16,899 research outputs found

    MultiNet: Multi-Modal Multi-Task Learning for Autonomous Driving

    Full text link
    Autonomous driving requires operation in different behavioral modes ranging from lane following and intersection crossing to turning and stopping. However, most existing deep learning approaches to autonomous driving do not consider the behavioral mode in the training strategy. This paper describes a technique for learning multiple distinct behavioral modes in a single deep neural network through the use of multi-modal multi-task learning. We study the effectiveness of this approach, denoted MultiNet, using self-driving model cars for driving in unstructured environments such as sidewalks and unpaved roads. Using labeled data from over one hundred hours of driving our fleet of 1/10th scale model cars, we trained different neural networks to predict the steering angle and driving speed of the vehicle in different behavioral modes. We show that in each case, MultiNet networks outperform networks trained on individual modes while using a fraction of the total number of parameters.Comment: Published in IEEE WACV 201

    A space-time multivariate Bayesian model to analyse road traffic accidents by severity

    Get PDF
    The paper investigates the dependences between levels of severity of road traffic accidents, accounting at the same time for spatial and temporal correlations. The study analyses road traffic accidents data at ward level in England over the period 2005–2013. We include in our model multivariate spatially structured and unstructured effects to capture the dependences between severities, within a Bayesian hierarchical formulation. We also include a temporal component to capture the time effects and we carry out an extensive model comparison. The results show important associations in both spatially structured and unstructured effects between severities, and a downward temporal trend is observed for low and high levels of severity. Maps of posterior accident rates indicate elevated risk within big cities for accidents of low severity and in suburban areas in the north and on the southern coast of England for accidents of high severity. The posterior probability of extreme rates is used to suggest the presence of hot spots in a public health perspective.Areti Boulieri acknowledges support from the National Institute for Health Research and the Medical Research Council Doctoral Training Partnership. Marta Blangiardo acknowledges support from the National Institute for Health Research and the Medical Research Council–Public Health England Centre for Environment and Health. Silvia Liverani acknowledges support from the Leverhulme Trust (grant ECF-2011-576)

    Multicriteria cruise control design considering geographic and traffic conditions

    Get PDF
    The paper presents the design of cruise control systems considering road and traffic information during the design of speed trajectories. Several factors are considered such as road inclinations, traffic lights, preceding vehicles, speed limits, engine emissions and travel times. The purpose of speed design is to reduce longitudinal energy, fuel consumption and engine emissions without a significant increase in travel time. The signals obtained from the road and traffic are handled jointly with the dynamic equations of the vehicle and built into the control design of reference speed. A robust H∞ control is designed to achieve the speed of the cruise control, guaranteeing the robustness of the system against disturbances and uncertainties
    corecore