185 research outputs found

    Detecting Non-Line of Sight to Prevent Accidents in Vehicular Ad hoc Networks

    Get PDF
    There are still many challenges in the field of VANETs that encouraged researchers to conduct further investigation in this field to meet these challenges. The issue pertaining to routing protocols such as delivering the warning messages to the vehicles facing Non-Line of Sight (NLOS) situations without causing the storm problem and channel contention, is regarded as a serious dilemma which is required to be tackled in VANET, especially in congested environments. This requires the designing of an efficient mechanism of routing protocol that can broadcast the warning messages from the emergency vehicles to the vehicles under NLOS, reducing the overhead and increasing the packet delivery ratio with a reduced time delay and channel utilisation. The main aim of this work is to develop the novel routing protocol for a high-density environment in VANET through utilisation of its high mobility features, aid of the sensors such as Global Positioning System (GPS) and Navigation System (NS). In this work, the cooperative approach has been used to develop the routing protocol called the Co-operative Volunteer Protocol (CVP), which uses volunteer vehicles to disseminate the warning message from the source to the target vehicle under NLOS issue; this also increases the packet delivery ratio, detection of NLOS and resolution of NLOS by delivering the warning message successfully to the vehicle under NLOS, thereby causing a direct impact on the reduction of collisions between vehicles in normal mode and emergency mode on the road near intersections or on highways. The cooperative approach adopted for warning message dissemination reduced the rebroadcast rate of messages, thereby decreasing significantly the storm issue and the channel contention. A novel architecture has been developed by utilising the concept of a Context-Aware System (CAS), which clarifies the OBU components and their interaction with each other in order to collect data and take the decisions based on the sensed circumstances. The proposed architecture has been divided into three main phases: sensing, processing and acting. The results obtained from the validation of the proposed CVP protocol using the simulator EstiNet under specific conditions and parameters showed that performance of the proposed protocol is better than that of the GRANT protocol with regard to several metrics such as packet delivery ratio, neighbourhood awareness, channel utilisation, overhead and latency. It is also successfully shown that the proposed CVP could detect the NLOS situation and solves it effectively and efficiently for both the intersection scenario in urban areas and the highway scenario

    Routing and Applications of Vehicular Named Data Networking

    Get PDF
    Vehicular Ad hoc NETwork (VANET) allows vehicles to exchange important informationamong themselves and has become a critical component for enabling smart transportation.In VANET, vehicles are more interested in content itself than from which vehicle the contentis originated. Named Data Networking (NDN) is an Internet architecture that concentrateson what the content is rather than where the content is located. We adopt NDN as theunderlying communication paradigm for VANET because it can better address a plethora ofproblems in VANET, such as frequent disconnections and fast mobility of vehicles. However,vehicular named data networking faces the problem of how to efficiently route interestpackets and data packets. To address the problem, we propose a new geographic routing strategy of applying NDNin vehicular networks with Delay Tolerant Networking (DTN) support, called GeoDTN-NDN. We designed a hybrid routing mechanism for solving the flooding issue of forwardinginterest packets and the disruption problem of delivering data packets. To avoid disruptionscaused by routing packets over less-traveled roads, we develop a new progressive segmentrouting approach that takes into consideration how vehicles are distributed among differentroads, with the goal of favoring well-traveled roads. A novel criterion for determiningprogress of routing is designed to guarantee that the destination will be reached no matterwhether a temporary loop may be formed in the path. We also investigate applications of vehicular named data networking. We categorizethese applications into four types and design an NDN naming scheme for them. We proposea fog-computing based architecture to support the smart parking application, which enablesa driver to find a parking lot with available parking space and make reservation for futureparking need. Finally we describe several future research directions for vehicular nameddata networking

    Towards a network management solution for vehicular delay-tolerant networks

    Get PDF
    Vehicular networks appeared as a new communication solution where vehicles act as a communication infrastructure, providing data communications through vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) communications. Vehicular Delay-Tolerant Networks (VDTNs) are a new disruptive network architecture assuming delay tolerant networking paradigm where there are no end-to-end connectivity. In this case the incial node transmits the data to a closed node, the data will be carried by vehicles, hop to hop until the destination. This dissertation focuses on a proposal of a network management solution, based standard protocol Simple Network Management Protocol (SNMP) to VDTN networks. The developed solution allows control a VDTN netowork through a Network Management System (NMS) with the objective to detect and, if it’s possible, anticipate, possible errors on network. The research methodology used was the prototyping. So, it was built a network management module to the laboratorial prototype, called VDTN@Lab. The system built include a MIB (Management Information Base) placed in all vehicular network nodes. The solution was built, demonstrated, validated and evaluated their performance, being ready for use.As redes veiculares foram desenhadas para permitir que os veículos possam transportar dados criando assim um novo tipo de redes, caracterizando-se por dois tipos de comunicação: comunicações veículo-para-veículo (V2V) ou comunicações veículo-parainfra-estrutura (V2I). Redes veiculares intermitentes (do Inglês Vehicular Delay-Tolerant Networks - VDTNs) surgiram como uma nova arquitectura de rede de dados onde os veículos são utilizados como infra-estruturas de comunicação. As VDTNs caracterizam-se por serem redes veiculares baseadas no paradigma de comunicações intermitentes. Nas redes VDTN não existe uma ligação permanente extremo a extremo entre o emissor e o receptor. Neste caso, o nó inicial transmite os dados para um nó que esteja junto dele e assim sucessivamente, os dados vão sendo transportados pelos veículos, salto a salto até ao destinatário final. Esta dissertação centra-se na proposta de uma solução de gestão de rede, baseada no protocolo estandardizado Simple Network Management Protocol (SNMP) para redes VDTN. A solução construída permite controlar uma rede VDTN através de um sistema de gestão de rede (do Inglês Network Management System - NMS) com o objectivo de detectar e, se possível antecipar, possíveis erros na rede. A metodologia de investigação utilizada foi a prototipagem. Assim, foi construído um módulo de gestão de redes para o protótipo laboratorial, chamado VDTN@Lab. O sistema construído inclui uma MIB (Management Information Base) que é colocada em todos os nós de uma rede veicular, tanto fixos como móveis. A solução foi construída, demonstrada, validade e avaliado o seu desempenho, estando assim pronta para ser utilizada

    Content storage and retrieval mechanisms for vehicular delay-tolerant networks

    Get PDF
    Vehicular delay-tolerant networks (VDTNs) were proposed as a novel disruptive network concept based on the delay tolerant networking (DTN) paradigm. VDTN architecture uses vehicles to relay messages, enabling network connectivity in challenging scenarios. Due to intermittent connectivity, network nodes carry messages in their buffers, relaying them only when a proper contact opportunity occurs. Thus, the storage capacity and message retrieving of intermediate nodes directly affects the network performance. Therefore, efficient and robust caching and forwarding mechanisms are needed. This dissertation proposes a content storage and retrieval (CSR) solution for VDTN networks. This solution consists on storage and retrieval control labels, attached to every data bundle of aggregated network traffic. These labels define cacheable contents, and apply cachecontrol and forwarding restrictions on data bundles. The presented mechanisms gathered several contributions from cache based technologies such as Web cache schemes, ad-hoc and DTN networks. This solution is fully automated, providing a fast, safe, and reliable data transfer and storage management, while improves the applicability and performance of VDTN networks significantly. This work presents the performance evaluation and validation of CSR mechanisms through a VDTN testbed. Furthermore it presents several network performance evaluations and results using the well-known DTN routing protocols, Epidemic and Spray and Wait (including its binary variant). The comparison of the network behavior and performance on both protocols, with and without CSR mechanisms, proves that CSR mechanisms improve significantly the overall network performance

    Cooperative Volunteer Protocol to Detect Non-Line of Sight Nodes in Vehicular Ad hoc Networks

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link. CTIA vehicular Ad hoc Network (VANET) is a special type of Mobile Ad hoc Network (MANET) application that impacts wireless communications and Intelligent Transport Systems (ITSs). VANETs are employed to develop safety applications for vehicles to create a safer and less cluttered environment on the road. The many remaining challenges relating to VANETs have encouraged researchers to conduct further investigation in this field to meet these challenges. For example, issues pertaining to routing protocols, such as the delivery of warning messages to vehicles facing Non-Line of Sight (NLOS) situations without causing a broadcasting storm and channel contention are regarded as a serious dilemma, especially in congested environments. This prompted the design of an efficient mechanism for a routing protocol capable of broadcasting warning messages from emergency vehicles to vehicles under NLOS conditions to reduce the overhead and increase the packet delivery ratio with reduced time delay and channel utilisation. This work used the cooperative approach to develop the routing protocol named the Co-operative Volunteer Protocol (CVP), which uses volunteer vehicles to disseminate the warning message from the source to the target vehicle experiencing an NLOS situation. A novel architecture has been developed by utilising the concept of a Context-Aware System (CAS), which clarifies the OBU components and their interaction with each other to collect data and make decisions based on the sensed circumstances. The simulation results showed that the proposed protocol outperformed the GRANT protocol with regard to several metrics such as packet delivery ratio, neighbourhood awareness, channel utilisation, overhead, and latency. The results also showed that the proposed CVP could successfully detect NLOS situations and solve them effectively and efficiently for both the intersection scenario in urban areas and the highway scenario

    SURVEY STUDY FOR VEHICULAR AD HOC NETWORKS PERFORMANCE IN CITY AND URBAN RESIDENTIAL AREAS

    Get PDF
    This thesis it survey study for VANET (Vehicular Ad-Hoc Networks) and it performance in city and urban residential areas, when the the number of vehicles on roads is increasing annually, due to the higher amount of traffic, there are more accidents associated with road traffic complexity. VANET can be used to detect dangerous situations which are forwarded to the driver assistant system by monitoring the traffic status.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Performance of management solutions and cooperation approaches for vehicular delay-tolerant networks

    Get PDF
    A wide range of daily-life applications supported by vehicular networks attracted the interest, not only from the research community, but also from governments and the automotive industry. For example, they can be used to enable services that assist drivers on the roads (e.g., road safety, traffic monitoring), to spread commercial and entertainment contents (e.g., publicity), or to enable communications on remote or rural regions where it is not possible to have a common network infrastructure. Nonetheless, the unique properties of vehicular networks raise several challenges that greatly impact the deployment of these networks. Most of the challenges faced by vehicular networks arise from the highly dynamic network topology, which leads to short and sporadic contact opportunities, disruption, variable node density, and intermittent connectivity. This situation makes data dissemination an interesting research topic within the vehicular networking area, which is addressed by this study. The work described along this thesis is motivated by the need to propose new solutions to deal with data dissemination problems in vehicular networking focusing on vehicular delay-tolerant networks (VDTNs). To guarantee the success of data dissemination in vehicular networks scenarios it is important to ensure that network nodes cooperate with each other. However, it is not possible to ensure a fully cooperative scenario. This situation makes vehicular networks suitable to the presence of selfish and misbehavior nodes, which may result in a significant decrease of the overall network performance. Thus, cooperative nodes may suffer from the overwhelming load of services from other nodes, which comprises their performance. Trying to solve some of these problems, this thesis presents several proposals and studies on the impact of cooperation, monitoring, and management strategies on the network performance of the VDTN architecture. The main goal of these proposals is to enhance the network performance. In particular, cooperation and management approaches are exploited to improve and optimize the use of network resources. It is demonstrated the performance gains attainable in a VDTN through both types of approaches, not only in terms of bundle delivery probability, but also in terms of wasted resources. The results and achievements observed on this research work are intended to contribute to the advance of the state-of-the-art on methods and strategies for overcome the challenges that arise from the unique characteristics and conceptual design of vehicular networks.O vasto número de aplicações e cenários suportados pelas redes veiculares faz com que estas atraiam o interesse não só da comunidade científica, mas também dos governos e da indústria automóvel. A título de exemplo, estas podem ser usadas para a implementação de serviços e aplicações que podem ajudar os condutores dos veículos a tomar decisões nas estradas, para a disseminação de conteúdos publicitários, ou ainda, para permitir que existam comunicações em zonas rurais ou remotas onde não é possível ter uma infraestrutura de rede convencional. Contudo, as propriedades únicas das redes veiculares fazem com que seja necessário ultrapassar um conjunto de desafios que têm grande impacto na sua aplicabilidade. A maioria dos desafios que as redes veiculares enfrentam advêm da grande mobilidade dos veículos e da topologia de rede que está em constante mutação. Esta situação faz com que este tipo de rede seja suscetível de disrupção, que as oportunidades de contacto sejam escassas e de curta duração, e que a ligação seja intermitente. Fruto destas adversidades, a disseminação dos dados torna-se um tópico de investigação bastante promissor na área das redes veiculares e por esta mesma razão é abordada neste trabalho de investigação. O trabalho descrito nesta tese é motivado pela necessidade de propor novas abordagens para lidar com os problemas inerentes à disseminação dos dados em ambientes veiculares. Para garantir o sucesso da disseminação dos dados em ambientes veiculares é importante que este tipo de redes garanta a cooperação entre os nós da rede. Contudo, neste tipo de ambientes não é possível garantir um cenário totalmente cooperativo. Este cenário faz com que as redes veiculares sejam suscetíveis à presença de nós não cooperativos que comprometem seriamente o desempenho global da rede. Por outro lado, os nós cooperativos podem ver o seu desempenho comprometido por causa da sobrecarga de serviços que poderão suportar. Para tentar resolver alguns destes problemas, esta tese apresenta várias propostas e estudos sobre o impacto de estratégias de cooperação, monitorização e gestão de rede no desempenho das redes veiculares com ligações intermitentes (Vehicular Delay-Tolerant Networks - VDTNs). O objetivo das propostas apresentadas nesta tese é melhorar o desempenho global da rede. Em particular, as estratégias de cooperação e gestão de rede são exploradas para melhorar e optimizar o uso dos recursos da rede. Ficou demonstrado que o uso deste tipo de estratégias e metodologias contribui para um aumento significativo do desempenho da rede, não só em termos de agregados de pacotes (“bundles”) entregues, mas também na diminuição do volume de recursos desperdiçados. Os resultados observados neste trabalho procuram contribuir para o avanço do estado da arte em métodos e estratégias que visam ultrapassar alguns dos desafios que advêm das propriedades e desenho conceptual das redes veiculares
    corecore