systems and techniques that

try to interface deliberative plans and behavior execution. Researchers have identified

that behavior selection in behavior-based architectures is usually hand-coded to fit an

architecture and is amenable to change [2,43]. Therefore, some techniques have been

developed in attempt to automate this process to make the system more robust.

3.3.1 Universal Plans. Universal plans are plans that compactly represent

every classical plan [44]. The Universal plan is synthesized automatically and executes

the classical plan that corresponds to the environment that the agent encounters at

runtime. This approach requires that each state follows a Markov assumption and

that the programmer knows all of the states that the robot encounters. This leads

to a hard-coded Sequencer that requires recoding and testing whenever the system or

the working environment changes. System changes range from adding or removing a

behavioral capability to slightly modifying an existing behavior to function differently.

This technique is not appropriate for creating a robust and modular system and is

representative of the common hand-coded behavior selection techniques.

3.3.2 Behavior Coordination. Behavior coordination is the mechanism of

executing the behaviors that are selected for activation accordingly to accomplish

the high-level goals. In [43], the authors propose a generic architecture for dynamic

behavior selection, which can integrate existing behavior selection mechanisms in a

unified way. Although similar to the UBF in that this mechanism addresses the prob-

lem of selecting behaviors to accomplish high-level plans, it differs from the UBF in

that it dynamically changes arbitration techniques rather than dynamically selecting

the behaviors and the arbitration technique. Thus, it functions more as an arbitra-

tion technique switch. This functionality is accomplished in the Controller, rather

than the Sequencer, through the UBF using the arbitrated behavior hierarchy that

the Sequencer provides. In [43], the hierarchies are created and implemented for spe-

cific environments or tasks and do not display the dynamic nature that we plan to
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achieve in this thesis. Although the framework is modular for easily changing the

behavior selection strategies, the interface that links the decisions to change the be-

havior selection technique is still hand-coded to the specific behaviors that the system

employs.

Another approach for behavior coordination is to perform a dynamic struc-

turing of a hybrid behavior group coordinator by using priority and Finite State

Automata (FSA) [49]. Although this approach is dynamic, the majority of the work

is hand-coded in the FSAs before execution. Additionally, the technique presented

in [49] requires predefined FSAs as behavior group selectors (behavior hierarchies)

for each task that the system accomplishes. Lastly, in [39] they use a degenerative

sequencing layer that is merely a switch for activating different behavior sets (or

“navigation modes”). Therefore, the deliberative layer is really controlling the robot,

which is not always active.

3.3.3 Learning. Argall, et al [2], state that hierarchical state machines are

powerful tools for controlling autonomous robots, but the control hierarchy is often

hand-coded and error prone. To combat this, they use an expert learning approach to

learn to select the best state machine expert to execute for a particular task and state

belief. This method is beneficial for determining the best skill (or behavior) created

for a specific task. However, defining a reward in a dynamic environment and ensuring

that the system has learned the best expert for all cases is difficult. Additionally, the

behavior hierarchies are still hand-coded and this technique only determines the best

of the hand-coded behaviors.

3.3.4 Abstraction. Abstraction is a term that denotes some strategic form

of problem simplification that involves a representational transformation [36]. By

abstracting the problem space, highly complex environments can be distilled into

more manageable and relevant environments suitable for a planning domain. The use

of an abstraction hierarchy recursively abstracts the problem space from the original

space to the most abstract problem space. This is useful for eliminating complex
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details so the planning system can focus on the goal to achieve regardless of the

vast initial conditions. By distilling an abstraction to a base level, high-level plans

can map to base level behavior abstractions. Nourbakhsh [36] uses a state-based

abstraction hierarchy and assumes action models are expressed as arbitrary mappings

between knowledge states. However, the actual translation from abstract description

to concrete behavior connection is not clear.

The idea that “plans should abstractly describe” the intended behavior of the

system instead of strictly “dictating” it was presented in [37]. This idea contradicts

the traditional model of plans as executable programs that identify precise behaviors

to accomplish intended goals. In [38], Pfleger explores this concept by describing a

system that produces plans that accomplish tasks but not the actual method. The

method to be used is determined at “run-time”. If a plan abstractly describes the

intended behavior, then the abstract behavior representation can be a placeholder

that is filled at run-time with the actual behavior implementation. This allows for

interchangeable behaviors for dynamic updates. Pfleger refers to these plans as plans-

as-intentions and identifies that they are not well defined and need more information

for effective use in the plan-following phase. This thesis aims to abstract the behaviors

in a well defined manner so that a plan is generated and subsequently followed. The

inner workings of the behavior (or explicit implementation) are not known to the

“planner” and therefore, the “planner” plans tasks to be accomplished and the actual

method is determined at run-time of the behavior. This is ideal so the behavior

can determine (through sensor readings) the appropriate method to accomplish its

intended behavior. Actual “abstract plan” to behavior assignment is not addressed,

but is suggested to occur in the plan following phase of an agent architecture [22].

A weakness of abstraction is the potential of generating less optimal execution

plans because some underlying details are ignored. Therefore, the level of abstraction

must be effective enough to facilitate planning but not broad enough to overlook

crucial information. When abstracting behaviors, the higher-level planners assume

that the abstract representations map directly to output with minimal uncertainty.
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3.3.5 Plan Libraries. In [34], the authors argue that the performance of

plan-based control critically depends on the design and implementation of plan li-

braries. The planning system employs the use of low-level and high-level hierarchical

planning of a library of predefined low-level and high-level plans. Low-level plans are

“black-boxes” that the system does not have to reason out to employ. They achieve

certain goals by containing specific steps to achieving the designated goal. This poses

possible problems if the abstraction of the “black box” is too high or too low. If

the abstraction is too high, it may limit the behavioral functionality of the system.

Conversely, if the abstraction is too low, then the time spent in the search space may

outweigh the increased behavior functionality. A low-level plan’s main characteriza-

tion is that it substantiates the execution parameters that are abstracted away by the

high-level plans. High-level plans are the “plans that the planning mechanisms have

to reason about.” The high-level plan contains the mechanisms for goal monitoring,

failure detection and failure handling/recovery. At this high level of abstraction, the

high-level goals are achieved by reasoning/decomposing the goals into sub-goals that

the low-level plans can achieve. In this system, plans are expressed in RPL and thus

have the same limitations described in Section 3.1.2.

3.4 Summary

When translating plans into actual robot actions and behaviors, a number of

methods have been employed. Some architectures hardcode this mechanism like uni-

versal plans and some create the mechanism a posteriori to augment the current

architecture to perform more effectively (e.g. IXTET −E XEC). However different,

many of the techniques share common concerns and considerations, which include

translating desired goal to behavior execution, monitoring behavior performance, and

quickly reacting to environment changes. The constructs of plan execution languages

identify that using a standardized behavior representation enables robust and mod-

ular sequencing of plans to active behaviors. Additionally, abstraction simplifies the

search and allows the translation of high-level goals to low-level actions. The abstrac-
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tion of behavior functionality through its representation appears to be the limiting

factor for most of the techniques. By creating a behavior representation that is ro-

bust and modular, an appropriate sequencing mechanism can be developed to link

the decomposed plans of the Deliberator to the behavior execution of the Controller.
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IV. Sequencer Control Logic

Hybrid robot control architectures, have separate functional components (or lay-

ers) for plans, coordination, and actions. These layers can be generalized into

three composite layers based on increasing levels of abstraction and temporal com-

plexity: A reactive feedback control mechanism (Controller), a slow deliberative plan-

ner (Deliberator), and a sequencing mechanism that connects the first two compo-

nents (Sequencer) [17]. This approach promotes systems that perform well in goal-

directed and dynamic environments at the expense of system complexity. In various

architectures however, the connections between these layers are typically hardcoded,

so changes within one layer require modifications in other layers. By creating robust

connections between layers, the software becomes more maintainable and updates

within layers require reduced updating. The architectural design and implementation

proposed in this chapter achieve the aim of Research Goal 1 of a robust, modular

architecure design that has distinct transistions between layers and components by

meeting Objectives 1-3.

The majority of hybrid architectures link the Sequencer to the Controller through

the use of task-level control languages [48]. These languages require that each behav-

ior (e.g. task-net [16]) is expressed explicitly by the syntax of the language. Therefore,

an intimate knowledge of the syntax and semantics of the language is required to create

any behavior. Thus, the implementation is limited by the constructs of the language.

Our proposed representation (Research Goal 2) is a suggestive way to describe the

behavior for sequencing, but the actual implementation is left to the creativity of

the behavior architect. This means that the behavior representation is an abstract

interface for sequencing and not a mechanism to dictate the behavior’s concrete im-

plementation. Thus, two behaviors can have the same descriptive representation, but

the implementation and effective functionality may differ drastically.

This chapter presents a descriptive representation of reactive robot behaviors

and the environment that the behaviors anticipate and affect. The behavior repre-

sentation promotes robustness and modularity as being a semantic suggestion rather
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than a syntactical burden like that of the task-level control languages currently in

use (see Section 3.1). The semantic suggestion describes “how” the behavior func-

tions. Whereas, task-control languages restrict the implementation of the behavior

to the constructs of the language (see Section 2.2.6). This chapter also describes

the dynamic behavior hierarchy generation algorithm development for the sequencer

control logic. The hierarchy generation algorithm uses the abstract behavior repre-

sentation interface to create a robust link between the Sequencer and the Controller

in a hybrid reactive control architecture (Research Goal 3). The algorithm uses the

behavior representation to search and select appropriate behaviors for activation and

deactivation to complete system objectives. The Sequencer implements the hierarchy

generation algorithm and seamlessly links to the Controller for behavior execution.

By using the hierarchy generation algorithm and behavior representation, changes to

the system code for behavior addition and functional system changes is reduced to

the description of the behavior and minimal changes to the state objects.

The remainder of this chapter presents the proposed TLA design that is ideal for

use with the hierarchy generation logic and the behavior representation developed in

this thesis. This is followed by a description of an example domain that is referenced

throughout the chapter. The next section presents the proposed representations for

behaviors, plan objectives, and state objects. Then, we present the dynamic hierarchy

generation logic that utilizes the proposed representations to seamlessly translate from

behavior planning in the Sequencer to behavior execution in the Controller. Finally,

an implementation for each of the representations is presented followed by a summary

of the system.

4.1 Architecture Design

Three-layer architectures (TLAs) merge deliberative planning and reasoning

with a reactive control unit to accomplish complex, goal-directed tasks while quickly

responding to dynamic environments. As discussed in Section 2.2, many successfully

implemented architectures [5, 11, 29, 46] are analogous to the TLA paradigm. There-
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fore, the TLA paradigm is the chosen architectural design paradigm for satisfying

Research Goal 1 and implementing the proposed representations and hierarchy gen-

eration logic of this thesis. Research Goal 1 calls for a robust, modular architecture

design and the TLA paradigm’s functional layering inherently lends itself to a robust,

modular design.

As stated above, TLAs have three main layers: a reactive feedback control

mechanism (Controller), a slow deliberative planner (Deliberator), and a sequencing

mechanism that connects the first two components (Sequencer) [17]. The general de-

sign for a TLA is shown in Figure 2.2. However, Figure 4.1 shows a more detailed

view of the TLA used for implementing the behavior representation and hierarchy

generation logic presented in this thesis. Figure 4.1 shows the layout of the pro-

posed TLA design and how the layers interact with the state, robot controls, the

environment (sensors), and other layers. As shown, the architecture is hierarchical

and state-based where higher levels use a more abstract state data representation and

focus on longer time scale effects. The state receives sensor data updates and makes

the data available to the whole system. The remainder of this section provides a

high-level overview of proposed TLA design and the transitions between layers and

components.

4.1.1 TLA Data Flow and Transitions. Before discussing each functional

component in the architecture, a general overview of the flow of data and the tran-

sition mechanisms between layers is presented. By establishing the mechanisms and

flow of data, the functionality of each layer is given more context. Figure 4.1 shows

a general view of how each layer interacts. Each arrow represents the transfer of in-

formation between layers. The hierarchical design reduces inter-system dependencies

and couples the layers by the mechanism (or object) used for sending information

between layers. Since the architecture is a goal-driven reactive architecture, all layer

functionality is based on state conditions and system objectives. Therefore, the layers

45



Figure 4.1: Ideal Architectural Layout of a Hybrid Reactive Control Robot Archi-
tecture for Utilizing the Proposed Representations
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of the TLA either request data from the state or receive commands from one layer up

in the hierarchy.

State data is an abstract representation that estimates the environment that

the system occupies. The state data is made available for all the layers to interpret

the data as best appropriate for that particular layer. The sensors gather data from

the environment that it perceives and places this data within the state. Since the

Sequencer is responsible for maintaining the abstract state representation, it is the

only layer that has access to request and manipulate state data. The Sequencer uses

the state to set parameters for the Deliberator and Controller to process when reacting

to commands passed through the hierarchy as a result of the high-level objectives

initiation.

The high-level objectives are typically sent from an outside source (e.g., a human

user) and represent the desired intent of system’s performance or functionality. These

high-level objectives are abstract commands, such as “Collect trash and place it into

the trash bin”. The Deliberator receives the objectives and decomposes them into ob-

jectives plans (OPs). The plans are of a lower abstraction level that give more detail

and ordering options and are described more thoroughly in a later Section 4.4.1. For

example, “Collect trash and place it into the trash bin” may become a set of abstract

goals that indicate that trash should be found and moved to a bin, identifies what

characteristics indicate an item of trash, and where the trash bin is located. These

OPs are then passed to the Sequencer. The Sequencer processes the OPs based on

objectives and state conditions and generates an arbitrated hierarchy of behaviors for

the Controller to execute (behavior hierarchies are described more in Section 4.4.5).

Then, the Controller executes the behavior hierarchy, which generates an action rec-

ommendation. This action recommendation contains motor settings to apply to the

robot controls that affect change in the environment. These changes are intended to

satisfy the high-level objectives given enough time based on an abstract estimate of

the environment. Table 4.1 summarizes the layer data flow and the mechanisms that

couple the layers.
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Transition Mechanism
User→Deliberator High-Level Objectives
Deliberator→Sequencer Objectives Plan
Sequencer→Controller Arbitrated Hierarchy of Behaviors
Controller→Robot Controls Action Settings

Table 4.1: Data flow transitions and the mechanism used to couple the layers within
a TLA

4.1.2 Controller. Layers within hybrid architectures are typically sepa-

rated by abstraction and temporal complexity. Therefore, the Controller is respon-

sible for the low-level, reactive functionality that is accomplished in real-time with-

out knowledge of high-level goals. A software package called the Unified Behavior

Framework (UBF) satisfies these criteria [52] and provides the defining line for our

Controller.

The UBF is a reactive controller that abstracts the specific implementation

details of specialized behaviors and permits behavior reconfiguration during execu-

tion [53]. Traditionally, a mobile robot design implements a single behavior archi-

tecture, thus binding its performance to the strengths and weaknesses of that archi-

tecture. By using the UBF as the Controller, a common interface is shared by all

behaviors, leaving the higher-order planning and sequencing elements free to inter-

change behaviors during execution in attempts to achieve high-level goals and plans.

If the controller is capable of using the behaviors in their abstract form, then it can

use any concrete behavior in a uniform manner. Therefore, new behavior logic can be

added without changing the Controller’s implementation. By establishing behavior

architectures in the context of the UBF, one can dynamically interchange between ar-

chitectures capitalizing on the strengths of popular reactive-control architectures, such

as Subsumption [8], Utility Fusion [41] and Colony architectures [9]. Thus, exploiting

the tight coupling of sensors to actions that reactive-control architectures achieve.

The common behavior interface is the establishing link between the Sequencer and

the Controller by passing a behavior that represents an arbitrated behavior hierarchy

that accomplishes the high-level objectives.
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4.1.3 Deliberator. The Deliberator performs high-level planning and reason-

ing tasks [17]. This layer receives high-level, abstract requests (high-level objectives)

provided by a “higher authority agent” that identifies the overall objectives, often

a user. The Deliberator must then reason about the request and generate an OP

consisting of a sequence of high-level abstract taskings that is passed down to the

Sequencer. At the time of this thesis, we do not have a Deliberator in place and

we therefore hand-generate the decomposed plans that the Deliberator sends to the

Sequencer.

4.1.4 Sequencer. The Sequencer transforms the OPs from the Deliberator to

the actions of the Controller and updates the state accordingly for re-planning. Its job

is to select the behaviors that the controller uses to accomplish the objectives that are

set forth by the Deliberator [17]. This requires that the Sequencer set parameters for

the behaviors and change the active behaviors at strategic times to meet objectives.

To do this, the Sequencer must monitor and update the state as appropriate. As

seen in Figure 4.1, aside from sensors updating their data in the state, the Sequencer

also stores information in the state. This allows for the setting of parameters and

state variables that behaviors and other layers use. In line with the Research Goals

and Objectives of this thesis, our vision for the Sequencer is of a robust software

module that, after initial implementation, requires minimal software maintenance and

modifications for system changes. We believe that this is accomplished by using the

behavior representation (Research Goal 2) and hierarchy generation logic (Research

Goal 3) proposed in this thesis. Like the behavior control logic in the UBF, the

Sequencer uses the behavior representation as an abstract interface for sequencing

the behaviors without knowledge of the behavior’s concrete implementation. The

transition from the Sequencer to the Controller is the passing of a composite behavior

module that represents an arbitrated hierarchy of behaviors that, when executed,

accomplish high-level objectives.
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The Sequencer contains a number of components that perform specialized tasks.

Figure 4.2 shows the breakout of the Sequencer’s functional decomposition. These

components are: Behavior Library (BL), Resource Manager (RM), Behavior Plan-

ner (BP), and Behavior Executive (BE). The next sections briefly describe the flow

of information from objectives plan to arbitrated behavior hierarchy and also gives

an overview of each component and its significance to the dynamic sequencing of

behaviors for accomplishing complex tasks.

Figure 4.2: Sequencer Component Breakout

4.1.4.1 Sequencer Data Flow. The Sequencer components in Fig-

ure 4.2 perform specialized tasks that aid in translating the OPs to a behavior hier-

archy that is passed to the controller. Like in Figure 4.1, the arrows represent infor-

mation that is provided from one component to another. As seen, the coordinating

component of the Sequencer is the Behavior Executive where it requests information
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or services from the other components required for generating the behavior hierarchy.

In conjunction with Figure 4.2, the timing diagram in Figure 4.3 illustrates the flow

of data in translating an OP to the arbitrated hierarchy of behaviors that is sent to

the Controller for execution.

When the Behavior Executive (BE) receives the OP from the Deliberator, it

enters a hierarchy generation loop for translating the OP to an arbitrated hierarchy of

behaviors that, when executed, accomplish the objectives set forth by the Deliberator.

The BE requests a set of available system behavior representations from the Behavior

Library (BL). After receiving the available behavior representations, the BE requests

an analysis of the available behaviors from the Resource Manager (RM). The RM

responds to the request with a subset of the behaviors that require resources (or

data) that the system can currently supply. This subset is the basis of all searches

performed for behavior planning, which ensures only behaviors that have its required

data available are selected for activation. The BE then requests a preprocessing of the

OP with the viable behavior set from the RM. The Behavior Planner (BP) returns

an unsolved partial order plan that contains the core set of behaviors and ordering

constraints required to accomplish the abstract goals of the OP. When the BE receives

a valid partial plan, it sends another request to the BP to solve the partial plan using

the set of viable behaviors from the RM. The BP solves the partial plan, if possible,

and returns a solution that consists of the set of behaviors required for activation

and the ordering constraints. Using the partial plan solution the BE constructs the

arbitrated hierarchy of behaviors and sends it to the Controller for execution. It

also sends the hierarchy to the BL and RM. The BL activates the behaviors of the

hierarchy and deactivates the remaining behaviors of the library. And, the RM uses

the current behavior hierarchy to manage the resource that the current hierarchy

requires.

4.1.4.2 Behavior Library. The Behavior Library component is respon-

sible for maintaining the concrete implementations and associated representations of

51



Figure 4.3: Timing diagram for the translation of an objectives plan to the arbi-
trated hierarchy of behaviors that is sent to the Controller for execution. An object
sent to a component is identified within the parenthesis. For example, the Behav-
ior Executive sends System Behaviors to the Resource Manager and receives Viable
Behaviors as a response.
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all the behaviors implemented within the system. The library initializes these be-

haviors and supplies the set of available behavior representations to the Sequencer.

By making this component its own separate entity, the knowledge of the addition or

removal of a specific behavior is contained within this component and is transparent

to the other components. A system’s fundamental capabilities are based upon the

behaviors that are implemented within the system. Therefore, the Behavior Library

component creates a system that, when its fundamental capabilities change, requires

minimal change throughout the system to adapt to the change (Research Goal 1).

For these changes to be transparent to the rest of the system, the behaviors must be

described in an abstract representation that other components can use in a uniform

manner (Research Goal 2).

Other then being a storage device for containing the set of available behav-

iors, the Behavior Library manages the real-time behavior threads that activate and

deactivate the behaviors as dictated by the arbitrated hierarchy of behaviors. Its man-

agement capabilities maximize the real-time aspects of the behaviors while supplying

the representations of these behaviors to components that are at a higher temporal

complexity than the real-time behavior thread of execution. Therefore, the Behavior

Library provides the mechanism for connecting the time-independent representation

to the real-time execution of the behavior thread.

4.1.4.3 Resource Manager. Management of the system’s hardware

resources is accomplished through the Resource Manager (RM). This component

monitors system resources and optimizes their use based on current tasks, planned

objectives, and active behaviors [14]. The Resource Manager also answers queries

about resource availability and the prospects of a behavior’s activation based on its

resource requirements defined in its behavior representation. The utilization of this

functionality is discussed more in Section 4.4.2.

4.1.4.4 Behavior Planner. The Behavior Planner generates a set of

behaviors that possibly satisfy a desired set of goals (i.e., the OP). This component
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uses the behavior representation to systematically generate plans that describe the

behaviors and the ordering constraints for accomplishing the requested goals. These

plans consist of a set of behaviors and the ordering constraints necessary to accomplish

the objectives of the OP. This functionality is currently implemented using a simplified

version of RePOP (Reviving Partial Order Planning) [35], which is a variant of Partial-

Order-Planning (POP). However, by creating a modular design, this component can

employ any planning technique modified to generate a set of behaviors and a set

of ordering constraints. Since the Behavior Executive is generating a hierarchy of

behaviors based on the planners solution, a partial plan is efficient for describing

behavior interactions as opposed to total order plans.

4.1.4.5 Behavior Executive. The Behavior Executive is the link from

the high-level goals of the Deliberator (the OP) to the behavior execution of the Con-

troller. As shown int Figures 4.3 and 4.2, it receives the the OP from the Deliberator

and translates them into arbitrated behavior hierarchies based and their description

and system availabilities. The Behavior Executive uses the behaviors supplied by

the Behavior Library and queries the Resource Manager to reduce these behaviors

to a set that accomplishes their assigned tasks based on the availability of required

resources. It then sends the behaviors and the initial plan to the Behavior Planner to

generate a core set of behaviors and ordering constraints that accomplish the desired

goals if activated. After receiving a sequential behavior solution to the initial plan,

it creates an arbitrated hierarchy of the solution behaviors that activates/deactivates

the appropriate behaviors, at the appropriate times, to achieve the desired function-

ality. Finally, it sends the arbitrated hierarchy of behaviors to the Controller for the

Controller to execute, to the Behavior Library for the activation and deactivation

of the real-time behavior execution threads, and to the RM for the management of

required resources. The hierarchy generation algorithm, which is described in more

detail in Section 4.4, is implemented within the Behavior Executive and creates the

defining, physical link from the Sequencer to the Controller. The link is the passing
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of an arbitrated behavior hierarchy that is an executable behavior composite that the

Controller uses to apply reactive control (see Table 4.1).

4.1.5 Discussion. Since integrating individual components into complete

systems is ideal for making robust, modular systems [20], the architecture design

described in this section utilizes the system-of-systems approach. By decomposing

the layers and components to specific functional properties, the system as a whole

becomes more modular. When modifications are made within one component, the

other components require minimal, to no, modifications. This reduces maintenance

times and increases upgrade opportunities. The layers and components within this

architecture can be implemented to be independent of surrounding components are

coupled only by the linking mechanisms that the individual components and layers

allow. Therefore, architecture design satisfies the goal set forth by Research Goal 1

by fulfilling Objectives 1 and 2 that were define in Chapter I.

4.2 Example Domain

This section describes an example domain that is referenced for the remainder

of this chapter. The example domain provides a consistent and simple example for

describing how the behavior representation and control algorithm are applied. There-

fore, consider a mobile office janitor robot that is tasked with discovering trash and

placing it into its appropriate bin. This robot system is supplied with Sonar and

Laser range data, a pan-tilt Camera with image recognition capabilities, a Gripper,

and a navigation system (Odometry). Although the robot originally had an Audio

output, it has been removed due to hardware failure. However, the behaviors that

require the Audio output are still implemented in the system. This creates a fail con-

dition used in a later example. The robot receives high-level tasks from an outside

source that describes objects that are considered trash or sets the known location of

the trash bin. The robot is programmed with the seven behaviors shown in Table 4.2

and their associated representation is described in Appendix B.
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# Name Sensors Function

B.1 avoid-obstacle Laser

Map

Avoid obstacles. Use an optimal path to a
target location, if location is given

B.2 deliver-object Odometry Go-to target location
B.3 get-object Grippers

Camera

Laser

Pick up target object

B.4 greeting Camera

Audio

Audibly greet recognized employees

B.5 release-object Grippers Release held object
B.6 scan-for-trash Camera Look for and identify objects (i.e. trash)
B.7 wall-follow Sonar

Map

Follow walls until all areas have been seen

Table 4.2: Example Domain Behaviors. The # column indicates the reference
number of the behavior’s full representation provided in Appendix B.

4.3 Behavior Representation

Behaviors are developed to accomplish a specific task or goal. By creating a

standardized way of abstractly describing the characteristics of a behavior, one can

create a mechanism that searches and selects appropriate behavior activations and

deactivations for accomplishing desired objectives. This allows for the Sequencer

to be robustly implemented to handle abstract behavior descriptions in a uniform

manner.

Although behaviors interact in dynamic and stochastic environments, a behav-

ior’s perceived environment can be viewed as a deterministic environment. Behaviors

are not written to react to unknown stimuli, they react to know stimuli that are

possible within their perceived environment and therefore can be represented as a de-

terministic function. By combining multiple, concurrent behaviors that react to their

own specific stimuli, the appearance of stochastic functionality is achieved. Since

the environment is responded to deterministically within a behavior representation,

we can design the representation of behaviors around the deterministic environment

conditions that it expects.
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Keeping with the rule that reactive behaviors tightly couple sensing to action,

a behavior’s actions are described by what it senses and the effects it has on the

environment. A behavior is informally defined as the set of motor commands that

trigger in response to sensor readings for accomplishing a programmed task. For

example, if a set of sensors indicates that there is an obstacle impeding forward

motion, an avoid-obstacle behavior applies appropriate motor settings to steer the

robot away from the obstacle without collision. Behaviors are as complex or as simple

as the architect determines appropriate.

A simple behavior has one set of outputs that is triggered by one set of input

conditions. A complex behavior has multiple output sets responding to multiple input

sets. We refer to these input-to-output paths as activation-paths (APs). Each AP

description must include the initial conditions that it assumes to be true/false before

execution and the output conditions that it creates.

However, the Sequencer requires more information. Although the input condi-

tions dictate specific output conditions, a behavior effects other conditions as well.

Behaviors control various settings, accomplish different abstract goals, and suggest a

confidence factor (votes) for its action recommendations. All of these characteristics

play a role in choosing combinations of behaviors to accomplish high-level tasks and

therefore must be including in an AP. Each AP represents a single functionality of

the behavior and is represented as the tuple:

AP= {D, G, I, O, C, v}

D is list of sensor, or computed, data required for the behavior to function properly.

G is the set of high-level abstract goals that the AP accomplishes. I and O are the

set of input and output state conditions. C is the set of system controls that the

behavior modifies. Finally, v is the vote that the behavior generates when it delivers

an action recommendation for the AP. The following sections present each of these

components in more detail.
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For the remainder of this thesis, the displaying convention for variable/names

use the following fonts and letter casing:

• behavior-name

• environment-condition

• Sensor-Data

• Abstract-Goals

• SYSTEM-CONTROLS

• source-code

4.3.1 Required Data (D). Since a behavior is a tight coupling of sensor read-

ings to motor commands, D represents the set of sensor, or computed, data required

for the behavior to function properly. This data includes computed data that is di-

rectly related to the environment, but not directly from a sensor. For example, a basic

avoid-obstacle behavior implementation may require just Sonar data so that it can

arbitrarily move away from an obstacle. Whereas, an advanced avoid-obstacle be-

havior may require Laser and Map data to avoid the obstacle and remain on track to

a specific target location. The Map data is computed data generated from numerous

sensors, where the Laser and Sonar are directly related to hardware sensors. The

basic implementation has a set D with one element (Eq 4.1), and the advanced im-

plementation has a set D with two elements (Eq 4.2). If the system cannot provide

all the data constraints in D, then the APs cannot be accomplished.

D = {Sonar} (4.1)

D = {Laser, Map} (4.2)

4.3.2 Abstract Goals (G). When behaviors are written, they are writ-

ten to perform a specific function or accomplish a specific task. These high-level

views of what the behavior accomplishes are represented in G. Using the exam-

ple above, the basic avoid-obstacle behavior has one item in G (Obstacle-Avoidance),
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and the advanced implementation also has one item in G but it is a different abstrac-

tion (Obstacle-Avoidance-Target). These values are used to give a high-level representation

without moving to the decomposition (or abstraction) level of the output conditions

in O. This allows for high-level planners to determine if there are behaviors that

accomplish the intended goals. Additionally, a preprocessing of a high-level plan

determines if the goals are accomplished by the available behaviors and therefore

generates a partial plan without concern of the underlying implementation. If the

pre-processing determines that the available behaviors cannot accomplish the goals

of the high-level planner, it rejects the plan without entering a more detailed search

for the plan’s solution.

The Sequencer must have a way of determining concrete goals from idealis-

tic goals. Concrete goals are goals that are actively pursued and can be verified as

achieved, such as Go-To-Location. Whereas, idealistic goals are goals that are more

difficult to verify and are typically met if necessary. A good example of an idealistic

goal is Obstacle-Avoidance. This goal should be accomplished if an obstacle is encoun-

tered, but the Sequencer should not actively search for obstacles just to accomplish

this goal. By identifying which goals are concrete and which goals are idealistic, the

search for goal completion is restricted to just the concrete goals. The convention for

initial conditions in the next Section eliminates the need for additional representation

between concrete and idealistic goals in the set G.

4.3.3 Initial Conditions (I). The initial conditions of a behavior (I) repre-

sent the set of environment variables that, when true, generate an action recommenda-

tion and vote for the behavior’s activation. Additionally, I represents the conditions

required for the AP to produce the action outputs in (O), the effects to the controls

of (C) and the vote v for accomplishing the abstract goals in G. For example, the

avoid-obstacle behavior does not vote to control movement until it reads that there

is an obstacle within its projected path. Thus, its set I consists of one element (ob-

stacle). The set I is an abstract representation of the initial conditions and does not
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dictate the implementation of how to detect an obstacle. Therefore, this representa-

tion accepts any abstraction of information and places the burden of identifying these

abstract conditions on the behavior’s programmer.

There are two types of initial conditions, active and passive. Active conditions

are the initial conditions that are actively pursued to activate the AP. Conversely,

a passive condition is a condition that causes the AP to execute but is not actively

pursued for goal accomplishment. Passive conditions are typically associated with

idealistic goals like Obstacle-Avoidance but can can be used for conditional activation

such as Object-Released if gripper-closed is met.

An example of active conditions are get-object’s gripper-open and tracking-

object conditions (see B.3). The Sequencer must actively pursue the activation of

this behavior by ensuring the initial conditions are true for the behavior to activate

the appropriate AP. For passive conditions, the Sequencer should ignore the initial

conditions and not actively pursue meeting these conditions. An example of passive

conditions for meeting an idealistic goal is avoid-obstacle’s initial condition of ob-

stacle to meet the passive goal of Obstacle-Avoidance (see B.1). As stated above, the

Sequencer should not actively pursue meeting the obstacle condition just to meet the

goal. Another example of a passive goal, but one that is used to meet a conditional

concrete goal, is release-object’s initial condition of gripper-closed to meet the con-

crete goal of Object-Released (see B.5). Since the goal is to release an object by opening

Grippers, then the Sequencer is not required to seek out a gripper-closed condition

by grabbing an object just to meet the gripper-closed condition. The Sequencer will

have the behavior in place to release the object (or open the grippers) if necessary.

Since a behavior’s functionality is described by the APs that it contains, the

number of APs that a behavior contains dictates the complexity of the behavior.

Each AP is required to contain a different set I. Therefore, a separate AP is re-

quired for each set of initial conditions that cause the behavior to generate a different

output/vote. This representation allows for arbitrated behavior hierarchies to be de-
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scribed as a composite behavior with multiple functionalities dependent upon different

initial conditions. Therefore, this convention and representation allows the Sequencer

to generated behavior hierarchies that are represented as a single composite behavior.

These composites can be saved in the Behavior Library as new behaviors and used in

later searches similar to a RAP [16].

A pictorial representation of the avoid-obstacle behavior with multiple APs

is shown in Figure 4.4 and its tabular representation is shown in Behavior Represen-

tation B.1 (see Appendix B). The figure illustrates that, dependent upon the initial

conditions, the behavior has different functionality. The behavior votes differently

when there is an obstacle in the path, as opposed to, when there is an obstacle in the

path and a target-location-set has been established. Also note that the figure shows

both of these initial condition sets are passive. The set ordering of these APs are not

arbitrary and play a part in AP selection based on initial conditions.

Priority of AP selection is based first on comparative conditions and then on set

order. Consider the janitor robot’s avoid-obstacle behavior B with two APs (Fig-

ure 4.4). These APs are activated when the passive conditions of an obstacle or an

obstacle and a target-location-set is met (IA1={obstacle} and IA2={obstacle, target-

location-set}). If the two condition sets are met, then they are first compared. Since

IA1 is a subset of IA2 and IA2 is more specific, then IA2 is chosen. Conversely, if one

was not a subset of the other, then the choice is made by its order in set B and A1 is

chosen over A2.

4.3.4 Postconditions (O). The postconditions O represent the set of envi-

ronment effects that the behavior intends to achieve. This intent is based on action

recommendations for the behavior at the given initial state I. It can be viewed as

the functionality of the behavior if given adequate time based on an approximation

of the state and uncertain effects. The effects on the environment can add compo-

nents or remove components. If the behavior is a basic avoid-obstacle behavior,

then the postcondition adds avoid-obstacle but removes obstacle. However, if it is a
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B = {A1, A2}

DA1
= {Laser}

IA1
=passive{obstacle}

DA2
= {Laser, Map}

IA2
=passive{obstacle, target-location-set}

OA1
=

adds{avoid-obstacle}
deletes{obstacle}

CA1
= {VX, TURNRATE}

GA1
= {Obstacle-Avoidance}

vA1
= {2}

OA2
=

adds{avoid-obstacle-target}
deletes{obstacle}

CA2
= {VX, TURNRATE}

GA2
= {Obstacle-Avoidance-Target}

vA2
= {10}

avoid-obstacle

A1

A2

Figure 4.4: Behavior Activation-Paths for avoid-obstacle

more advanced avoid-obstacle behavior that finds the optimal avoidance path to

reach a desired goal location, then the postconditions add avoid-obstacle-target but

removes obstacle. For the latter example, Figure 4.4 shows the postconditions that

are associated with each initial conditions IAx
in Ax. With each of the behavior’s

APs, there must be an associate postconditions set that corresponds to an initial

conditions set. Therefore, for each Ax in A, there is a corresponding postcondition

set OAx
that corresponds to IAx

. As seen, with a target-location-set, the behavior

functions as an advanced avoid-obstacle behavior and as a basic avoid-obstacle

behavior otherwise.

4.3.5 Control Settings (C). Behaviors are written to affect settings for

specialized controls. Most commonly, these are motor controls. A behavior potentially

affects the control settings of single or multiple controls. Dependent upon which

controls are set, the control loop determines the most appropriate arbiter for use with

a set of behaviors. The controls that the behavior affects is denoted by the set C.

This set, like postconditions O, requires values at each AP dictated by the initial
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conditions set I. Figure 4.4 shows the sets of control settings for the avoid-obstacle

behavior(CA1 , CA2).

4.3.6 Votes (v). The value v in an AP represents the vote for that exe-

cution branch. Since each Ax generates an action recommendation, there must be

a corresponding vote vAX
for each Ax (Figure 4.4). This value is an arbitrary value

that relays the strength of the action recommendation. They are used to determine

the output of different arbitration techniques, which are more thoroughly discussed

in Section 4.4.5.

4.4 Dynamic Behavior Hierarchy Generation

This section discusses the use of the formalized description of behaviors, Sec-

tion 4.3, for dynamically selecting appropriate behaviors and arbiter hierarchies to

accomplish desired objectives, which is in direct response to Research Goal 3. The

Sequencer begins the hierarchy generation algorithm by searching through a library

of behaviors to generate an action hierarchy package, which is a scheduling of behav-

ior activations/deactivations that will eventually accomplish the objectives set forth

by the Deliberator. Some behaviors may require activation, then deactivation and

additional activations later in time. This complicates the search space since it allows

cyclic branches and requires system monitoring. To make the automated link be-

tween the Sequencer and the Controller, we propose a hierarchy generation algorithm

in the Sequencer that dynamically generates a behavior hierarchy. This mechanism is

contained in the Behavior Executive so named for its similarity in concept to the pro-

cedural executive in the LAAS architecture, Proprice [30]. Informally, the hierarchy

generation algorithm performs the following control loop:

1. Receive objectives plan (OP) from Deliberator

2. Identify behaviors that require only data that the robot can provide

3. Preprocess the OP to create a partial plan from the available behav-
iors that accomplish the desired high-level objectives

4. Generate a solution plan to the partial plan

63



5. Generate and validate an arbitration that accomplishes objectives
and satisfies the solution plan

6. Generate arbitrated hierarchy of behaviors and send to controller

7. Monitor for progress, hardware changes, and new OPs

Before the hierarchy generation algorithm begins, it assumes that the Sequencer

receives, from the Deliberator, a goal-set (or objectives plan) that describes the

desired functionality of the system. This goal-set contains concrete and idealistic

goals that suggest the ordering and priority of goal completion. Idealistic goals like

Obstacle-Avoidance are included in this goal-set since situations may occur that require

these goals to be accomplished or prohibit these goals from being planned. For in-

stance, if a tasking to get the center of a room is ordered and the Resource Manager

identifies that range-data either are not needed or cannot be activated. Then, a goal-

set with Obstacle-Avoidance will fail to generate a behavior hierarchy since the Resource

Manager will restrict any behaviors that require range data, which the behaviors

that perform Obstacle-Avoidance require. Additionally, the determination or steadfast

rule of what concrete or idealistic goals to achieve should not be decided within the

Sequencer, but higher in the decision hierarchy, namely the Deliberator.

4.4.1 Receive Objectives Plan From Deliberator. The objectives plan (OP)

that the Sequencer receives from the Deliberator contains a list of goals g that have the

same value-type of goals found in the behavior representation’s set of abstract goals G.

The OP for the example domain is shown in Table 4.3. Each goal in the OP has an

assigned sequence number and activation priority. For goals that should happen in

sequence, the sequence number dictates the order (e.g. Go-To-Target happens before

Release-Object). If two goals have the same sequence number, then they are expected

to be accomplished before the next sequence but in no particular order. However, if

there is a cause for competition, then the activation priority dictates precedence. For

example, an Obstacle-Avoidance goal and Explore goal can be accomplished in the same

sequence, but when an obstacle is threatening collision, the Obstacle-Avoidance goal is

accomplished since it has a higher activation priority. The sequence of the OP has
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an ascending precedence and the activation priority has a descending precedence. For

example, Obtain-Object happens before Release-Object because Obtain-Object has a lower

sequence number. Conversely, when in competition, Obstacle-Avoidance-Target is met be-

fore Go-To-Target since they have the same sequence number and Obstacle-Avoidance-Target

has the higher priority value.

Goal Sequence Activation Priority

Obstacle-Avoidance 1 2
Target-Object 1 1

Explore 1 1
Obtain-Object 2 1

Obstacle-Avoidance-Target 3 3
Go-To-Target 3 2
Release-Object 3 1

Table 4.3: Objectives Plan for janitor robot

4.4.2 Available Behaviors . When an objectives plan enters the control loop,

the hierarchy generation algorithm begins by placing the behaviors B that require

only available data into a library of viable behaviors L. This process is completed

everytime a new objectives plan enters the control loop. It is easy to envision a system

that uses a Resource Manager that conserves energy by deactivating expensive sensors

during critical times or deactivating sensors due to failure [14]. Therefore, a check of

available data at every loop is necessary. This step identifies behaviors as viable if

all APs, from initial condition to postcondition, are accomplished with the available

data. From the example domain, the greeting behavior is not selected for search

since the system does not have an AUDIO output. All other behaviors are viable.

4.4.3 Preprocess Objectives Plan. This step ensures that the objectives from

the OP can be accomplished with the viable behaviors that the Resource Manager

identified in L. A behavior is selected as a candidate if it contains a desired objective g

from the OP in a GAx
. By generating a partial plan with the ordering constraints

from the OP applied to these behaviors, the sequence of goal accomplishment is
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maintained. The starting state is either the current state or the projected output

state of the behavior hierarchy that satisfies the OP that precedes the current OP.

The end state is the outputs O of the behaviors that accomplish the goals of the

last sequence in the OP. If each of the objectives in the OP cannot be assigned an

accomplishing behavior, then the control loop generates a failure and jumps to step 7.

Otherwise, we then search for additional behaviors that link the behavior sequences

together and solve the partial plan. The behaviors and ordering constraints generated

from the Op in Table 4.3 are shown in Table 4.4. As seen the ordering constraints

maintain the sequence established by the OP and each behavior’s set G contans a

match to at least one goal g in the OP.

Behavior OP Goal Match Order Constaints

wall-follow Obstacle-Avoidance wall-follow → get-object

scan-for-trash Target-Object scan-for-trash → get-object

wall-follow Explore get-object → avoid-obstacle

get-object Obtain-Object get-object → deliver-object

avoid-obstacle Obstacle-Avoidance-Target get-object → release-object

deliver-object Go-To-Target

release-object Release-Object

Table 4.4: Preprocessed Objectives Plan for janitor robot example domain. The
behaviors shown match an Achieved Goal from their behavior representation (see
Appendix B to a desired goal from the OP of Table 4.3. The ordering constraints name
the behavior that must accomplish its goals before (→) the next behavior accomplishes
its goals.

4.4.4 Generate Solution. This step uses the preprocessed partial plan as

the starting point in generating a solution. This step produces a plan with a list

of behaviors and their associated ordering constraints. Since we started with the

partial plan that satisfies the sequential requirements of the OP, the solution will

satisfy the sequential constraints of the OP as well. However, the solution may im-

pose more sequential restrictions on behavior activations. Since the preconditions I

and the postconditions O do not represent the atomic processes that Partial-Order-
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Planning (POP) expects [42], a modified planning algorithm is used to incorporate

the complexity of the concurrent taskings that each behavior can encounter.

The planner uses the initial conditions to determine the conditions that must

be met for behavior activation. However, if the initial condition is a passive behavior,

the planner ignores the conditions and assumes that the postconditions are met when

necessary. This reduces the search space but also introduces new challenges to the

planner since the initial conditions are not linked to the outputs of a previous behavior,

but previous outputs could dictate the passive activation. This scenario is not handled

until arbiter selection and validation (step 5).

The benefits of using this planning approach allows sequential tasks to be broken

into subtasks if necessary. A plan is made for the first subtask while the others are

processed after subsequent subtasks complete. Each level of sequencing priority can

be separated as a subtask using a Highest Activation arbiter [31] where the Sequencer

monitors for the correct output-input pairs to advance sequence priority levels. Or,

the sequencer can search for an arbitration that is capable of combining some, or

all, of the sequential and activation priorities into one arbitrated behavior hierarchy.

The difference between this planning approach and the POP approach is that POP

requires a specific end plan. This plan is a set of goals that have priority and sequence

numbers so that hierarchical reactive behaviors can accomplish them. Therefore, it

is not simply advancing from one initial state to a specific end state. But, rather the

current state to an end state that eventually accomplishes all of the intended goals

in the suggested order. For simplicity, this example problem’s solution plan happens

to be the same as the preprocessed partial plan since all of the behavior outputs and

establish orderings, is a solution to the partial plan.

4.4.5 Arbitration Selection and Validation. Arbiter selection is a crucial

step. The arbiter ensures proper fusion, priority activation, and ordering of behavior

action recommendations. The arbitration selection is based on two different aspects.

These aspects are the controls that the behaviors affect C and how the behaviors vote
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for each branch and what that branch affects. For example, the scan-for-trash be-

havior controls only the pan and tilt of the CAMERA-PTZ and the wall-follow behavior

controls just the forward velocity (VX) and TURNRATE and are therefore cooperative be-

haviors. Thus, a Utility Fusion arbiter [40] is an ideal arbiter choice for this behavior

combination. Conversely, the avoid-obstacle and deliver-object behaviors both

control VX and TURNRATE and are therefore competitive, but avoid-obstacle has a

higher activation priority (Table 4.3), so a Highest Activation arbiter is best for this

combination (although a Utility Fusion arbiter will produce the same result for this

case). An example of a final arbitrated hierarchy of behaviors for the example do-

main is shown in Figure 4.5. This hierarchy is of an expected output hierarchy from a

complete implementation of the hierarchy generation algorithm. Since the algorithm

is not completely implemented in this investigation, the hierarchy in Figure 4.5 was

hand-generated to illustrate a complex hierarchy. Additionally, the modular design

of the hierarchy generation algorithm allows for the actual automated generation of

complex hierarchies to be a separate process. Therefore, the end result of arbitration

generation is a composite behavior that represents the arbitrated hierarchy of be-

haviors and the actual generation process is transparent to the hierarchy generation

algorithm. Automated hierarchy generation is presented as a future investigation.

The validation process of the arbitrated hierarchy of behaviors consists of ensur-

ing the hierarchy satisfies the initial OP and the generated solution. Since a hierarchy

is described as a composite behavior, it generates a behavior representation based on

its output to every possible initial condition combination. By cycling through the

possible environment conditions after each behavior’s activation, we can generate a

sequential ordering to compare to the initial plan and the generated solution. If the

sequential plan satisfies the initial OP and the generated solution, then the activation

priorities of the OP are validated.

To validate the activation priorities that a hierarchy establishes, the hierarchy

must be traversed and the activation priorities analyzed. The initial conditions of

a behavior dictate the conditions required to achieve the behavior’s abstract goal
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set G. Therefore, the initial conditions guide the search for determining the activation

priorities for goals within the composite behavior (or hierarchy). Since the behavior

that performs the function of the abstract goal performs that function when its initial

conditions are met, these initial conditions are the conditions that should produce that

behavior within the hierarchy. Therefore, each combination of initial conditions that

accomplish all of the goals of a sequence level are searched at that sequence level. If the

initial conditions for more than one abstract goal is met, then the winning goal from

arbitration is given higher priority than the losing goal. If at another combination,

the two goals compete again and the other goal wins, then they are given the same

priority since the arbitration has no strict prioritization for these two goals. Consider

the following as an example of a goal’s activation prioritization within a hierarchy.

From the example domain, the avoid-obstacle behavior satisfies the abstract

goal Obstacle-Avoidance when the initial condition obstacle is met and scan-for-trash

behavior satisfies the Target-Object goal when scanned-object is met. If scan-for-trash

is selected by the arbiter when obstacle and scanned-object is met, then the goal

Target-Object is given a higher priority than Obstacle-Avoidance. This violates the activa-

tion priority of these two goals given in the OP (Table 4.3) and therefore generates a

hierarchy failure for the plan. After a hierarchy failure, the Sequencer either attempts

vote weighting or returns the hierarchy generation algorithm to step 7.

A second significant component of arbiter choice is the vote weighting of be-

haviors. A programmer cannot anticipate how a behavior is used throughout the life

of the system. Therefore, the Sequencer requires the ability to weight the votes of

each behavior within an arbiter. Although seemingly simple, this step is the final

validation to ensure the behaviors’ votes are correct for arbitration to perform as

expected. This step attempts to trace through the arbitrated hierarchy of behaviors

and adjust the weights when the goal prioritization does not perform as desired. If

an appropriate weighting cannot be determined for the hierarchy to satisfy the initial

OP and the generated solution, the plan is rejected. For this type of failure, either

a new arbitration search is conducted or the Sequencer triggers a plan-failure in the
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Figure 4.5: Arbitrated Hierarchy of Behaviors
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state for the Deliberator to catch. Then control returns to step 7 of the control loop.

The implementation of the arbiter selection and vote adjustment process is currently

presented as future research.

4.4.6 Progress Monitoring. The Sequencer is charged with maintaining

an abstract state representation. This includes monitoring the state for anticipated

changes and dispatching the appropriate hierarchies at the appropriate times. To ac-

complish this, the Sequencer must have a state monitoring convention. The Reactive

Plan Language uses semaphores to monitor for goal completion [32]. Although our

monitoring system does not use semaphores specifically, the monitoring system waits

for specific output conditions of the executing hierarchy to indicate goal completion.

For instance, to determine that the initial OP is met, the outputs of the behaviors

that accomplish the goals of the last sequence are monitored. In the example do-

main, the outputs O of deliver-object and release-object are monitored in the

state to indicate that the goals of the OP (Table 4.3) have been met. However, the

outputs of avoid-obstacle are not monitored since all of its initial conditions I are

passive (Figure 4.4 and Behavior Representation B.1) indicating that its goals in G

of Obstacle-Avoidance and Obstacle-Avoidance-Target are considered idealistic goals.

When monitoring for the outputs of the behaviors that accomplish the last

sequence goals, the Sequencer must identify that all of the adders are present and

all of the deleters are not present. For the example OP, the monitored conditions

generated from the output conditions of release-object and deliver-object are:

adders: not-have-object, gripper-open, at-target-location

deleters: have-object

When these conditions are met, the Sequencer can dispatch a new hierarchy to achieve

another OP or indicate achievement of the last OP and wait for a new OP. If a new OP

is received, the Sequencer immediately enters the control loop at step 1, but continues

monitoring for changes. When the new OP’s hierarchy is generated, the hierarchy is

placed into a queue to be dispatched after the monitored conditions of the previous
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OP. This dispatching method allows for the correct sequential dispatching of OPs that

have been decomposed into smaller sequential segments as described in Section 4.4.4.

The monitoring process also includes monitoring for conditions that potentially

effect the currently planned hierarchies and solved OPs. An example of this is when

the Resource Manager declares that a hardware change has occurred. Since the be-

haviors are initially selected based on the sensor data (or hardware) that it expects,

the current (and subsequent) plans may contain behaviors that use hardware that is

no longer available. This situation results in the replanning of the currently running

OP and any OPs that have been processed and scheduled for later achievement.

4.4.7 Discussion. The dynamic behavior hierarchy generation algorithm is

a general process for using the constructs of the behavior representation of Section 4.3

with the flexibility of the UBF [52]. It receives an objectives plan from the Deliber-

ator and generates a sequence of arbitrated behavior hierarchies that accomplish the

desired goals. By constructing the algorithm around the behavior representation, it

creates a robust system that dynamically sequences behaviors based on goal require-

ments, resource availability, and behavior descriptions. This defined link between the

Sequencer and Controller is the objective of Objective 2. Additionally, monitoring

capabilities and associated handling address the objectives of Objectives 5 and 6 to

handle sequential plans and environmental changes to require hierarchy regeneration.

The next section discusses how the behavior representations are implemented within

the architecture described in Section 4.1.

4.5 Architecture Implementation

To this point, the behavior representation and hierarchy generation algorithm

have been discussed in general. In efforts toward satisfying Research Goal 1, that

aims to create a robust, modular software architecture package, this section describes

how the different aspects of the behavior representation and the hierarchy generation

algorithm are implemented within the architecture described in Section 4.1. These
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steps are the steps that must be taken to implement the proposed representation and

hierarchy generation algorithm in a TLA and also the necessary considerations for

modifying an existing system with new hardware capabilities and behavioral func-

tionality. This section assumes the use of the UBF [52] as the Controller and its

constructs for behavior implementation. It also assumes that the objectives plan

described in Section 4.4 is supplied to the Sequencer by the Deliberator. For this in-

vestigation the Deliberator is not functional and the objectives plans are hard-coded

for specific case studies.

4.5.1 Building Behaviors. Using the UBF’s behavior constructs and the

requirement that the behavior programmer bear the responsibility of describing the

behavior, the behavior representation is contained within the behavior object. The

representation is made up of the structures seen in Figure 4.6, which contains all of the

requirements of the proposed behavior representation. The behavior representation is

constructed of five fields: reference, name, id, type, num paths, and activationPaths.

typedef struct {

class Behavior * reference;

std:: string name;

int id;

behavior_type_t type;

int num_paths;

vector < activation_path_t > activationPaths;

}behavior_rep_t;

Figure 4.6: Implemented Behavior Representation Structure

The reference field gives the pointer to the actual behavior object. Since the

Controller’s temporal complexity is at real-time calculations and the Sequencer’s is

at a higher then real-time complexity, we do not want to continually access the real-

time object. Instead, the Behavior Planner sends the Behavior Executive a set of

behavior representations that represent the instantiated system behaviors. When the

hierarchy is generated, the composite behavior of the reference pointers are passed to

the real-time element of the Controller.
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The name field identifies the name of the behavior for debugging and validation

of behavior execution.

The id field is used to identify the behavior representations without comparing

the whole representation. This field is also useful for determining different instances

of a behavior within a single plan. A copy of the representation can have a different

id to indicate that, although the same entity, it is providing a different element in a

plan. For example, one go-to-target reference may satisfy a Go-To-Location goal of

one location, but a go-to-target reference with a different id satisfies a Go-To-Location

goal of a different location.

The type field is used by the composite behavior object to generate a behavior

representation if it encounters a composite behavior within its set of behaviors. This

field is an enumeration of the different types of behavior, Figure 4.7. Since composite

behaviors are dynamic in that they change properties dependent upon the the arbiter

that it employs and behaviors it contains, the behavior representation must be gener-

ated whenever it is requested. If this field is COMPOSITE BEHAVIOR, then the behavior

must request the behavior representation to ensure that it has the most up-to-date

and accurate representation for all composites.

enum behavior_type_t{

LEAF_BEHAVIOR ,

COMPOSITE_BEHAVIOR

};

Figure 4.7: Implemented Behavior Type Identifiers

The num paths field is used for efficiency and is not necessarily required to imple-

ment the behavior representation. Instead of accessing a vector object to determine

the number of activationPaths, the querying entity can reference num paths instead.

The activationPaths field contains all of the behavior representation com-

ponents discussed in Section 4.3. This is a list of activation-paths that describe

each function of the behavior. The number of activation-paths in this list must be
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equal to the value in num paths. Figure 4.8, shows the implemented structure of

a single activation-path contained in the activationPaths field. Each activation-

path contains one initial condition structure (initialConditionsSet), one post condi-

tion structure (postConditionsSet), one set of required data (requiredDataSet), one

set of abstract goals (goalsAchievedSet), one set of action settings that it controls

(actionSettingSet), and the vote for the action recommendation of this activation-

path. The components of these sets are discussed more thoroughly in Section 4.5.2.

typedef struct{

initial_condition_t initialConditionsSet;

post_condition_t postConditionsSet;

vector< sensor_data_t > requiredDataSet;

vector< Goal_t > goalsAchievedSet;

vector< action_t > actionSettingSet;

int vote;

}activation_path_t;

Figure 4.8: Implemented Activation Path Structure

The structures that make up the behavior representation are the components

used by the Behavior Executive to perform its intended function. By defining the

behavior representation in the behavior object itself, the behavior architect has full

control over the description and implementation of the behavior. Therefore, the pro-

grammer carries the burden of correctly describing and implementing the behavior so

the Sequencer can assume that it is an accurate representation of estimated function-

ality.

4.5.2 Describing State. A system is characterized by the underlying behav-

iors that it possesses and how their execution is perceived [7]. Therefore, the addition

or removal of behaviors within a system is what dictates its capabilities. As stated in

Section 4.3, behaviors perceives only the environment that it expects. Thus, the state

is represented only by these perceived values and conditions. When new behaviors are

added, the state representation must be updated to incorporate any new perceptions

of the environment and physical capabilities.
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The initial and post conditions of an activation-path are implemented as two

separate structures. Figure 4.9 shows that these structures have sets of active and

passive conditions for the initial conditions, and adders and deleters for the post

conditions. The state conditions that the initial and post conditions describe are of a

state type env t. This is an enumeration that defines different state conditions within

the state. The behavior that uses these as conditions must identify the conditions

in the same terms that the state uses. For example, if the state identifies that there

is an object within the robot’s path if the object is within X meters of the robot,

then the avoid-obstacle behavior must also identify an object is in its path if the

object is within X meters of the robot. Additionally, every behavior that uses this

condition must identify it using the exact same method. This is required because

the Behavior Executive queries the State to determine if these conditions are met or

not met while monitoring for plan completion. The Behavior Planner also uses these

values to satisfy one behavior’s initial condition by matching that condition in the

output of another behavior.

typedef struct{ typedef struct{

vector<env_t > active; vector <env_t > adders;

vector<env_t > passive; vector <env_t > deleters;

} initial_condition_t; }post_condition_t;

Figure 4.9: Implemented Initial and Post Condition Structures

The requiredDataSet component of the activation-path is a list of sensor data t

values. This data type is another enumeration that identifies the sensor, or computed,

data available in the state. The Resource Manager must activate and control the

resource that provides this data, but the access to its information is contained within

the state [14]. If a new sensor or computed data is introduced by a new behavior, then

the state must be updated with the constructs for querying the data and querying its

availability.
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The actionSettingSet component of the activation-path is a list of action t

values. This data type is also an enumeration of the possible action settings that the

system has available for control. If a system obtains a new control device (such as

adding a pan-tilt-zoom camera) and therefore requires a new behavior to control its

settings, then these values must be updated within the action object. Additionally,

any new control entity must have its associated control settings implemented within

this object so the behavior can create appropriate action recommendations

The goalsAchievedSet component’s implementation is discussed in the next

section and requires updating outside entities if new goals are added. However, if

a new behavior does not require any new env t, sensor data t, action t, or Goal t

entries, then only modifications to the Behavior Library component is needed. Since

the Behavior Library is the only entity that has direct knowledge of implemented

behaviors, any new behavior must be added to the Behavior Library for creation and

initialization.

4.5.3 Objectives Plan. The objectives plan (OP) consists of a list of Goal

objects. The Goal object consists of an abstract goal value g, its associated param-

eters, a sequence number, and an activation priority value. Goal values are of the

data type Goal t, which is an enumeration of all the abstract goals that are defined

on the system. The parameters are used to specify concrete values for satisfying the

goal value. Similar to how Saphira [27] sets “motion setpoints” within the state for

the behaviors to identify the desired speeds, the goal parameters are set within the

state for behaviors to identify the desired parameter values for goal accomplishment.

For example, a Goal object with a goal value of Go-To-Location has parameters for the

desired coordinates to reach. These parameters are used to set the parameters of the

state that will aid in identifying when a goal has been met. The sequence number is

used to dictate the order in which the goals are to be met. The activation priority

is used to dictate which goal is to be met when two or more goals are in the same
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sequence and are in contension for completion. An example of how these two values

are used is presented in Section 4.4.1.

The goalsAchievedSet component of the activation-path is a list of type Goal t

goal items. These are the abstract goals that the behavior accomplishes phrased the

same as the high-level abstractions of the objectives plans (OPs) from the Deliberator.

When a new behavior is added that accomplishes a new abstract goal, the Goal object

and state must be updated to identify the goal and supply the constructs for verifying

its completion.

4.5.4 Building Arbiters. Currently, an abstract arbiter representation has

not been developed and is suggested as a future investigation. However, arbitration

selection is chosen by a hand-coded method that chooses between a Highest Activation

arbiter [31] and a Utility Fusion arbiter [40]. The decision between which arbiter

to use is based on the controls that the behaviors affect and the sequence of the

OP. Since the sequence of behaviors is dictated by the OP, the behaviors that meet

each sequence are separated into a highest activation arbiter. Then arbiter selection

occurs within each separated highest activation arbiter. If a behavior is in competition

with another behavior for affective control, then a highest activation arbiter is used.

However, if the behavior has no competing behaviors for affective control, then a

utility fusion arbiter is selected. If the selected hierarchy does not satisfy the initial

OP and the generated solution, then the planning fails and exits the control loop.

Future implementations will search for a different hierarchy until a successful hierarchy

is found or all reasonable hierarchies are considered.

4.5.5 Sequencer Execution. The hierarchy generation algorithm discussed

in Section 4.4 is implemented within the Behavior Executive presented in Section 4.1.

The Behavior Executive is an execution thread that runs a continuous planning and

monitoring loop, which executes the hierarchy generation algorithm. To ensure that

it is a robust and modular component, the Behavior Executive utilizes the func-

tionality of each of the Sequencer’s components described in Section 4.1 to reduce the
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knowledge of the components’ underlying implementation. For instance, the Behavior

Executive has no knowledge of how the Behavior Planner generates the list of behav-

iors and ordering constraints structure. It just requires that the Behavior Planner

return this structure and assumes it to be a valid solution. Additionally, the Behavior

Executive has no knowledge of the behaviors supplied by the Behavior Library or the

resources available from the Resource Manager. It uses these components to return

their appropriate behavior sets or plan sets and generates the arbitrated hierarchy

of behaviors accordingly. The control loop continuously generates plans for received

OPs and monitors the state for plan completion or indicators of possible replanning

conditions (e.g. loss of sensor capability).

4.6 Summary

This chapter presented a hybrid architecture design (Research Goal 1), the pro-

posed behavior representation (Research Goal 2), the proposed dynamic behavior

hierarchy generation algorithm (Research Goal 3), and a system implementation that

combines the proposed concepts (Research Goal 4). The architectural design and

functional decomposition of layer components adheres to the integrity of the three

layer architecture (TLA) paradigm described in [17], which meets Objective 1. Ob-

jective 3 is met by using the behavior representation as an interface for describing

simple and complex behaviors. This representation allows the Behavior Executive to

use it in a uniform manner as an abstract interface for accomplishing high-level task-

ings (Objective 2). The proposed hierarchy generation algorithm provides a robust

mechanism for dynamically sequencing behaviors without knowledge of the high-level

goals of the Deliberator and the low-level implementations of the behaviors. This

suggests a modular component that requires minimal changes in response to system

changes as required by Objective 4. The implementation described in Section 4.5

verifies the modular aspect of the system and demonstrates the minimal code changes

required for adding new system capabilities. Since the changes are based on behavior
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implementation, the proposed architecture can be applied to any system barring the

appropriate updates are made as described above.

The architectural and component implementation described in this chapter di-

rectly aids in satisfying the Research Goals set forth in Chapter I by meeting some of

the associated Research Goals. The next chapter presents case studies that further

aid in satisfying the Research Goals using the Objectives as a guide for experimental

trials. The experiments demonstrate the robust architectural design by accomplish-

ing high-level taskings using the same software implementation of the architecture on

systems with different capabilities and active behaviors (Objective 1, 3, and 4). They

also demonstrate dynamic sequencing that occurs with new high-level tasking and in

response to environmental changes, such as hardware failure (Objective 4, 5, and 6).
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V. Results

Each Objective aids in accomplishing one or more of the Research Goals identified

in Chapter I. Research Goal 4 combines the first three and requires a demon-

strated behavior representation that enables dynamic behavior sequencing within

a robust and modular autonomous mobile robot architecture design. This chapter

demonstrates the accomplishment of the individual objectives stated in Section 1.2,

which aid in satisfying the Research Goals, using three experiments.

The aim of these experiments is to demonstrate that the proposed architecture

design, behavior representation, and hierarchy generation algorithm to meet the Ob-

jectives of this investigation and thereby satisfy the Research Goals. The Objectives

as stated in Section 1.2 are:

Objective 1: Show that the behavior representation and associated hierarchy generation algorithm

can be applied in a hybrid robot architecture while adhering to the integrity of the three layer archi-

tecture (TLA) paradigm.

Objective 2: Show that there is a defined link between the Sequencer and Controller. This link must

be an abstract mechanism that is robust and seamless.

Objective 3: Show that an abstract behavior representation, which does not require the knowledge

of low-level implementation details, can be applied as an interface to simple, complex and concurrent

behaviors.

Objective 4: Show that a hierarchy generation algorithm can use the behavior representation to

dynamically generate an arbitrated behavior hierarchy for accomplishing desired goals without a priori

knowledge of system capabilities and behavior functionalities.

Objective 5: Show that a sequence of plans generates appropriate behavior hierarchies that are

assigned at appropriate times to accomplish complex high-level tasking.

Objective 6: Show that dynamic system changes, such as hardware failures, or environment condi-

tions generate new hierarchies if necessary.

By virtue of the architecture’s implementation and successful execution of var-

ious behaviors, Objectives 1-3 are met with the Sequencer components presented in
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Chapter IV. However, Objectives 4-6 are met within case studies. These three Objec-

tives are the basis of the experiment design. The first section of this chapter presents

the overall details that are consistent with each experiment followed by the actual

case studies and their associated results:

Case Study I: Demonstrates how the behavior representation is used to
dynamically select appropriate behaviors for task completion based
on available resources and intended goals (demonstrates Objectives 1-
4).

Case Study II: Shows how the proposed hierarchy generation algorithm
uses the behavior representation to search and plan a sequence of
behaviors. An arbitrated hierarchy of the behaviors is generated
using these behaviors for accomplishing a sequence of tasks, which
describes a high-level objective (demonstrates Objectives 1-5).

Case Study III Demonstrates the adaptation to situations that jeopar-
dize current planned hierarchies that causes possible hierarchy regen-
eration (demonstrates Objectives 1-6).

The final section reiterates the results of the experiments as they apply to the estab-

lished Objectives.

5.1 Experiment Details

These experiments utilize the Stage simulation environment [19], which sim-

ulates the physical Pioneer P2-AT8 robot with resources that we do and do not

currently possess. Stage as a simulation environment provides the ability to add ca-

pabilities and remove elements that give the appearance of experimental failure due

to sensor errors. Stage also offers the ability to induce system failures for producing

controlled experimental environments but is limited by not having stochastic sensor

and motor models.

The case studies in this chapter use a Behavior Library that contains every

behavior described in Appendix A (Behavior Representations A.1-A.12). Therefore,

the hierarchy generation algorithm begins processing and searching for a solution with

every behavior in the library. The behaviors section of each experiment discusses the

behaviors that are expected to be activated in the experiment, but does not indicate

82



that these are the only behaviors that the Behavior Executive uses to search for the

appropriate hierarchies. Also, these expected behaviors do not indicate the behaviors

that will be activated, just the behaviors that may be selected.

5.2 Case Study I: Dynamic Behavior Hierarchy Generation

The low-level behaviors in a robot system define the capabilities of that system.

These behaviors can be complex or simple, reactive or goal-driven, or a combination of

all. By generating arbitrated hierarchies of behaviors, the system utilizes the behav-

iors in combinations that accomplish more complex tasks then they do individually.

A mechanism that handles behaviors in a uniform manner and dynamically adapts

the hierarchy to the available behaviors and intended goals allows for a more robust

system. Using Objective 4 as a guide, this experiment intends to:

1. Demonstrate that the proposed behavior representation and hierarchy genera-

tion algorithm are independent of system capabilities and behavior implemen-

tation.

2. Demonstrate that the software implementation can be transferred from systems

with the same behaviors but different capabilities and resource availabilities

without code modifications.

3. Demonstrate that different system capabilities generate different behavior hier-

archies independent of low-level implementations.

4. Demonstrate that a simple tasking can generate different hierarchies based on

behavior availability and resource capabilities

These intended demonstrations are shown by:

1. Using Behaviors with different low-level implementations (See Appendix A).

Behaviors that require different sensors inherently have different low-level im-

plementations.

2. Using different sensor configurations
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(a) Sonar

(b) Laser

(c) Laser & Sonar

3. Using an identical Objectives Plan for all trials.

5.2.1 Stage Implementation (Environment). For this experiment, the envi-

ronment is a simple room with scattered objects throughout (see Figure 5.1). The

experiment robot is the robot in the bottom left corner, location (-4, -5). The objects

scattered throughout the room are other, stationary robots and boxes. The objective

is to get from the current location to the center of the room (0, 0) without hitting

any obstacles.

Figure 5.1: Simple Stage Environment

5.2.2 Objectives Plan. The OP for this experiment is shown in Table 5.1.

This OP describes a simple task that requires the robot to get to the center of the
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room (location(0, 0)) without colliding with any obstacles. The theta (θ) value refers

to the angular orientation of the robot from its initial heading. Therefore, the θ

parameter value of zero (0) indicates that the desired heading after reaching the goal

location is equal to the initial heading at start. The intent of this OP is to show how

a simple tasking can generate different hierarchies based on behavior availability and

resource capabilities. This OP is used for all trails of this experiment.

Goal Sequence Activation Priority Parameters

Avoid-Obstacle-Target 1 2 N/A
Go-To-XYT 1 1 x=0

y=0
θ=0◦

Table 5.1: Objectives Plan for getting to the center of a room without hitting
any obstacles. This plan shows that the desired location is (x, y, θ)→(0, 0, 0) and
Avoid-Obstacle-Target should happen before Go-To-XYT if necessary.

5.2.3 Behaviors. The behaviors selected during these trials are intended to

demonstrate different implementations of the same high-level abstract goal. Although

accomplishing the same abstract goal, the low-level implementation or, in this experi-

ment’s case, the resource requirements can be drastically different. This experiment is

broken into three different trials with different configurations of resource availability,

which are: 1) Sonar 2) Laser 3) Laser & Sonar

Each trial robot has the same architecture software package that implements

the same Behavior Library, and receives the same OP, but each robot has a different

resource configuration than the other two. The following behaviors are a subset of

the behaviors contained in the Behavior Library. This subset contains the behaviors

that are expected to be activated during one or more of the experiment trials since

they satisfy the abstract goal requirements of the OP (Table 5.1). The tabular form

of their representations are shown below and in Appendix A. The appendix also

shows the tabular representations of the remaining behaviors implemented within the

Behavior Library. These remaining behaviors are also considered for activation during

the hierarchy generation process.
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sonar-around-obstacle (Behavior Representation A.8): Avoids obstacles by determining

the best path to the target location using Sonar range finders.

laser-around-obstacle (See Behavior Representation A.5): Avoids obstacles by deter-

mining the best path to the target location using Laser range finder.

go-to-xyt (Behavior Representation A.2): Travels to a desired (x, y) location and sets its

heading to θ degrees from the intital heading at system start-up.

sonar-around-obstacle

Initial Conditions:

Active:
Passive: treshold-min

Post Conditions:

Adders: avoid-obstacle-target
Deleters: treshold-min

Required Data: Sonar

Goals Achieved: Avoid-Obstacle-Target

Action Settings: VX

TURNRATE

Vote: 5

laser-around-obstacle

Initial Conditions:

Active:
Passive: treshold-min

Post Conditions:

Adders: avoid-obstacle-target
Deleters: treshold-min

Required Data: Laser

Goals Achieved: Avoid-Obstacle-Target

Action Settings: VX

TURNRATE

Vote: 5

go-to-xyt

Initial Conditions:

Active:
Passive:

Post Conditions:

Adders: target-x-location
target-y-location
target-t-location
all-stop

Deleters:

Required Data:

Goals Achieved: Go-To-XYT

Action Settings: VX

TURNRATE

Vote: 1

5.2.4 Results. In this experiment, three different robots with identical soft-

ware and behavior libraries, but different resource availability, generated behavior

hierarchies that accomplished the objectives of the same OP. The three resource avail-

ability configurations consists of: 1) only Sonar range finders available 2) only Laser

86



range finders available 3) both, Laser and Sonar range finders available. Figure 5.2

shows that each robot’s execution of the generated behavior hierarchy accomplished

the objectives of the OP with the appropriate sensors active. The 360◦ segmented

scans in (a) and (c) indicate that the Sonar range finder is active, and the 180◦ wide

scan shown in (b) and (c) indicates that the Laser range finder is active.

(d) Sonar (e) Laser

(f) Sonar & Laser

Figure 5.2: Resultant paths of the executed hierarchies generated for the OP in
Table 5.1 with system configurations of a) Sonar range finder b) Laser range finder,
and c) both range finders.

Although the implemented behaviors accomplished the task of the OP, the intent

of this experiment is not to show behavior quality but to show the dynamic sequencing
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of behaviors through behavior selection and hierarchy generation. Therefore, the

associated behavior hierarchy for each run is shown in Figure 5.3. This figure shows

that each system configuration generated a different behavior hierarchy based on

behavior description, resource availability, and system objectives.

Highest Activation

go-to-xyt

sonar-around-obstacle

(a) Sonar

Highest Activation

go-to-xyt

laser-around-obstacle

(b) Laser

Highest Activation

go-to-xyt

sonar-around-obstacle

laser-around-obstacle

(c) Sonar & Laser

Figure 5.3: Resultant Case Study I behavior hierarchies for
a) the Sonar range finder b) the Laser range finder, and c) both
range finders.

5.2.5 Discussion. The ability to sequence behaviors for dynamically gener-

ating behavior hierarchies based on the description of the behaviors and the system

state (available resources) demonstrates the robustness of the behavior representation.

By creating a description that incorporates high-level abstract goals and abstract sys-

tem requirements, each robot configuration was capable of completing the high-level

task with different behavior hierarchies. Although a simple OP, this shows that the

behavior representation is adequate for solving simple taskings that are based on ab-

stract goals alone. If given an OP that generates the activation of behaviors that

require unavailable resources, the behavior sequencing fails and no hierarchy is gener-

ated. Since this is an unremarkable trial run, we did not include it in this experiment.

This experiment is a proof of concept for finding behaviors that are capable of accom-

plishing the desired abstract goals. However, the next experiment incorporates more

elements of the behavior representation and more behavior planning components of

the hierarchy generation algorithm.
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5.3 Case Study II: Dynamic Sequencing with Sequential Plans

Modern autonomous robots perform more than one specific task. In the birth

of hybrid robots they performed specialized tasks such as museum tour guides [50],

mail delivery robots [47], or errand running robots [5]. The demand for more complex

and versatile robots require accomplishment of tasks that can be reactive or goal

driven, sequential or concurrent, simple or complex. Therefore, these systems must

be adaptive to the environment and the tasks they are expected to accomplish. They

must also be capable of processing and accomplishing series of tasks to satisfy one,

or many, high-level objectives.

This experiment intends to meet Objective 5 by demonstrating the ability of

the implemented hierarchy generation algorithm described in Section 4.4 to generate

hierarchies for a number of sequential OPs to accomplish a complex, multi-stage task.

The order of events that aid in this demonstration are that the robot:

1. Receives multiple OPs in the sequence they are expected to be ac-
complished.

2. Generates behavior hierarchies for each OP and places them in a
dispatch queue.

3. Executes each hierarchy when previous monitor conditions are met.

4. Accomplishes the high-level task of collecting a trash item and deliv-
ering it to the appropriate location.

5.3.1 Stage Implementation (Environment). The simulated environment for

this experiment is shown in Figure 5.4. The figure displays an environment where the

yellow boxes (trash) are scattered around the rooms with other colored boxes (not

trash). The green trash bin icon in the bottom right corner is the designated area for

delivering the the yellow boxes (trash). The high-level objective for this experiment

is to:

1. Explore the rooms in search of trash

2. When trash is found, pick it up

3. Bring trash to the designated disposal area
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This experiment is similar to the example domain described in Section 4.2, but

uses different behaviors that help to demonstrate the behavior planning capabilities

of the system.

Figure 5.4: Stage environment for picking up yellow boxes and bringing them to
the trash bin area (indicated by trash bin icon in the bottom right corner)

5.3.2 Objectives Plans. To accomplish the high level tasking of a janitor

robot, a series of OPs must be described and sent to the Behavior Executive. The

task consists of finding trash, picking it up, and bringing it to the designated trash

area. Figure 5.5 shows the OPs that describe this tasking. Each OP describes a step

in the janitor process:

(a) Represents the task of searching for trash while avoiding collisions and picking

up the trash item when found

(b) Represents a path planning step to get the robot to the center of the map
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(c) Represents the task of delivering the trash to the designated area and positioning

for disposal

(d) Represents the task of releasing into the bin

These OPs represent one cycle of finding a piece of trash and disposing of it. When

these OPs are repeatedly sent to the Behavior Executive, the end result should be

that every piece of identified trash is placed in the designated area.

Goal Sequence Activation Priority Parameters

Explore 1 1 N/A
Visual-Track-Object 1 1 Yellow

Grab-Object 2 1 N/A
(a) Find & Get

Goal Sequence Activation Priority Parameters

Avoid-Obstacle-Target 1 2 N/A
Go-To-XY 1 1 x = 0.0

y = 0.0
(b) Path Planning

Goal Sequence Activation Priority Parameters

Avoid-Obstacle-Target 1 2 N/A
Go-To-XYT 1 1 x = 5.5

y = -5.5
θ = 0.0◦

(c) Deliver

Goal Sequence Activation Priority Parameters

Release-Object 1 1 N/A
(d) Place in Bin

Figure 5.5: Objectives Plan for collecting yellow box (trash)
and delivering it to the target location. a) Find a trash item
and pick it up b) Move to the center of the map (path-planning
step) c) Bring trash to the designated area d) drop trash into
the bin

5.3.3 Behaviors. Different behaviors satisfy different requirements during

dynamic sequencing. Some satisfy the initial conditions of others, while others satisfy

an intended goal for the overall task. The behaviors that are selected for activation in

this experiment likely satisfy both conditions at some point in the process. Therefore,
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the descriptions of the behaviors selected by the Behavior Planner for activation in this

experiment are shown below. The detailed representation for each of these behaviors

is shown in Appendix A.

go-to-xy: Travels to a desired (x, y) location (see Behavior Representa-
tion A.1).

go-to-xyt: Travels to a desired (x, y, θ) location and sets its heading to
θ degrees from the intital heading at system start-up (see Behavior
Representation A.2).

grab-object Grabs an object with the grippers when the gripper beams
are broken (see Behavior Representation A.3).

laser-approach-object: Slowly approaches an object using Laser until
the gripper beams are broken (see Behavior Representation A.4).

laser-around-obstacle: Avoids obstacles by determining the best path
to the target location using Laser range finder (see Behavior Repre-
sentation A.5).

release-object Releases an object if one is held within the grippers or
opens the grippers when closed (see Behavior Representation A.6).

sonar-approach-object: Slowly approaches an object using Sonar until
the gripper beams are broken (see Behavior Representation A.7).

sonar-around-obstacle: Avoids obstacles by determining the best path
to the target location using Sonar range finders (see Behavior Rep-
resentation A.8).

track-object Tracks a specified target object until it is within a speci-
fied distance from the object, then it halts the robot (see Behavior
Representation A.9).

visual-track-object Visually track a specified target object by keep-
ing it within the camera’s viewing window if possible (see Behavior
Representation A.10).

wall-follow Travels along the walls keeping the walls (and obstacles)
on its left when they are within a specified distance. Otherwise, it
travels in a straight path (see Behavior Representation A.11).

5.3.4 Results. In this experiment, the OPs of Figure 5.5 were sent to the

Behavior Executive one after another. These OPs were processed, behavior hierar-

chies generated, monitor conditions set, and a dispatch queue established. Figure 5.6

shows the path of the robot accomplishing the high-level janitor cleanup task. This
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indicates that the overall task of finding a trash item and delivering it to the appro-

priate area is accomplished. However, the intent of this experiment is to show the

dynamically generated hierarchies and the monitoring conditions set. These items are

the identifiers of meeting Objective 5.

Figure 5.6: Path of the robot executing the sequential OPs from Figure 5.5 where
it found a trash item and delivered it to the target “trash bin” location.

Since each run of the experiment can render different results, Figure 5.7 shows a

distinct trial’s hierarchies and associated monitoring conditions. When the Behavior

Executive validates that a monitoring condition is met, this indicates that the next

hierarchy in the dispatch queue is ready for dispatch. To meet a monitoring condition,

the adders must exist in the state and the deleters must not. All other state variables

are ignored. For every run of this experiment, the monitoring conditions were met and

each OP was met until one yellow box was in the designated trash bin area. Sending

the OPs to the Behavior Executive a second time, results in a second yellow box

being delivered to the designated trash bin area. This continues until all yellow boxes

are delivered to the trash bin area and the robot is left to search endlessly for more
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Utility Fusion Arbiter

Monitors
Behaviors Adders Deleters

wall-follow gripper-closed gripper-open
visual-track-object has-object not-has-object

grab-object

release-object

sonar-approach-object

track-object
(a) Find & Get

Highest Activation Arbiter

Monitors
Behaviors Adders Deleters

sonar-around-obstacle target-x-location
laser-around-obstacle target-x-location

go-to-xy all-stop
(b) Path Planning

Highest Activation Arbiter

Monitors
Behaviors Adders Deleters

sonar-around-obstacle target-x-location
laser-around-obstacle target-x-location

go-to-xyt target-t-location
all-stop

(c) Deliver

Highest Activation Arbiter

Monitors
Behaviors Adders Deleters

release-object gripper-open gripper-closed
not-has-object has-object

(d) Place in Bin

Figure 5.7: Resultant behavior hierarchies and monitoring
conditions for the sequential OPs to collect yellow boxes and
place in designated area. Each hierarchy solves the associated
OP from Figure 5.5 a) Find a trash item and pick it up b) Move
to the center of the map (path-planning step) c) Bring trash to
the designated area d) drop trash into the bin
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yellow boxes. This endless search is a result of the first OP from the “find trash and

deliver it to the designated area” tasking never meeting its monitored state, trash item

targeted. Therefore, it will continue to search until it sees another yellow object. This

demonstrates that the control continues to run sequential plans whenever they arrive

and is shown in Figure 5.8. Note that an extra Go-To-XYT and Avoid-Obstacle-Target OP

was added (not shown) to move the robot away from the trash bin, otherwise, the

yellow box just placed in the bin is picked up. This extra OP is added to simulate the

disposed trash as unseen and gave the opportunity to remove it from the simulation

environment.

(a) (b)

(c) (d)

Figure 5.8: Collecting all (4) yellow blocks (thrash) by repeated entries of the OPs
in Figure 5.5.
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5.3.5 Discussion. Robot systems must be capable of combining tasks to

complete high-level objectives. This requires that the Sequencer maintain a state

representation to monitor progress for appropriate timing activations. This exper-

iment demonstrates that the implemented system can receive a series of plans and

execute an appropriate behavior hierarchy at the appropriate times to accomplish the

series of plans in the order received. This demonstrated performance is directly in

line with Objective 5.

As stated above, Figure 5.7 shows just one example of the hierarchies and as-

sociated monitoring conditions for a specific trial of this experiment. Since the hi-

erarchy generation uses a non-deterministic selection in the planner, the hierarchies

are not always identical after each processing of the same OP. This is ideal since it

ensures that the same hierarchies are not the only ones exercised every time the OP

is processed. This allows for other hierarchies to be explored and the possibility for

logging success rates for different behavior combinations and goal accomplishments.

Although, the current system does not compute these statistics, it is an option for

future investigations. Additionally, the stochastic nature of the generated hierarchies

demonstrates the dynamic generation capability of the Behavior Executive and the

hierarchy generation algorithm, which is the goal of Research Goal 3.

The hierarchies generated by this experiment demonstrate the planning capa-

bilities of the implemented system using the behavior representation. This meets Ob-

jectives 3 and 4 where the behavior representation is used to dynamically sequence

behaviors. The behavior representation is used throughout the planning of the be-

haviors. For example, in order to pick up the trash object, the grab-object behavior

requires the inner and outer beams of the gripper to be broken before activating its

behavior. Therefore, the track-object and sonar-approach-object behaviors were

identified by the Behavior Planner as required behavior activations to satisfy the initial

conditions of the grab-object behavior. Additionally, the release-object behavior

was also identified since it satisfies the gripper-open initial condition for grab-object.

Occasionally, the release-object behavior is not identified as a constraint behavior
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if the grippers are already open and the Behavior Planner selects the start state as the

satisfying condition. This functionality also demonstrates the burden that is placed

on the behavior programmer since the behavior’s implementation is not restricted by

its representation, which satisfies Research Goal 2. If the behaviors do not perform

as expected or they do not evaluate the environment as expected, then the OP may

never be accomplished. Therefore, a mechanism for monitoring progress failure and

anomaly detection is ideal and presented as a future investigation.

This experiment explored the behavior planning and monitoring capabilities

of the Behavior Executive for goal completion. However, this experiment assumed

there were no possibilities of events that would cause the behavior hierarchy to be

reconstructed. However, many factors can require current plans to be replanned and

the Sequencer must be capable of handling these replanning conditions. One of these

replanning situations is expored in the next experiment.

5.4 Case Study III: Dynamic Sequencing with Power Management

Autonomous mobile robots typically run on batteries. This places a strong need

for the system to use its power resources efficiently, but still be capable of accomplish-

ing intended objectives [14]. Therefore, a system that utilizes a power management

scheme for optimizing power consumption increases system efficiency. This is ac-

complished in the Resource Manager (RM) of our implemented hybrid architecture.

When the RM performs power management adjustments that remove a resource from

availability, then previously planned OPs are no longer viable solutions. The behav-

iors that are assigned to each OP may require the resources that have been made

unavailable. An example of this is when the RM turns the Laser off to conserve

power. Then all behaviors that require Laser data will not perform as expected.

Therefore, all the plans must be marked for replanning and the behavior hierarchies

reconstructed. Although this is not the only condition for possible OP replanning,

this scenario demonstrates the system’s ability to dynamically replan the behavior

hierarchies for all OPs regardless of the replanning catalyst.
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This experiment intends to demonstrate the system’s ability to handle dynamic

environments by replanning OPs and generating new behavior hierarchies to accom-

plish the OP’s objectives when necessary (Objective 6). This case study uses the

same environment, expected behaviors, and OPs as the experiment in Section 5.3.

However, various resources are made unavailable at random intervals to observe the

system’s reaction.

5.4.1 Results. In this experiment, the OPs of Figure 5.5 were sent to the

Behavior Executive one after another. These OPs were processed, behavior hierar-

chies generated, monitor conditions set, and a dispatch queue established. At random

intervals, the changes of resource availability trigger the Sequencer to alert the Be-

havior Executive of the possible conflict for currently planned OPs. These random

changes of resource availability occurred from resource management events within

the RM. These simulated events are forced within the RM, but assumed that the

RM generated the changes from management activities. The system begins with all

required resource that each behavior in the Behavior Library require. The changes

made to to resource availability occur in the following order:

1. Sonar made unavailable

2. Laser made unavailable (i.e. both Range Finders are unavailable)

3. Sonar becomes available (i.e. only the Sonar range finder is available)

Including the initial, system startup condition of Laser and Sonar being avail-

able, these changes produce four different resource configurations that demand hierar-

chy reconstruction and even plan failures. Figure 5.9 shows the environment at each

change of resource availability. The 360◦ segmented scans in (a) and (d) indicate that

the Sonar range finder is active, and the 180◦ wide scan shown in (a) and (b) indicate

that the Laser range finder is active. The last configuration (d) shows the end result

where the robot has delivered an item of trash to the designated area. However, the

intent of this experiment is not to demonstrate the quality of the behaviors, but to
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demonstrate the dynamic reconstruction of behavior hierarchies when environment

conditions (i.e. unavailable resources) dictate.

(a) Sonar & Laser (b) Laser

(c) None (d) Sonar

Figure 5.9: Case Study III resultant path during resource changes with the available
range finder a) Sonar & Laser, b) Laser, c) neither, and d) Sonar ranger finder.

Figure 5.10 shows the original and newly generated hierarchies after a resource

change that effects the previous solutions to the OP. When possible, or necessary, the

OP’s are replanned with appropriate behavior hierarchies that eventually accomplish

the high-level task of disposing of a trash item. Hierarchy generation fails if there

are no behaviors that are capable of accomplishing a goal of the OP due to resource

unavailability. This is shown to occur in (b) and (c). In (b), the current running hier-
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archy for the “find & get” OP fails to generate an appropriate hierarchy and therefore

halts the robot. However, the other three OPs still generated appropriate hierarchies

that reflect the change in resource availability (e.g. sonar-around-obstacle is removed

from the hierarchy when Sonar are unavailable). In (c), all hierarchy generations

fail except for the release-object behavior. When hierarchy generation fails, the

dispatch item for that OP is marked as a plan failure and awaits for a new replanning

trigger to re-evaluate the OP. If the Behavior Executive reaches this item in the dis-

patch queue, then the Behavior Executive dispatches the default behavior (typically

an all-stop) and waits until another replanning trigger occurs, or the Sequencer

resets the dispatch queue and sends in new OPs. For this experiment, the robot halts

when the Sonar are unavailable and when both range finders are unavailable. How-

ever, the robot returns to its task and eventually accomplishes the objective when the

Sonar are made available again (Figures 5.9 and 5.10).

Sensor Both Laser Neither Sonar
Arbiter Utility Fusion N/A N/A Utility Fusion
Behaviors wall-follow Failed Failed wall-follow

visual-track-object visual-track-object

grab-object grab-object

sonar-approach-object sonar-approach-object

track-object track-object

release-object release-object

laser-approach-object

(a) Find & Get Transitions

Sensor Both Laser Neither Sonar
Arbiter Highest Activation Highest Activation N/A Highest Activation
Behaviors go-to-xy go-to-xy Failed go-to-xy

sonar-around-obstacle laser-around-obstacle sonar-around-obstacle

laser-around-obstacle

(b) Path Planning Transitions

Sensor Both Laser Neither Sonar
Arbiter Highest Activation Highest Activation N/A Highest Activation
Behaviors go-to-xy go-to-xy Failed go-to-xy

sonar-around-obstacle laser-around-obstacle sonar-around-obstacle

laser-around-obstacle

(c) Deliver Transitions

Sensor Both Laser Neither Sonar
Arbiter Highest Activation Highest Activation Highest Activation Highest Activation
Behaviors release-object release-object release-object release-object

(d) Place in Bin Transitions

Figure 5.10: Case Study III resultant behavior hierarchies, and effective hierarchies
after resource availability reconfiguration, for the sequential OPs to collect yellow
boxes and place in designated area from Figure 5.5.
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5.4.2 Discussion. The ability to dynamically adapt to unpredictable envi-

ronments is a driving force behind most autonomous robots. Systems that rely on

hard-coded methods for performing complex task require that every possible condi-

tion is addressed. Utilizing a library of simple behaviors to generate an arbitrated

behavior hierarchy to accomplish complex tasks, reduces the adverse effects of un-

foreseen situations. Sensors failing, behaviors not capable of meeting their objectives,

and new plans arriving that augment current plans are some conditions that trig-

ger re-evaluations of the currently planned objectives. Currently, our system only

handles hardware availability reconfigurations (Objective 6) and OP sequence resets,

but this experiment demonstrates the obvious capability of handling the replanning

when necessary. The Behavior Executive and Behavior Planner have no knowledge

of the behaviors and OPs that they are processing. These components process the

Behavior representations and OPs in a uniform manner that does not rely on any

specific knowledge of how the goals are met, the controls are set, the conditions are

determined, etc.. Therefore, the demonstration of this experiment is the culmination

of the established and implementable Objectives that satisfy the Research Goals.

5.5 Summary

The results of this chapter demonstrates the accomplishment of the Objectives

described in Section 1.2. By virtue of simply performing these experiments suggests

Objectives 1-3 are met. The accomplishment of high-level objectives (the OPs) in

these experiments shows that the behaviors’ representations are sequenced dynami-

cally and a composite behavior that represents an arbitrated hierarchy of behaviors is

passed to the Controller (Objectives 3 and 4). The passing of the composite behavior

as an abstract interface provides the seamless link between the Sequencer and the

Controller (Objective 2). This also shows that the behavior representation and dy-

namic behavior hierarchy generation algorithm are successfully implemented within

a TLA architecture while adhering to the integrity of the paradigm of the TLA de-
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sign (Objective 1). The individual experiments further provide evidence that the

Objectives are met.

The first experiment, Case Study I, demonstrates how the behavior represen-

tation is used to select behaviors for accomplishing abstract goals through its goal

description and resource requirements (Objective 4). This is the first step in planning

a behavior hierarchy and is essential for selecting the core behaviors for accomplishing

a complex task. If the abstract goals of the high-level tasking cannot be met by an

available system behavior, then it is an indication that there is a need for new behav-

iors, a new high-level OP, or an available resource. This case study also demonstrates

the software’s robustness for similar systems that have different resource availabilities.

Dependent upon the available resources, the generated hierarchy may contain differ-

ent behavior activations. Without a priori knowledge of behavior implementations

or system capabilities, the hierarchy generation algorithm is capable of generating an

appropriate hierarchy for accomplishing the desired task.

The second experiment, Case Study II, expands the use of the behavior rep-

resentation within the hierarchy generation algorithm. The Behavior Executive uses

the remaining components of the representation to satisfy the OP by selecting (or

planning) behaviors based on the required initial conditions and satisfying post con-

ditions. This case study also demonstrates that the hierarchy generation algorithm

generates appropriate behavior hierarchies that are assigned at appropriate times to

accomplish the complex high-level tasking of a series of OPs (Objective 5). There-

fore, displaying the ability to perform concurrent deliberative planning and reactive

execution.

The final experiment, Case Study III, showcases the dynamic adaptability of

the system as a whole. The experiment shows that an abstract behavior representa-

tion requires no knowledge of low-level implementation details or system capabilities.

Additionally, the case study demonstrates the ability to react to environment changes

that jeopardize the validity of current plan solutions (Objective 6).
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VI. Conclusions

Layered, hybrid robot architectures combine deliberative planning with reactive

behavior execution. This thesis demonstrates that the development of an ab-

stract behavior representation can be used as an abstract interface that spans the

functional layers of a hybrid robot architecture. Along with the representation and

a three layer robot architecture design, a hierarchy generation algorithm can dynam-

ically sequence system behaviors for accomplishing high-level tasks in a robust and

modular implementation. This chapter reiterates the projected benefits of creating

a robust and modular robot architecture that requires minimal code modifications

when new system capabilites are added. The research conclusions drawn from the test

results of Chater V are presented in Section 6.2 followed by possible future investiga-

tions toward expanding the behavior representation and dynamic behavior hierarchy

generation algorithm. The final section presents the final remarks of this thesis.

6.1 Summary

The development of an abstract behavior representation is intended to provide a

common interface that links the deliberative planning with the reactive execution con-

trol in a hybrid mobile robot architecture. Additionally, the representation provides

the constructs for a hierarchy generation algorithm within the Sequencer to dynam-

ically sequence behaviors at a higher abstraction level than that of the behavior’s

low-level implementation. This creates the defining entity that allows the Sequencer

and Controller to seamlessly pass the planned behavior hierarchy between layers, but

still enables the components to be robust and modular.

Autonomous robot systems are becoming more complex and more desirable

for use in dynamic and unpredictable environments. These systems receive high-level

taskings and attempt to perform the task using a combination of deliberative planning

and reactive execution. However, most systems are designed explicitly for one purpose

and thus the architectural design and implementation is very specific as well. The

connections between different layers of a hybrid architecture are tightly coupled where
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small changes in one layer may result in major changes in another. The proposed ab-

stract behavior representation for describing behaviors increases the modularity of

hybrid robot architectures and provides a means for a more robust functional decom-

position of robot architecture design. The use of the behavior representation within

the suggested hierarchy generation algorithm enables dynamic selection of an arbi-

trated behavior hierarchy that accomplishes high-level taskings without knowledge

of the underlying behaviors’ implementations. This interaction between the behav-

ior representation and hierarchy generation algorithm creates a loose coupling, but

defined link, between the planning layer and behavior execution layer of a hybrid

architecture.

6.2 Research Conclusions

The Research Goals 1-4 and Objectives 1-6 identified in Chapter I aim to de-

velop a behavior representation and dynamic behavior hierarchy generation algorithm

that can be implemented within a layered hybrid robot architecture as a robust and

modular software package. The results provided in Chapter V demonstrate that these

Objectives have been met and therefore satisfy the Research Goals. By virtue of sim-

ply performing the experiments suggests Objectives 1-3 are met. The accomplishment

of high-level objectives (the OPs) in the experiments show that the behaviors’ rep-

resentations are sequenced dynamically and a composite behavior that represents an

arbitrated hierarchy of behaviors is passed to the Controller (Objectives 3 and 4).

The passing of the composite behavior as an abstract interface provides the seam-

less link between the Sequencer and the Controller (Objective 2). This also shows

that the behavior representation and hierarchy generation algorithm are successfully

implemented within a TLA architecture while adhering to the integrity TLA design

paradigm (Objective 1). The individual experiments further provide evidence that

the research goals are met.

The first experiment, Case Study I, demonstrates how the behavior represen-

tation is used to select behaviors for accomplishing abstract goals through its goal
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description and resource requirements (Objective 4). This is the first step in planning

a behavior hierarchy and is essential for selecting the core behaviors for accomplish-

ing a complex task. This case study also demonstrates the software’s robustness for

similar systems that have different resource availabilities. Dependent upon the avail-

able resources, the generated hierarchy may contain different behavior activations.

Without a priori knowledge of behavior implementations or system capabilities, the

hierarchy generation algorithm is capable of generating an appropriate hierarchy for

accomplishing the desired task. The second experiment, Case Study II, expands the

use of the behavior representation within the hierarchy generation algorithm. The

Behavior Executive uses the remaining components of the representation to satisfy

the OP by selecting (or planning) behaviors based on the required initial conditions

and satisfying post conditions. This case study also demonstrates that the hier-

archy generation algorithm generates appropriate behavior hierarchies that are as-

signed at appropriate times to accomplish the complex high-level tasking of a series

of OPs (Objective 5). Therefore, displaying the ability to perform concurrent de-

liberative planning and reactive execution. The final experiment, Case Study III,

showcases the dynamic adaptability of the system as a whole. The experiment shows

that an abstract behavior representation requires no knowledge of low-level imple-

mentation details or system capabilities. Additionally, the case study demonstrates

the ability to react to environment changes that jeopardize the validity of current

plan solutions (Objective 6).

6.3 Future Investigation

The case studies presented in Chapter V demonstrate how the behavior rep-

resentation and dynamic behavior hierarchy generation algorithm are implemented

as robust, modular components within a hybrid robot architecture. However, these

experiments and implementations are a proof of concept in defining an abstract be-

havior representation that promotes dynamic sequencing in a robust, modular soft-

ware package. The representation and hierarchy generation algorithm are presented
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so that future additions to either is transparent. The behavior representation and

planning process described in this thesis is a modification of a representation previ-

ously presented [13]. These changes increased the ability of the planner, but required

no changes to other implemented components (e.g. Behavior Executive). Therefore,

some short-term future investigations are presented below that will increase the plan-

ning efficiency or overall system capabilities with minimal changes to the current

modular entities.

• Create an abstract arbiter representation that can be used like the behavior

representation to describe different arbiters. This allows for the hard-coded

arbiter selection process in this investigation to be replaced by a mechanism

that searches the available arbiters for the most appropriate arbitration of the

behaviors based on ordering constraints and desired goals. Additionally, this

allows more hierarchy possibilities to be searched when a hierarchy selection

fails, thereby reducing planning failures. This investigation is suggested in Sec-

tions 4.4.5 and 4.5.4 with the discussion of arbiter selection ad arbiter building.

• Add the vote weighting mechanism that allows the votes of behaviors to be ad-

justed. This increases the usability of behaviors by searching for an appropriate

weight to generate the desired output of an arbitrated behavior hierarchy, and

thus increases possible hierarchy solutions. This investigation is suggested in

Section 4.4.5 with the discussion of arbiter selection.

• Add multiple activation-paths to the planning capability so that more complex

behaviors are searched. The partial order planner implemented for this thesis

did not include planning for conditional capabilities and therefore could not

reuse generated hierarchies since the majority of the hierarchies have multiple

activation-paths. With this modification, the option of saving generated hier-

archies for future use is capable. Multiple activation-path planing also leads to

the next future investigation.
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• Since the behavior representations are passed as copies, the Resource Manager

can use this to search for activation branches that cannot be used and delete

that activation-path so that the Behavior Executive does not search a branch

that will not be activated. Even when activated, the behavior does not execute

these deleted paths because it validates the availability of the required resource

before analyzing the input conditions.

• Give the behavior representation the ability to hold parameters in the condition

statements for solving problems like Sussman’s anomaly [42] without breaking

a plan into sub-plans. This also has the potential for increasing the efficiency

of the monitoring mechanism.

• The Behavior Executive can be double tasked for predictive hierarchy genera-

tion that can report on a utility for accomplishing the requested plan. This is

suggested in [23] as a required ability for multi-robot communication and co-

ordination. Additionally, the use and benefits of a predictive element within a

hybrid architecture is presented in [32].

– May require statistics on past performance of generated hierarchies that

accomplish the requested task.

– May also require a utility function within the behavior representation for

accomplishing its abstract goals

• When resources become unavailable, it triggers a replanning event. Defining

more mechanism like anomaly and failure detection (suggested in Section 5.3)

that trigger replanning events is ideal for creating a more adaptive system to

unpredictable environments.

6.4 Final Remarks

Technological advances have made it possible for quicker processing and more

concurrent threads of execution within autonomous mobile robot systems. Researchers

capitalize on these advances to perform more deliberative tasks during concurrent re-
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active execution. Therefore, more complex robot architectures are created that aim

to reduce the human-in-the-loop control. This move to more complex architectures

calls for the merging of deliberative planning with reactive control through a layered

hybrid architecture design. The three layer architecture (TLA) design and imple-

mentation described throughout this document adheres to the integrity of the TLA

paradigm through the functional decomposition of each layer based on abstraction

level and computational complexity. Implemented within this architecture is the pro-

posed behavior representation and dynamic behavior hierarchy generation algorithm.

These components are shown to allow for a modular and robust implementation by

defining an abstract link betwen the Sequencer and the Controller that seamlessly cou-

ples the two layers with loose dependence. The behavior representation is presented

as a semantic suggestion rather then a syntactic implementation burden leaving the

low-level details to the behavior programmer. The semantic suggestion is of how the

behavior functions but does not restrict or dictate its implementation. Additionally,

the hierarchy generation algorithm suggests a general process for using the behavior

representation in translating high-level goals to the arbitrated behavior hierarchies

that, given enough time, accomplish the high-level task. The proposed representa-

tion, suggested hierarchy generation algorithm, and architecture implementation are

structured for programmer interpretation and maximum upgradability. Robustness

and modularity is achieved through the functional decomposition of architectural com-

ponents and abstract interfaces that loosely couple the components together. This

creates a system-of-systems implementation that requires minimal reprogramming for

system modifications.
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Appendix A. Implemented Behavior Representations

Languages that are created to merge planning and execution require specific syn-

tax and implementation. The behavior representations described in this ap-

pendix represent an abstract description that provides a semantic suggestion of how

the behavior functions, but does not restrict or dictate its implementation. There-

fore, these behaviors are the representations of the implemented behaviors used for

the experiment discussed in Chapter V.

go-to-xy

Initial Conditions:
Active:

Passive:

Post Conditions:
Adders: target-x-location

target-y-location
all-stop

Deleters:

Required Data:

Goals Achieved: Go-To-XY

Action Settings: VX

TURNRATE

Vote: 1

Behavior Representation A.1: Behavior Representation for Behavior go-to-xy: Trav-
els to a desired location (x, y) ignoring the destination heading.
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go-to-xyt

Initial Conditions:
Active:

Passive:

Post Conditions:
Adders: target-x-location

target-y-location
target-t-location
all-stop

Deleters:

Required Data:

Goals Achieved: Go-To-XYT

Action Settings: VX

TURNRATE

Vote: 1

Behavior Representation A.2: Behavior Representation for Behavior go-to-xyt:
Travels to a desired location (x, y, θ), where θ is the difference in angle from the
startup heading.

grab-object

Initial Conditions:
Active: gripper-open

gripper-outer-beam-broken
gripper-inner-beam-broken
all-stop

Passive:

Post Conditions:
Adders: gripper-closed

has-object
Deleters: gripper-open

not-has-object

Required Data: Gripper

Goals Achieved: Grab-Object

Action Settings: TRANSLATE-GRIPPER

Vote: 7

Behavior Representation A.3: Behavior Representation for Behavior grab-object:
Closes the gripper when an object has broken the beams.
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laser-approach-object

Initial Conditions:
Active: gripper-open

treshold-min
track-object

Passive:

Post Conditions:
Adders: gripper-outer-beam-broken

gripper-inner-beam-broken
all-stop

Deleters: avoid-obstacle-target
avoid-obstacle

Required Data: Laser

Gripper

Goals Achieved: Approach-Object

Action Settings: VX

TURNRATE

Vote: 6

Behavior Representation A.4: Behavior Representation for Behavior
laser-approach-object: Slowly approaches an object using Laser, places
that object within the gripper beams, and stops.

laser-around-obstacle

Initial Conditions:
Active:

Passive: treshold-min

Post Conditions:
Adders: avoid-obstacle-target

Deleters: treshold-min

Required Data: Laser

Goals Achieved: Avoid-Obstacle-Target

Action Settings: VX

TURNRATE

Vote: 5

Behavior Representation A.5: Behavior Representation for Behavior
laser-around-obstacle: Avoids obstacles by using the Laser to determine
the best path to avoid the obstacle and advance toward the target location.
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release-object

Initial Conditions:
Active:

Passive: gripper-closed

Post Conditions:
Adders: gripper-open

not-has-object
Deleters: gripper-closed

has-object

Required Data: Gripper

Goals Achieved: Release-Object

Action Settings: TRANSLATE-GRIPPER

Vote: 1

Behavior Representation A.6: Behavior Representation for Behavior
release-object: Opens the gripper if closed.

sonar-approach-object

Initial Conditions:
Active: gripper-open

treshold-min
track-object

Passive:

Post Conditions:
Adders: gripper-outer-beam-broken

gripper-inner-beam-broken
all-stop

Deleters: avoid-obstacle-target
avoid-obstacle

Required Data: Sonar

Gripper

Goals Achieved: Approach-Object

Action Settings: VX

TURNRATE

Vote: 6

Behavior Representation A.7: Behavior Representation for Behavior
sonar-approach-object: Slowly approaches an object using Sonar, places
that object within the gripper beams, and stops.
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sonar-around-obstacle

Initial Conditions:
Active:

Passive: treshold-min

Post Conditions:
Adders: avoid-obstacle-target

Deleters: treshold-min

Required Data: Sonar

Goals Achieved: Avoid-Obstacle-Target

Action Settings: VX

TURNRATE

Vote: 5

Behavior Representation A.8: Behavior Representation for Behavior
sonar-around-obstacle: Avoids obstacles by using Sonar to determine the
best path to avoid the obstacle and advance toward the target location.

track-object

Initial Conditions:
Active:

Passive: visual-track-object

Post Conditions:
Adders: threshold-min

Deleters:

Required Data: Blobfinder

Goals Achieved: Track-Object

Action Settings: VX

TURNRATE

Vote: 3

Behavior Representation A.9: Behavior Representation for Behavior track-object:
Physically tracks (i.e. travels toward) an observed object until it is within a minimum
range and stop.

113



visual-track-object

Initial Conditions:
Active:

Passive:

Post Conditions:
Adders: visual-track-object

Deleters:

Required Data: PTZ-Camera

Blobfinder

Goals Achieved: Visual-Track-Object

Action Settings: PTZ

Vote: 1

Behavior Representation A.10: Behavior Representation for Behavior
visual-track-object: Visually tracks an object by panning the camera to
keep the object in the viewing window.

wall-follow

Initial Conditions:
Active:

Passive:

Post Conditions:
Adders: avoid-obstacle

wall-follow
Deleters: approach-object

threshold-min

Required Data: Sonar

Goals Achieved: Explore

Action Settings: VX

TURNRATE

Vote: 2

Behavior Representation A.11: Behavior Representation for Behavior wall-follow:
Travels along walls and keeps obstacles to the robot’s left.
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wander

Initial Conditions:
Active:

Passive:

Post Conditions:
Adders: random-movement

Deleters:

Required Data:

Goals Achieved: Random-Movement

Action Settings: VX

TURNRATE

Vote: 1

Behavior Representation A.12: Behavior Representation for Behavior wander: Travels
in random ‘S’ patterns without regard to obstacles.
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Appendix B. Example Behavior Representations

Example behaviors are used within this thesis to create a domain that is easy to

follow and understand. The behavior representations in this appendix do not

represent behaviors that were implemented and tested, but a set of behavior repre-

sentations that can be implemented and should have the same results as described

in this document. These behaviors are basic behaviors that serve just the purpose of

the example domain. The behaviors in Appendix A present more general behaviors

that showcase the planning capabilities of the proposed system.

avoid-obstacle

Activation Path 1 Activation Path 2

Initial Initial

Conditions: Conditions:

Active: Active:

Passive: obstacle Passive: obstacle
target-location-set

Post Conditions: Post Conditions:

Adders: avoid-obstacle Adders: avoid-obstacle-target

Deleters: obstacle Deleters: obstacle

Required Data: Laser Required Data: Laser

Map

Goals Achieved: Obstacle-Avoidance Goals Achieved: Obstacle-Avoidance-Target

Action Settings: VX Action Settings: VX

TURNRATE TURNRATE

Vote: 2 Vote: 10

Behavior Representation B.1: Behavior Representation for Example Behavior
avoid-obstacle: avoids obstacles when an obstacle is detected and uses the optimal
path to a target location if a target location is established.
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deliver-object

Initial Conditions:
Active: has-object

Passive: target-location-set

Post Conditions:
Adders: at-target-location

Deleters:

Required Data: Odometry

Goals Achieved: Go-To-Target

Goal-2

Action Settings: VX

TURNRATE

Vote: 1

Behavior Representation B.2: Behavior Representation for Example Behavior
deliver-object: Travels to a target-location when it has an object

get-object

Initial Conditions:
Active: gripper-open

tracking-object
Passive:

Post Conditions:
Adders: has-object

gripper-closed
Deleters: gripper-open

tracking-object

Required Data: Grippers

Camera

Laser

Goals Achieved: Obtain-Object

Action Settings: TRANSLATE-GRIPPER

Vote: 1

Behavior Representation B.3: Behavior Representation for Example Behavior
get-object: Approaches a target object and picks it up
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greeting

Initial Conditions:
Active:

Passive:

Post Conditions:
Adders:

Deleters:

Required Data: Camera

Goals Achieved: Greet

Action Settings: AUDIO-OUTPUT

Vote: 1

Behavior Representation B.4: Behavior Representation for Example Behavior
greeting: Audibly greets recognized employees.

release-object

Initial Conditions:
Active:

Passive: gripper-closed

Post Conditions:
Adders: not-have-object

gripper-open
Deleters: have-object

Required Data: Grippers

Goals Achieved: Release-Object

Action Settings: TRANSLATE-GRIPPER

Vote: 3

Behavior Representation B.5: Behavior Representation for Example Behavior
release-object: Releases an object by opening the Grippers if they are closed.
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scan-for-trash

Initial Conditions:
Active:

Passive: scanned-object

Post Conditions:
Adders: tracking-object

Deleters:

Required Data: Camera

Goals Achieved: Target-Object

Action Settings: CAMERA-PTZ

Vote: 5

Behavior Representation B.6: Behavior Representation for Example Behavior
scan-for-trash: Scans for, identifies, and tracks trash (i.e. tracking-object) when
found.

wall-follow

Initial Conditions:
Active:

Passive: obstacle

Post Conditions:
Adders: map-explored

Deleters: obstacle

Required Data: Laser

Map

Goals Achieved: Explore

Action Settings: VX

TURNRATE

Vote: 1

Behavior Representation B.7: Behavior Representation for Example Behavior
wall-follow: Travels along walls and ensures all areas have been traversed.
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