160 research outputs found

    Vertical motion control of a one legged hopping robot

    Get PDF
    Hopping movement is a desirable locomotion for a mobile robot to adapt on unknown surface and overcome the obstacles avoidance problem. The hopping locomotion is one of locomotion produced by legged robot. The legged type robot has difficult mechanism and complexity in control system. The hopping robot is designed to avoid the obstacles vertically. So, if the hopping robot takes too long time to reach the desired height, it will produced damages to the hopping robot physical. Therefore, the research on develop control strategies of one legged hopping robot is useful so that the developed control strategies can be used and extended to the multi-legged system. Central Pattern Generator (CPG) is a neural network that capable to generate continuous and rhythmic pattern. Since the hopping movement is a continuous and rhythmic jumping movement, it is synthesized that CPG neural network capable to generate hopping movement. Thus, the objectives of this research is to model the one legged hopping robot experimentally, to design a classic controller and integrate with CPG to compensate the steady-state error at each different height, and to optimize the parameters values of Central Pattern Generator (CPG) for the optimum rise time and steady-state error. A hopping peak height detector algorithm is designed to determine hopping peak height as feedback loop. The PI-CPG neural network parameters are optimized for each reference hopping height via simulation. The performance of optimized PI-CPG neural network is evaluated and compared with optimized PI and PID controller. The result shows that the optimized PI-CPG neural network controller produced better response which is 21.36 %, 24.20 %, and 44.13 % average rise time faster than PI-CPG, optimized PI, and optimized PID controller respectively. Moreover, the optimized PI-CPG controller more accurate in term of 4.91 % steady-state error compared to PI-CPG controller; 8.69 %, optimized PI controller; 6.03 %, and optimized PID controller 12.52 % average steady-state error for each reference hopping height. As a conclusion, the hopping height produced by the optimized PI-CPG neural network is more accurate and precise

    Towards a terramechanics for bio-in spired locomotion in granular environments

    Get PDF
    Granular media (GM) present locomotor challenges for terrestrial and extraterrestrial devices because they can flow and solidify in response to localized intrusion of wheels, limbs and bodies. While the development of airplanes and submarines is aided by understanding of hydrodynamics, fundamental theory does not yet exist to describe the complex interactions of locomotors with GM. In this paper, we use experimental, computational, and theoretical approaches to develop a terramechanics for bio-inspired locomotion in granular environments. We use a fluidized bed to prepare GM with a desired global packing fraction, and use empirical force measurements and the Discrete Element Method (DEM) to elucidate interaction mechanics during locomotion-relevant intrusions in GM such as vertical penetration and horizontal drag. We develop a resistive force theory (RFT) to account for more complex intrusions. We use these force models to understand the locomotor performance of two bio-inspired robots moving on and within GM. The sponsor was DARPA/SPAWAR N66001–05-C-8025. For further information, visit Kod*lab

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Design, Actuation, and Functionalization of Untethered Soft Magnetic Robots with Life-Like Motions: A Review

    Full text link
    Soft robots have demonstrated superior flexibility and functionality than conventional rigid robots. These versatile devices can respond to a wide range of external stimuli (including light, magnetic field, heat, electric field, etc.), and can perform sophisticated tasks. Notably, soft magnetic robots exhibit unparalleled advantages among numerous soft robots (such as untethered control, rapid response, and high safety), and have made remarkable progress in small-scale manipulation tasks and biomedical applications. Despite the promising potential, soft magnetic robots are still in their infancy and require significant advancements in terms of fabrication, design principles, and functional development to be viable for real-world applications. Recent progress shows that bionics can serve as an effective tool for developing soft robots. In light of this, the review is presented with two main goals: (i) exploring how innovative bioinspired strategies can revolutionize the design and actuation of soft magnetic robots to realize various life-like motions; (ii) examining how these bionic systems could benefit practical applications in small-scale solid/liquid manipulation and therapeutic/diagnostic-related biomedical fields

    Fuzzy Logic Controller Design for Intelligent Robots

    Get PDF
    This paper presents a fuzzy logic controller by which a robot can imitate biological behaviors such as avoiding obstacles or following walls. The proposed structure is implemented by integrating multiple ultrasonic sensors into a robot to collect data from a real-world environment. The decisions that govern the robot’s behavior and autopilot navigation are driven by a field programmable gate array- (FPGA-) based fuzzy logic controller. The validity of the proposed controller was demonstrated by simulating three real-world scenarios to test the bionic behavior of a custom-built robot. The results revealed satisfactorily intelligent performance of the proposed fuzzy logic controller. The controller enabled the robot to demonstrate intelligent behaviors in complex environments. Furthermore, the robot’s bionic functions satisfied its design objectives

    Investigation of an Articulated Spine in a Quadruped Robotic System.

    Full text link
    This research quantitatively analyzes a multi-body dynamics quadrupedal model with an articulated spine to evaluate the effects of speed and stride frequency on the energy requirements of the system. The articulated model consists of six planar, rigid bodies with a single joint in the middle of the torso. All joints are frictionless and mass is equally distributed in the limbs and torso. A model with the mid-torso joint removed, denoted as the rigid model, is used as a baseline comparison. Impulsive forces and torques are used to instantaneously reset the velocities at the phase transitions, allowing for ballistic trajectories during flight phases. Active torques at the haunch and shoulder joints are used during the stance phases to increase the model robustness. Simulations were conducted over effective high-speed gaits from 6.0 - 9.0 m/s. Stride frequencies were varied for both models. An evolutionary algorithm was employed to find plausible gaits based on biologically realistic constraints and bounds. The objective function for the optimization was cost of transport. Results show a decreasing cost of transport as speed increases for the articulated model with an optimal stride frequency of 3 s−1^{-1} and an increasing cost of transport with increasing speed for the rigid model at an optimal stride frequency of 1.4 s−1^{-1}, with a crossover in the cost of transport between the two models occurring at 7.0 m/s. The rigid model favors low speeds and stride frequencies at the cost of a large impulsive vertical force, driving the system through a long, gathered flight phase used to cover the long distances at the low stride frequencies. The articulated model prefers higher speeds and stride frequencies at the cost of a large impulsive torque in the back joint, akin to the contraction of abdomen muscles, preventing the collapse of the back. Thus, it is demonstrated that the inclusion of back articulation enables a more energetically efficient high-speed gait than a rigid back system, as seen in biological systems. Detailed analysis is provided to identify the mechanics associated with the optimal gaits of both the rigid and the articulated systems to support this claim.Ph.D.Mechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/89831/1/bhaueise_1.pd
    • …
    corecore