7 research outputs found

    DeepGlobe 2018: A Challenge to Parse the Earth through Satellite Images

    Full text link
    We present the DeepGlobe 2018 Satellite Image Understanding Challenge, which includes three public competitions for segmentation, detection, and classification tasks on satellite images. Similar to other challenges in computer vision domain such as DAVIS and COCO, DeepGlobe proposes three datasets and corresponding evaluation methodologies, coherently bundled in three competitions with a dedicated workshop co-located with CVPR 2018. We observed that satellite imagery is a rich and structured source of information, yet it is less investigated than everyday images by computer vision researchers. However, bridging modern computer vision with remote sensing data analysis could have critical impact to the way we understand our environment and lead to major breakthroughs in global urban planning or climate change research. Keeping such bridging objective in mind, DeepGlobe aims to bring together researchers from different domains to raise awareness of remote sensing in the computer vision community and vice-versa. We aim to improve and evaluate state-of-the-art satellite image understanding approaches, which can hopefully serve as reference benchmarks for future research in the same topic. In this paper, we analyze characteristics of each dataset, define the evaluation criteria of the competitions, and provide baselines for each task.Comment: Dataset description for DeepGlobe 2018 Challenge at CVPR 201

    3D RECONSTRUCTION OF BUILDINGS WITH GABLED AND HIPPED STRUCTURES USING LIDAR DATA

    Get PDF

    Generative Street Addresses from Satellite Imagery

    Get PDF
    We describe our automatic generative algorithm to create street addresses from satellite images by learning and labeling roads, regions, and address cells. Currently, 75% of the world’s roads lack adequate street addressing systems. Recent geocoding initiatives tend to convert pure latitude and longitude information into a memorable form for unknown areas. However, settlements are identified by streets, and such addressing schemes are not coherent with the road topology. Instead, we propose a generative address design that maps the globe in accordance with streets. Our algorithm starts with extracting roads from satellite imagery by utilizing deep learning. Then, it uniquely labels the regions, roads, and structures using some graph- and proximity-based algorithms. We also extend our addressing scheme to (i) cover inaccessible areas following similar design principles; (ii) be inclusive and flexible for changes on the ground; and (iii) lead as a pioneer for a unified street-based global geodatabase. We present our results on an example of a developed city and multiple undeveloped cities. We also compare productivity on the basis of current ad hoc and new complete addresses. We conclude by contrasting our generative addresses to current industrial and open solutions. Keywords: road extraction; remote sensing; satellite imagery; machine learning; supervised learning; generative schemes; automatic geocodin

    Drivable Space Datasets Created by Airborne LiDAR and Aerial Imagery

    Get PDF
    The civil engineering and construction industries are currently using geo browsers such as Google Earth to access satellite and aerial imagery to create and update design drawings for roadway construction, which leads to inaccuracies in the construction phase and in effect, delays the time, and increases the cost of a project. Technological advancements in the civil engineering and construction industries have enabled the design processes to be more efficient and accurate. This research focuses on using the cutting-edge technology of airborne LiDAR and aerial imagery to extract roadway network information from an urban area, which can be used to enhance the durability and serviceability of transportation infrastructure in a complex environment. Research results revealed that the time, cost, and completeness of extracting roadway network information from LiDAR data and aerial imagery are more advantageous than that of digitizing from Google Earth, which involves designing roadway network information based on the designer’s best judgment. Research results also showed that there are still limitations with this approach as it relates to the vi accuracy of detecting the edges of the drivable spaces in an urban environment, mainly due to the failure of the extraction process to distinguish between drivable spaces and adjacent sidewalks or other paved surfaces. Future improvements for this extraction process will need to consider better edge detection methods to improve accuracy in urban environments. The process used for the procedure will be made readily available to the civil engineering and construction industries to enable the users to apply it to their work. Utilizing LiDAR data and aerial imagery to extract drivable space information has advantages over the current industry-adopted method, including being better in time efficiency and cost effectivenes

    به کارگیری روش های تخمین بعد ذاتی در استخراج ویژگی های بدست آمده از تصاویر راداری، ماهواره ای و لیدار به منظورشناسایی عوارض خاص شهری

    Get PDF
    امروزه ترکیب دادهها و تصاویری که از منابع مختلف سنجش از دوری به دست آمدهاند، به عنوان راهحلی بهینه به منظور استخراج اطلاعات بیشتر مطرح است، چرا که این دادهها با دید وسیع خود، رقومی بودن، تهیه بصورت دورهای، اطلاعات مختلفی را در اختیار محققین قرار میدهند. در این راستا، سنجندههای غیرفعال نوری به صورت گسترده در نگاشت ساختارهای افقی مورد استفاده قرار میگیرند. دادههای راداری نیز با توجه به این که غالباً مستقل از شرایط جوی و به صورت شبانهروزی امکان جمعآوری دارند و نیز برخی ساختارهای زمینی و اهداف مصنوعی پاسخ ویژهای در فرکانس راداری دارند، تواناییهای تصاویر نوری را تکمیل میکنند. همچنین دادههای هوابرد لیدار نیز میتوانند اندازهگیریهای نمونهای با دقت بسیار بالا از ساختارهای قائم در اختیار قرار دهند. در نتیجه، استفاده همزمان دادههای نوری، راداری و لیدار میتواند اطلاعات بیشتری در کاربردهای متنوع فراهم نماید. در این تحقیق، با بکارگیری همزمان این سه دسته داده سعی بر شناسایی عوارض خاص شهری به شکل بهینه نمودیم. در این راستا، با بکارگیری و تولید توصیفگرهای مختلف (57 توصیفگر) و با استفاده از روشهای استخراج ویژگی (شامل PCA و ICA) و تخمین ابعاد ذاتی دادهها (شاملSML و NWHFC)، فضای بهینهای برای طبقهبندی نظارت شده ایجاد شد. پس از انجام طبقهبندی (روش K-NN) با استفاده از نتایج بدست آمده، توصیفگرهای (لایههای اطلاعاتی) تولید شده برای شناسایی عوارض خاص شهری شامل ساختمانها، راهها و پوشش گیاهی براساس دقت کلاسهبندی بدست آمده و گروهبندی شدند. نتایج عددی بدست آمده حاکی از کارایی بالای رویه پیشنهادی و نیز روشهای بکارگرفته شده تخمین بعد ذاتی و استخراج ویژگی است

    Utilization of ALS data for update of a road network

    Get PDF
    Využití dal LLS pro aktualizaci silniční sítě Abstrakt Diplomová práce se zabývá problematikou automatické detekce komunikací z dat leteckého laserového skenování. Cílem práce je co nejpřesněji identifikovat plochu komunikace, na jejímž základě jsou vypočítány atributy jednotlivých úseků. V první části práce jsou shrnuty návrhy postupů, které řeší danou problematiku a přístup autorů k hodnocení dosažených výsledků. V praktické části je nastíněna metodika navrženého postupu, který vychází z poznatků literární rešerše. Následně jsou představena vstupní data a modelová území. V posledních částech jsou popsané dosažené výsledky a porovnané s výsledky autorů, kteří dané hodnocení použili ve svých pracích. Klíčová slova: letecké laserové skenování, digitální topografická databáze, silniční síť, aktualizaceUtilization of ALS data for update of a road network Abstract My thesis concerned problematics of automatic detection of communication data from aerial laser scanning. Goal of this method is to identify area of roads - tarmacs as accurate as possible. On its basis are counted attributes of specific parts. In first part of the thesis are summarized known procedures, which are used to deal with the issue and experiences and evaluation of the output of theirs authors. In practical part of the thesis is described procedure methodology, which is based on findings from the literature review. Subsequently, input data and model areas are introduced. In the final parts are described results and compared with the results of authors, who used such evaluation in their work. Key words: airborne laser scanning, digital topographic database, road network, database updateKatedra aplikované geoinformatiky a kartografieDepartment of Applied Geoinformatics and CartographyFaculty of SciencePřírodovědecká fakult
    corecore