365 research outputs found

    Automatic Clustering with Single Optimal Solution

    Get PDF
    Determining optimal number of clusters in a dataset is a challenging task. Though some methods are available, there is no algorithm that produces unique clustering solution. The paper proposes an Automatic Merging for Single Optimal Solution (AMSOS) which aims to generate unique and nearly optimal clusters for the given datasets automatically. The AMSOS is iteratively merges the closest clusters automatically by validating with cluster validity measure to find single and nearly optimal clusters for the given data set. Experiments on both synthetic and real data have proved that the proposed algorithm finds single and nearly optimal clustering structure in terms of number of clusters, compactness and separation.Comment: 13 pages,4 Tables, 3 figure

    A Multimodel Approach for Complex Systems Modeling based on Classification Algorithms

    Get PDF
    In this paper, a new multimodel approach for complex systems modeling based on classification algorithms is presented. It requires firstly the determination of the model-base. For this, the number of models is selected via a neural network and a rival penalized competitive learning (RPCL), and the operating clusters are identified by using the fuzzy K-means algorithm. The obtained results are then exploited for the parametric identification of the models. The second step consists in validating the proposed model-base by using the adequate method of validity computation. Two examples are presented in this paper which show the efficiency of the proposed approach

    Maximum weighted likelihood via rival penalized EM for density mixture clustering with automatic model selection

    Full text link

    A Batch Rival Penalized Expectation-Maximization Algorithm for Gaussian Mixture Clustering with Automatic Model Selection

    Get PDF
    Within the learning framework of maximum weighted likelihood (MWL) proposed by Cheung, 2004 and 2005, this paper will develop a batch Rival Penalized Expectation-Maximization (RPEM) algorithm for density mixture clustering provided that all observations are available before the learning process. Compared to the adaptive RPEM algorithm in Cheung, 2004 and 2005, this batch RPEM need not assign the learning rate analogous to the Expectation-Maximization (EM) algorithm (Dempster et al., 1977), but still preserves the capability of automatic model selection. Further, the convergence speed of this batch RPEM is faster than the EM and the adaptive RPEM in general. The experiments show the superior performance of the proposed algorithm on the synthetic data and color image segmentation

    Accurate Wavelet Neural Network for Efficient Controlling of an Active Magnetic Bearing System

    Get PDF

    Combining Multiple Clusterings via Crowd Agreement Estimation and Multi-Granularity Link Analysis

    Full text link
    The clustering ensemble technique aims to combine multiple clusterings into a probably better and more robust clustering and has been receiving an increasing attention in recent years. There are mainly two aspects of limitations in the existing clustering ensemble approaches. Firstly, many approaches lack the ability to weight the base clusterings without access to the original data and can be affected significantly by the low-quality, or even ill clusterings. Secondly, they generally focus on the instance level or cluster level in the ensemble system and fail to integrate multi-granularity cues into a unified model. To address these two limitations, this paper proposes to solve the clustering ensemble problem via crowd agreement estimation and multi-granularity link analysis. We present the normalized crowd agreement index (NCAI) to evaluate the quality of base clusterings in an unsupervised manner and thus weight the base clusterings in accordance with their clustering validity. To explore the relationship between clusters, the source aware connected triple (SACT) similarity is introduced with regard to their common neighbors and the source reliability. Based on NCAI and multi-granularity information collected among base clusterings, clusters, and data instances, we further propose two novel consensus functions, termed weighted evidence accumulation clustering (WEAC) and graph partitioning with multi-granularity link analysis (GP-MGLA) respectively. The experiments are conducted on eight real-world datasets. The experimental results demonstrate the effectiveness and robustness of the proposed methods.Comment: The MATLAB source code of this work is available at: https://www.researchgate.net/publication/28197031

    Panoramic Background Modeling for PTZ Cameras with Competitive Learning Neural Networks

    Get PDF
    The construction of a model of the background of a scene still remains as a challenging task in video surveillance systems, in particular for moving cameras. This work presents a novel approach for constructing a panoramic background model based on competitive learning neural networks and a subsequent piecewise linear interpolation by Delaunay triangulation. The approach can handle arbitrary camera directions and zooms for a Pan-Tilt-Zoom (PTZ) camera-based surveillance system. After testing the proposed approach on several indoor sequences, the results demonstrate that the proposed method is effective and suitable to use for real-time video surveillance applications.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    A Clustering Method for Data in Cylindrical Coordinates

    Get PDF
    We propose a new clustering method for data in cylindrical coordinates based on the k-means. The goal of the k-means family is to maximize an optimization function, which requires a similarity. Thus, we need a new similarity to obtain the new clustering method for data in cylindrical coordinates. In this study, we first derive a new similarity for the new clustering method by assuming a particular probabilistic model. A data point in cylindrical coordinates has radius, azimuth, and height. We assume that the azimuth is sampled from a von Mises distribution and the radius and the height are independently generated from isotropic Gaussian distributions. We derive the new similarity from the log likelihood of the assumed probability distribution. Our experiments demonstrate that the proposed method using the new similarity can appropriately partition synthetic data defined in cylindrical coordinates. Furthermore, we apply the proposed method to color image quantization and show that the methods successfully quantize a color image with respect to the hue element
    corecore