slides

Investigation of an Articulated Spine in a Quadruped Robotic System.

Abstract

This research quantitatively analyzes a multi-body dynamics quadrupedal model with an articulated spine to evaluate the effects of speed and stride frequency on the energy requirements of the system. The articulated model consists of six planar, rigid bodies with a single joint in the middle of the torso. All joints are frictionless and mass is equally distributed in the limbs and torso. A model with the mid-torso joint removed, denoted as the rigid model, is used as a baseline comparison. Impulsive forces and torques are used to instantaneously reset the velocities at the phase transitions, allowing for ballistic trajectories during flight phases. Active torques at the haunch and shoulder joints are used during the stance phases to increase the model robustness. Simulations were conducted over effective high-speed gaits from 6.0 - 9.0 m/s. Stride frequencies were varied for both models. An evolutionary algorithm was employed to find plausible gaits based on biologically realistic constraints and bounds. The objective function for the optimization was cost of transport. Results show a decreasing cost of transport as speed increases for the articulated model with an optimal stride frequency of 3 sβˆ’1^{-1} and an increasing cost of transport with increasing speed for the rigid model at an optimal stride frequency of 1.4 sβˆ’1^{-1}, with a crossover in the cost of transport between the two models occurring at 7.0 m/s. The rigid model favors low speeds and stride frequencies at the cost of a large impulsive vertical force, driving the system through a long, gathered flight phase used to cover the long distances at the low stride frequencies. The articulated model prefers higher speeds and stride frequencies at the cost of a large impulsive torque in the back joint, akin to the contraction of abdomen muscles, preventing the collapse of the back. Thus, it is demonstrated that the inclusion of back articulation enables a more energetically efficient high-speed gait than a rigid back system, as seen in biological systems. Detailed analysis is provided to identify the mechanics associated with the optimal gaits of both the rigid and the articulated systems to support this claim.Ph.D.Mechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/89831/1/bhaueise_1.pd

    Similar works

    Full text

    thumbnail-image

    Available Versions