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Abstract 

Determining optimal number of clusters in a dataset is a challenging task. Though some methods are 

available, there is no algorithm that produces unique clustering solution. The paper proposes an Automatic 

Merging for Single Optimal Solution (AMSOS) which aims to generate unique and nearly optimal clusters 

for the given datasets automatically. The AMSOS is iteratively merges the closest clusters automatically by 

validating with cluster validity measure to find single and nearly optimal clusters for the given data set. 

Experiments on both synthetic and real data have proved that the proposed algorithm finds single and 

nearly optimal clustering structure in terms of number of clusters, compactness and separation. 

Keywords: Clustering, Optimal clusters, Cluster validity measure, Automatic clustering, Single Optimal 

Solution, Closest clusters. 

1. Introduction 

Jain (2010) specified that the partitional clustering technique, k-means, is the most computationally simple 

and efficient clustering method. Wu et al. (2008) have shown that the k-means was one of the top ten 

algorithms in data mining. Although the k-means method has a number of advantages over other data 

clustering methods, the specification of number of clusters is a priori, which is usually unknown.  

Discovering an optimal number of clusters in a large data set is usually a challenging task. Jain 

(2010) shown a number of methods to determine k in k-means type algorithms.. Cheung (2005) studied a 

rival penalized competitive learning algorithm, and Xu ( 1997, 1996) has demonstrated a very good result 

in finding the cluster number. The algorithm is formulated by learning the parameters of a mixture model 

through the maximization of a weighted likelihood function. In the learning process, some initial seed 

centers move to the genuine positions of the cluster centers in a data set, and other redundant seed points 

will stay at the boundaries or outside of the clusters. Guo et.al (2002) have provided a unified algorithm for 

both unsupervised and supervised learning for solving the problem of selection of the cluster number. Lee 

and Antonsson (2000) used an evolutionary method to dynamically cluster a data set. Sarkar,et al,. (1997) 

and Fogel, Owens, and Walsh (1966) are proposed an approach to dynamically cluster a data set using 

evolutionary programming, where two fitness functions are simultaneously optimized: one gives the 

optimal number of clusters, whereas the other leads to a proper identification of each cluster’s centroid. 

Recently Swagatam Das and Ajith Abraham (2008) proposed an Automatic Clustering using Differential 
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Evolution (ACDE) algorithm by introducing a new chromosome representation. The majority of these 

methods to determine the best number of clusters may not work very well in practice. The clustering 

algorithms are require to be run several times for good solution, and model-based methods, such as 

cross-validation and penalized likelihood estimation, are computationally expensive. All these algorithms 

cause different solutions in different independent runs. There is no single clustering algorithm that finds 

unique set of optimal clusters automatically. This paper proposes a new clustering algorithm Automatic 

Merging for Single Optimal Solution (AMSOS) is a parameter free, simple finds unique and nearly optimal 

clusters for large data set automatically. 

The proposed Automatic Merging for Single Optimal Solution (AMSOS) is a two-phase iterative 

procedure. Karteeka et al. (2010) have proposed Single Pass Seed Selection algorithm to initialize seeds for 

k-means. In the first phase, it produces single set of optimal clusters by initializing initial seeds using SPSS . 

In the second phase, iteratively a low probability cluster is merged with its closest cluster using average 

linkage after validating with cluster validity metric. The proposed AMSOS is aimed to meet requirements 

as 1) nearly optimal clusters and 2) unique clustering solution. Experiments on both synthetic and real data 

sets from UCI prove that the proposed algorithm finds nearly optimal results in terms of compactness and 

separation. 

Section (2) deals with formulation of the proposed algorithm, while section (3) illustrates the 

effectiveness of the new algorithm experimenting results on synthetic, real, and micro array data sets. 

Comments on the results of AMSOS are included in Section (4) and finally concluding remarks are 

included in section (5).  

2 Materials and Methods 

Let P = {P1, P2,… , Pm} be a set of m objects in which each object Pi is represented as[pi,1,pi,2,…pi,n] 

where n is the number of features . 

2.1 Automatic Merging for Single Optimal Solution 

 The choice of the initial seeds was done by SPSS in AMSOS. The SPSS is an optimal seed 

selection algorithm that produces unique set of initial seeds to k-means type algorithms and is a 

modification to k-means++ proposed by Arthu and Vassilvitskii (2007). Thus the AMSOS produces single 

and nearly optimal clustering solution. In the clustering literature Pal and Bezdek (1995) reported that the 

number of clusters in the data set is in the range from 2 to m . The AMSOS algorithm first finds kmax 

= m  clusters using k-means and iteratively merges the lower probability cluster with its closest cluster 

according to average linkage and validates the merging result using Rand Index which is proposed by  

Rand (1971). The probability of cluster A is as follows. 

                                  
X

A
AP )(

                                                                          

where A is number of elements belongs to cluster A and X  is the total number of elements in the  

original dataset, X. The distance between two clusters is measured using average linkage i.e. the distance 

between two clusters, D( Ci,Cj) is computed as the average distance between elements from the first cluster 

and elements from the second cluster and as shown in the following equation. 
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Steps: 

1. Initialize kmax, number of clusters to the square root of total number of objects 

2. Assign kmax objects using SPSS to the cluster centroids 

3. Find the clusters using k-means 

4. Compute Rand index 

5. Find a cluster that has least probability and merge with its closest cluster. Recompute 

centroids, Rand index and decrement the number of clusters by one. If the newly computed 

Rand index is greater than the previous Rand index, then update Rand Index, number of 

clusters and cluster centroids with the newly computed values. 

6. If step 5 has been executed for each and every cluster, then go to step7, otherwise got to step5. 

7. If there is no change in number of clusters, then stop, otherwise go to step2 

2.2 Data sets 

The efficiency of new algorithms are evaluated by conducting experiments on four artificial data sets, three 

real datasets down loaded from the web site UCI and two microarray data sets (two yeast data sets) 

downloaded from http://www.cs. washington.edu/homes/kayee/cluster (Yeung 2001).  

The real data sets used:  

1. Iris plants database (n = 150, d = 4, K = 3)  

2. Glass (n = 214, d = 9, K = 6) 

3. Wine (n = 178, d = 13, K = 3) 

The real microarray data sets used: 

1. The yeast cell cycle data (Cho et al., 1998) showed the fluctuation of expression levels of 

approximately 6000 genes over two cell cycles (17 time points). We used two different subsets of 

this data with independent external criteria. The first subset (the 5-phase criterion) consists of 384 

genes whose expression levels peak at different time points corresponding to the five phases of 

cell cycle (Cho et al., 1998). We expect clustering results to approximate this five class partition. 

Hence, we used the 384 genes with the 5- phase criterion as one of our data sets. 

2. The second subset (the MIPS criterion) consists of 237 genes corresponding to four categories in 

the MIPS database (Mewes et al., 1999). The four categories (DNA synthesis and replication, 

organization of centrosome, nitrogen and sulphur metabolism, and ribosomal proteins) were 

shown to be reflected in clusters from the yeast cell cycle data (Tavazoie et al., 1999). 

The four synthetic data sets from Np(µ, ∑) with specified mean vector and variance covariance matrix 

are as follows.   

1. Number of elements, m=350, number of attributes, n=3, number of clusters, k =2 with  
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2.  The data set with m=400, n=3, clusters=4 with  
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3. m=300, n=2, k=3;  
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4. m=800, n=2, k=6;  
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3. Experimental Results 

 The clustering results of AMSOS are compared with the results of K-means, k-means++, SPSS, a 

method to obtain robust optimal centroids in a single pass , which is developed by Karteeka (2011), 

fuzzy-kmeans, and Automatic Clustering using Differential Evolution (ACDE) to determine optimal 

clusters.   

The k-means, k-means++, Fuzzy-k and SPSS algorithms are implemented with the number of 

clusters as equal to the number of classes in the ground truth. 

 

3.2 Presentation of Results 

 While comparing the performance of AMSOS with the other techniques (k-means, k-means++, 

fuzzy-k, SPSS, ACDE) we are concentrating on two major issues: 1) quality of the solution as determined 

by Error rate and with cluster validity measures Rand, has proposed by Rand (1971), Adjusted Rand, DB, 

proposed by Davis and Bouldin (1979), CS, is proposed by Chou (2004) and Silhouette is proposed by 

Rousseeuw (1987) 2) ability to find the optimal number of clusters.  Forty independent runs of each 

algorithm is taken for the algorithms those produce different results in different individual runs. The Rand, 

Adjusted Rand, DB, CS and Silhouette metrics values and the overall error rate of the mean-of-run 

solutions provided by the algorithms over the 10 datasets have been provided in Table 1.  

The error rate is defined as 

100
m

N
err mis

  where Nmis  is the number of misclassifications and m is the number of elements of 

data set original data set X. The best performance values and least performance values that found in 40 

independent runs of each algorithm on each dataset is tabulated in Table2 and in Table3. Table 4 contains 

the obtained centroids from AMSOS for the synthetic datasets and their original cluster centroids. 

4. Comments on the results of AMSOS 

 In case of Synthetic1, Synthetic2, Synthetic3, Synthetic4 the AMSOS resulting single, robust, 

optimal clustering solution with least error rates compared to other existing algorithms. 

 Table4 demonstrates that the efficiency of AMSOS in determining optimal centroids, which are 

very close to the original centroids. 
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 The Automatic Merging for Single Optimal Solution (AMSOS) performs well on different data 

sets. The misclassification rate of single clustering solution of the AMSOS is either as same as the 

minimum error rate found in 40 independent runs or nearly equal with the means of different 

solutions of the existing algorithms for all the data sets. Table 5 shows the error rates of unique 

solutions of SPSS, AMSOS and means of error rates of forty independent runs of ACDE, k-means, 

k-means++, fuzzy-k. 

 The proposed AMSOS shows an improved performance of 30% over ACDE in terms of error rate. 

 For the micro array data sets it is resulting single solution with error rates 35.44, 44.01 for the 

yeast1 and yeast2. 

 The poor performance of AMSOS can be seen in the data sets which contains non separable 

overlapped clusters. 

 The AMSOS produces 82.21% qualitative clusters in terms of Rand validity measure. 

 The quality of AMSOS on all data sets is 72.15% in terms of silhouette measure. 

Note: Results of CS, ARI, etc., are very much in agreement with above all observations in the performance 

of AMSOS, hence detailed note with respect to them is not provided to avoid duplication. 

5. Conclusions 

AMSOS is totally a non-parameter procedure. Unlike the most of the algorithms, it does not require any 

heuristic parameter values in advance, though it requires k as input the output does not depends on the input. 

Being the high density point is the first seed, the SPSS (Karteeka 2011) avoids different results that occur 

from random selection of initial seeds. For the remaining seeds it follows k-means++. The algorithm is 

insensitive to outliers in seed selection. Thus the AMSOS in combination with SPSS centroids is outlier 

insensitive and results in single clustering solution. The table 4 demonstrated that the proposed algorithm 

produce clustering result with optimal centroids and with single solution.  

References 

Arthu, D. and Vassilvitskii, S. (2007)  , “K-means++: The advantages of careful seeding, proceeding of the 

 18th Annual ACM-SIAM Symposium of Discrete Analysis”,7-9, ACM  Press, New Orleans, 

 Louisiana, pp: 1027-1035.  

 http://portal.acm.org/citation.cfm?id=1283494, www.stanford.edu/~darthur/kMeansPlusPlus.pdf 

Cheung, Y. (2005) , “Maximum Weighted Likelihood via Rival Penalized EM for Density Mixture 

 Clustering with Automatic Model Selection,” IEEE Trans. Knowledge and Data Eng., vol. 17, no. 6, 

 pp. 750-761. 

 DOI: 10.1109/TKDE.2005.97 , http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1423976 

Cho, R.J., Campbell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., 

 Gabrielian, A.E., Landsman, D., Lockhart, D.J., and Davis, R.W. (1998)  , “A genome-wide 

 transcriptional analysis of the mitotic cell cycle,” Mol. Cell, vol. 2, no. 1, pp. 65–73.   

 http://computableplant.ics.uci.edu/ICS277C/papers/pathways/Cell%20cycle/Cho_cellcycle_data98.pd

 f 

Chou, C.H., Su, M.C., Lai, E. (2004), “A new cluster validity measure and its application to image 

 compression,” Pattern Anal. Appl., vol. 7, no. 2, pp. 205–220 

 DOI:10.1007/s10044-004-0218-1,     

 http://www.iis.sinica.edu.tw/~ister/publications/Jounral%20paper/CS%20measure.pdf 

http://portal.acm.org/citation.cfm?id=1283494
http://www.stanford.edu/~darthur/kMeansPlusPlus.pdf
http://dx.doi.org/10.1109/TKDE.2005.97
http://computableplant.ics.uci.edu/ICS277C/papers/pathways/Cell%20cycle/Cho_cellcycle_data98.pd
http://computableplant.ics.uci.edu/ICS277C/papers/pathways/Cell%20cycle/Cho_cellcycle_data98.pd


Computer Engineering and Intelligent Systems   www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol 2, No.4, 2011 

154 

 

Davies, D.L. and Bouldin, D.W. (1979). A cluster separation measure. IEEE Transactions on Pattern 

 Analysis and Machine Intelligence 1979, vol.1, pp.224–227.  DOI: 10.1109/TPAMI.1979.4766909 , 

 ieexplore.ieee.org/iel5/34/4766893/04766909.pdf?arnumber=4766909 

Fogel, L.J, Owens, A. J.  and Walsh, M. J  (1996)  ,  “Artificial Intelligence Through Simulated 

 Evolution”. New York: Wiley. 

Guo, P.  Chen, C.L. and Lyu, M.R  (2002)“Cluster Number Selection for a Small Set of Samples Using 

 the Bayesian Ying-Yang Model,” IEEE Trans. Neural Networks, vol. 13, no. 3, pp. 757-763 DOI: 

 10.1109/TNN.2002.1000144, ieeexplore.ieee.org/iel5/72/21590/01000144.pdf?    

 arnumber=1000144 

Jain, A.K.  (2010)  “Data Clustering: 50 Years Beyond K-Means” , Pattern Recognition letters, 31, pp 

 651-666.  doi:10.1016/j.patrec.2009.09.011 ,        

 http://www.cs.ucf.edu/courses/cap6412/fall2009/papers/JainDataClusteringPRL09.pdf 

KarteekaPavan K. (2011) Ph.D. thesis titled “Contributions to automatic clustering techniques for optimal 

 structures in microarray data” submitted to Acharya Nagarjuna University , India in 2011. 

KarteekaPavan, K. Allam AppaRao, DattatreyaRao, A.V., Sridhar, G..R. (2010). “Single Pass Seed 

 Selection Algorithm for k-means,” J.Computer Science 6(1):60-66. 

DOI: 10.3844/jcssp.2010.60.66 http://www.scipub.org/fulltext/jcs/jcs6160-66.pdf 

Lee, C.Y. and Antonsson, E.K. (2000), “Self-adapting vertices for mask-layout  synthesis,” in Proc. Model. 

 Simul. Microsyst. Conf., M. Laudon and B. Romanowicz, Eds., San Diego, CA, Mar. pp. 83–86. 

http://www.design.caltech.edu/Research/Publications/99h.pdf 

Mewes, H.W. , Heumann, K., Kaps, A. , Mayer, K. , Pfeiffer, F.stocker, S., and Frishman,D  (1999)  . 

 MIPS: a database for protein sequience and complete genomes. Nucleic Acids Research, 27:44-48. 

http://nar.oxfordjournals.org/content/30/1/31.full.pdf+html 

Pal, N.R. and Bezdek, J.C. (1995) “On Cluster Validity for the Fuzzy C-Means Model,” IEEE Trans. Fuzzy 

 Systems, vol. 3, no. 3, pp. 370- 379. 

 DOI: 10.1109/91.413225, ieeexplore.ieee.org/iel4/91/9211/00413225.pdf?arnumber=413225 

Rand, W. M. (1971) “Objective criteria for the evaluation of clustering methods. Journal of the American 

 Statistical Association,” vol.66, pp.846-850. 

 DOI: 10.2307/2284239, http://www.jstor.org/pss/2284239 

Rousseeuw, P. J.  (1987)  , “Silhouettes: a graphical aid to the interpretation and validation of cluster 

 analysis”. Journal of Computational and Applied Mathematics, vol.20, pp.53–65. 

DOI: 10.1016/0377-0427(87)90125-7, portal.acm.org/citation.cfm?id=38772 

Sarkar, M., Yegnanarayana, B.  and Khemani, D.  (1997)  , “A clustering algorithm using an 

 evolutionary programming-based approach,” Pattern Recognit. Lett., vol. 18, no. 10, pp. 975–986. 

DOI: 10.1016/S0167-8655(97)00122-0, http://speech.iiit.ac.in/svlpubs/article/Sarkar1997975.pdf 

Swagatam Das, Ajith Abraham (2008)   “Automatic Clustering Using An Improved Differential Evolution 

 Algorithm”, Ieee Transactions On Systems, Man, And Cybernetics—Part A: Systems And Humans, 

 Vol. 38, No. 1, Pp218-237. 

 DOI: 10.1109/TSMCA.2007.909595 , www.softcomputing.net/smca-paper1.pdf  

Tavazoie, S., Huges, J.D., Campbell, M.J., Cho, R.J. and Church, G.M. (1999) “Systematic determination of 

 genetic network architecture”. Nature Genetics, vol.22, pp.281–285. 

http://dx.doi.org/10.1109/TPAMI.1979.4766909
http://dx.doi.org/10.1016/j.patrec.2009.09.011
http://dx.doi.org/10.3844/jcssp.2010.60.66
http://www.scipub.org/fulltext/jcs/jcs6160-66.pdf
http://www.jstor.org/pss/2284239
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1016/S0167-8655(97)00122-0
http://dx.doi.org/10.1109/TSMCA.2007.909595


Computer Engineering and Intelligent Systems   www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol 2, No.4, 2011 

155 

 

DOI:10.1038/10343, www.ics.uci.edu/~xhx/courses/CS284A/.../CS284A_Lecture5_cellcycle.pdf 

Wu, X., V. Kumar, J.R. Quinlan, J. Ghosh, D.J. Hand and D. Steinberg et al.(2008),Top 10 algorithms in 

 data mining”. Knowl. Inform. Syst. J., 14: 1-37. 

DOI: 10.1007/s10115-007-0114-2, www.cs.uvm.edu/~icdm/algorithms/10Algorithms-08.pdf - 

Xu, L. (1996).  “How Many Clusters: A Ying-Yang Machine Based Theory for a Classical Open Problem 

 in Pattern Recognition,” Proc. IEEE Int’l Conf. Neural Networks  ICNN ’96  , vol. 3, pp. 

 1546-1551

 DOI:10.1109/ICNN.1996.549130,ieeexplore.ieee.org/iel3/3927/11368/00549130.pdf?arnumber=5491

 30 
Xu, L. (1997) “Rival Penalized Competitive Learning, Finite Mixture, and Multisets Clustering,” Pattern 

 Recognition Letters, vol. 18, nos. 11- 13, pp. 1167-1178. 

DOI:10.1109/IJCNN.1998.687259 ,www.cse.cuhk.edu.hk/~lxu/papers/conf-chapters/XURPCLijcnn98.

pdf 

Yeung, K.Y. (2001), “Cluster analysis of gene expression data. In PhD thesis University of Washington”. 

http://faculty.washington.edu/kayee/thesis_kayee.pdf 

Table 1. Validity measures with error rates 

Dataset Algorithm No. of 

clusters, k 

Cluster Validity Measures Mean 

Error 

rate  

 

i/p 

k 

o/p k ARI RI HI SIL DB CS 

Synthetic1 k-means 2 2 0.92 0.96 0.92 0.839 0.467 0.645 0.236 

k-means++ 0.925 0.962 0.925 0.839 0.466 0.567 1.914 

fuzk 0.899 0.95 0.9 0.839 0.468 0.52 2.571 

SPSS 0.932 0.966 0.932 0.839 0.465 0.725 1.714 

ACDE 19 3.05 0.85 0.925 0.849 0.643 0.772 1.348 51.56 

AMSOS 19 2 0.932 0.966 0.932 0.839 0.465 0.75 1.714 

Synthetic2 k-means 4 4 0.821 0.927 0.854 0.718 0.58 1.178 19.1 

k-means++ 0.883 0.953 0.907 0.776 0.519 1.21 7.16 

fuzk 0.944 0.979 0.957 0.791 0.484 0.931 2.2 

SPSS 0.939 0.977 0.953 0.792 0.527 0.812 2.4 

ACDE 22 5.35 0.885 0.957 0.914 0.68 0.674 1.321 58.89 

AMSOS 22 4 0.939 0.977 0.953 0.792 0.527 0.943 2.4 

Synthetic3 k-means 3 3 0.957 0.98 0.96 0.813 0.509 0.87 2.242 

k-means++ 0.97 0.987 0.974 0.823 0.761 0.92 1 

fuzk 0.97 0.987 0.974 0.823 0.5 0.96 1 

SPSS 0.97 0.987 0.974 0.823 0.507 0.657 1 

ACDE 17 4 0.472 0.777 0.553 0.754 0.461  83.59 

AMSOS 17 3 0.97 0.987 0.974 0.823 0.507 0.768 1 

Synthetic4 k-means 6 6 0.816 0.941 0.882 0.82 0.407 0.72 51.27 

http://dx.doi.org/10.1007/s10115-007-0114-2
http://dx.doi.org/10.1109/ICNN.1996.549130
http://dx.doi.org/10.1109/IJCNN.1998.687259
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k-means++ 0.958 0.988 0.976 0.932 0.222 0.62 10.96 

fuzk 0.98 0.994 0.988 0.953 0.183 0.45 8.738 

SPSS 1 1 1 0.975 0.144 0.723 0 

ACDE 28 7.9 0.979 0.994 0.989 0.878 0.308 0.359 53.21 

AMSOS 28 6 1 1 1 0.975 0.144 0.233 0 

Iris k-means 3 3 0.774 0.892 0.785 0.804 0.463 0.607 15.77 

k-means++ 0.796 0.904 0.807 0.804 0.461 0.712 13.37 

fuzk 0.788 0.899 0.798 0.803 0.46 0.658 15.33 

SPSS 0.44 0.72 0.441 0.799 0.582 1.962 50.67 

ACDE 12 3.15 0.887 0.95 0.901 0.784 0.435 0.706 10.17 

AMSOS 12 2 0.568 0.776 0.553 0.952 0.233 0.402 33.33 

Wine k-means 3 3 0.295 0.675 0.35 0.694 0.569 0.612 34.58 

k-means++ 0.305 0.681 0.362 0.694 0.562 0.678 33.54 

fuzk 0.34 0.7 0.401 0.696 0.566 0.753 30.34 

SPSS 0.337 0.699 0.398 0.696 0.601 0.813 30.34 

ACDE 13 4.45 0.367 0.723 0.447 0.373 0.555 1.626 52.89 

AMSOS 13 2 0.197 0.593 0.186 0.714 0.644 1.024 41.01 

Glass k-means 6 6 0.245 0.691 0.382 0.507 0.901 0.967 55.86 

k-means++ 0.259 0.683 0.365 0.548 0.871 1.523 56.1 

fuzk 0.241 0.72 0.44 0.293 0.998 1.613 62.29 

SPSS 0.252 0.722 0.444 0.382 1.061 1.512 45.79 

ACDE 15 5.5 0.309 0.712 0.425 0.338 1.146 2.868 54.35 

AMSOS 15 5 0.27 0.669 0.337 0.639 0.95 1.366 70.56 

Yeast1 k-means 4 4 0.497 0.765 0.53 0.466 1.5 1.439 35.74 

k-means++ 0.465 0.751 0.503 0.425 1.528 1.678 37.49 

fuzk 0.43 0.734 0.468 0.37 2.012 1.679 39.18 

SPSS 0.508 0.769 0.538 0.464 1.471 1.217 35.44 

ACDE 15 5.55 0.594 0.806 0.612 0.348 2.314 2.669 81.86 

AMSOS 15 4 0.508 0.769 0.538 0.464 1.471 1.515 35.44 

Yeast2 k-means 5 5 0.447 0.803 0.607 0.438 1.307 1.721 38.35 

k-means++ 0.436 0.801 0.603 0.421 1.292 1.521 40 

fuzk 0.421 0.799 0.598 0.379 1.443 1.341 35.73 

SPSS 0.456 0.804 0.608 0.453 1.236 2.567 43.23 

ACDE 20 6.225 0.537 0.838 0.677 0.363 1.438 2.326 44.95 

AMSOS 20 4 0.469 0.8 0.6 0.506 1.154 1.342 44.01 

 

Table 2. Best Validity indices along with error rate 

Dataset Algorithm No. of Cluster Validity Measures Minimu
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clusters, k m Error 

rate  

 

i/p 

k 

o/p k ARI RI HI SIL DB CS 

Synthetic1 k-means 2  0.932 0.966 0.932 0.839 0.465 0.75 1.714 

k-means++ 0.932 0.966 0.932 0.839 0.465 0.75 1.714 

fuzk 0.899 0.95 0.9 0.839 0.468 0.732 2.571 

SPSS 0.932 0.966 0.034 0.839 0.465 0.725 1.714 

ACDE 19 2 1 1 1 0.839 0.463 2.13 0 

AMSOS 19 2 0.932 0.966 0.932 0.839 0.465 0.75 1.714 

Synthetic2 k-means 4  0.939 0.977 0.953 0.792 0.44 1.821 2.4 

k-means++ 0.939 0.977 0.953 0.792 0.44 1.805 2.4 

fuzk 0.944 0.979 0.957 0.791 0.44 0.931 2.2 

SPSS 0.939 0.977 0.023 0.792 0.527 0.812 2.4 

ACDE 22 4 0.939 0.977 0.953 0.79 0.445 2.224 2.4 

AMSOS 22 4 0.939 0.977 0.953 0.792 0.527 0.943 2.4 

Synthetic3 k-means 3  0.97 0.987 0.974 0.823 0.474 0.768 1 

k-means++ 0.97 0.987 0.974 0.823 0.474 1.701 1 

fuzk 0.97 0.987 0.974 0.823 0.474 0.749 1 

SPSS 0.97 0.987 0.013 0.823 0.507 0.657 1 

ACDE 17 4 0.566 0.836 0.671 0.872 0.19 1.764 50 

AMSOS 17 3 0.97 0.987 0.974 0.823 0.507 0.768 1 

Synthetic4 k-means 6  1 1 1 0.975 0.139 0.759 0 

k-means++ 1 1 1 0.975 0.142 0.403 0 

fuzk 1 1 1 0.975 0.127 0.412 0 

SPSS 1 1 0 0.975 0.144 0.723 0 

ACDE 28 6 1 1 1 0.975 0.136 0.605 0 

AMSOS 28 6 1 1 1 0.975 0.144 0.233 0 

Iris k-means 3  0.886 0.95 0.899 0.806 0.411 0.753 4 

k-means++ 0.886 0.95 0.899 0.806 0.411 0.753 4 

fuzk 0.886 0.95 0.899 0.806 0.411 0.769 4 

SPSS 0.44 0.72 0.28 0.799 0.582 1.962 50.67 

ACDE 12 3 0.904 0.958 0.916 0.806 0.435 1.061 3.333 

AMSOS 12 2 0.568 0.776 0.553 0.952 0.233 0.402 33.33 

Wine k-means 3  0.337 0.699 0.398 0.696 0.447 0.939 30.34 

k-means++ 0.337 0.699 0.398 0.696 0.447 0.939 30.34 

fuzk 0.347 0.704 0.408 0.696 0.488 0.929 29.78 

SPSS 0.337 0.699 0.301 0.696 0.601 0.813 30.34 

ACDE 13 2 0.423 0.755 0.511 0.686 0.555 3.368 28.65 

AMSOS 13 2 0.197 0.593 0.186 0.714 0.644 1.024 41.01 
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Glass k-means 6  0.287 0.728 0.456 0.656 0.744 1.917 44.86 

k-means++ 0.288 0.725 0.45 0.729 0.522 1.745 46.73 

fuzk 0.263 0.733 0.467 0.317 0.883 3.995 48.13 

SPSS 0.252 0.722 0.278 0.382 1.061 1.512 45.79 

ACDE 15 4 0.331 0.758 0.517 0.636 1.146 3.883 37.38 

AMSOS 15 5 0.27 0.669 0.337 0.639 0.95 1.366 70.56 

Yeast1 k-means 4  0.515 0.773 0.545 0.473 1.307 2.117 35.02 

k-means++ 0.515 0.772 0.545 0.473 1.376 2.006 35.02 

fuzk 0.453 0.744 0.489 0.396 1.722 16.91 37.55 

SPSS 0.508 0.769 0.231 0.464 1.471 2.012 35.44 

ACDE 15 3 0.661 0.838 0.675 0.418 2.314 4.311 24.47 

AMSOS 15 4 0.508 0.769 0.538 0.464 1.471 1.515 35.44 

Yeast2 k-means 5  0.491 0.818 0.635 0.455 1.213 1.217 27.08 

k-means++ 0.497 0.82 0.64 0.514 1.092 1.666 26.3 

fuzk 0.478 0.812 0.625 0.43 1.296 6.384 27.86 

SPSS 0.456 0.804 0.196 0.453 1.236 2.567 43.23 

ACDE 20 5 0.551 0.846 0.692 0.428 1.438 3.489 23.18 

AMSOS 20 4 0.469 0.8 0.6 0.506 1.154 1.342 44.01 

 

Table3. Least performance values 

Dataset Algorithm No. of 

clusters, k 

Cluster Validity Measures Maxim

um 

Error 

rate  

 

i/p 

k 

o/p k ARI RI HI SIL DB CS 

Synthetic1 k-means 2  0.91 0.955 0.91 0.839 0.467 0.749 2.286 

k-means++ 0.91 0.955 0.91 0.839 0.467 0.749 2.286 

fuzk 0.899 0.95 0.9 0.839 0.468 0.732 2.571 

SPSS 0.932 0.966 0.034 0.839 0.465 0.725 1.714 

ACDE 19 4 0.699 0.849 0.697 0.44 1.275 2.13 96 

AMSOS 19 2 0.932 0.966 0.932 0.839 0.465 0.75 1.714 

Synthetic2 k-means 4  0.561 0.82 0.641 0.503 0.904 0.936 67 

k-means++ 0.566 0.822 0.643 0.507 0.874 0.936 59.8 

fuzk 0.944 0.979 0.957 0.791 0.528 0.93 2.2 

SPSS 0.939 0.977 0.023 0.792 0.527 0.812 2.4 

ACDE 22 7 0.853 0.945 0.891 0.537 0.865 2.224 96.2 

AMSOS 22 4 0.939 0.977 0.953 0.792 0.527 0.943 2.4 

Synthetic3 k-means 3  0.97 0.987 0.974 0.823 0.507 0.749 1 
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k-means++ 0.432 0.718 0.436 0.44 0.962 0.749 50.67 

fuzk 0.97 0.987 0.974 0.823 0.507 0.731 1 

SPSS 0.97 0.987 0.013 0.823 0.507 0.657 1 

ACDE 17 4 -0.049 0.382 -0.235 0.203 1.078 1.764 87.5 

AMSOS 17 3 0.97 0.987 0.974 0.823 0.507 0.768 1 

Synthetic4 k-means 6  0.574 0.851 0.703 0.504 0.727 0.233 0 

k-means++ 0.832 0.951 0.902 0.791 0.523 0.233 92.63 

fuzk 0.836 0.952 0.904 0.786 0.503 0.233 94.5 

SPSS 1 1 0 0.975 0.144 0.723 0 

ACDE 28 10 0.944 0.985 0.97 0.736 0.511 0.247 93.88 

AMSOS 28 6 1 1 1 0.975 0.144 0.233 0 

Iris k-means 3  0.44 0.72 0.441 0.798 0.582 0.607 51.33 

k-means++ 0.44 0.72 0.441 0.798 0.582 0.607 51.33 

fuzk 0.45 0.725 0.449 0.792 0.576 0.603 56 

SPSS 0.44 0.72 0.28 0.799 0.582 1.962 50.67 

ACDE 12 4 0.795 0.914 0.828 0.623 0.435 0.529 62.67 

AMSOS 12 2 0.568 0.776 0.553 0.952 0.233 0.402 33.33 

Wine k-means 3  0.217 0.628 0.256 0.692 0.608 0.78 42.7 

k-means++ 0.217 0.628 0.256 0.687 0.608 0.774 42.7 

fuzk 0.332 0.696 0.392 0.695 0.601 0.914 30.9 

SPSS 0.337 0.699 0.301 0.696 0.601 0.813 30.34 

ACDE 13 8 0.338 0.668 0.336 0.053 0.555 0.647 69.66 

AMSOS 13 2 0.197 0.593 0.186 0.714 0.644 1.024 41.01 

Glass k-means 6  0.152 0.666 0.333 0.207 1.168 0.966 67.29 

k-means++ 0.189 0.626 0.252 0.356 1.023 0.722 64.95 

fuzk 0.207 0.707 0.415 0.243 1.178 1.85 66.82 

SPSS 0.252 0.722 0.278 0.382 1.061 1.512 45.79 

ACDE 15 8 0.293 0.646 0.291 0.071 1.146 0.99 86.45 

AMSOS 15 5 0.27 0.669 0.337 0.639 0.95 1.366 70.56 

Yeast1 k-means 4  0.246 0.658 0.315 0.184 1.757 1.509 80.17 

k-means++ 0.43 0.735 0.47 0.399 2.007 1.509 42.62 

fuzk 0.394 0.721 0.441 0.343 2.239 6.311 80.59 

SPSS 0.508 0.769 0.231 0.464 1.471 1.217 35.44 

ACDE 15 8 0.545 0.786 0.573 0.233 2.314 0.942 97.47 

AMSOS 15 4 0.508 0.769 0.538 0.464 1.471 1.515 35.44 

Yeast2 k-means 5  0.361 0.784 0.568 0.339 1.489 1.53 57.03 

k-means++ 0.367 0.786 0.572 0.364 1.354 1.21 57.03 

fuzk 0.369 0.769 0.538 0.319 1.819 2.201 53.65 

SPSS 0.456 0.804 0.196 0.453 1.236 2.567 43.23 
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ACDE 20 8 0.513 0.83 0.659 0.238 1.438 1.713 86.46 

AMSOS 20 4 0.469 0.8 0.6 0.506 1.154 1.342 44.01 

 

Table4. AMSOS efficiency in finding optimal Centroids 

Data set Orignal Centroids Obtained Centroids by AMSOS 

Synthetic1 7  6  9 

2  3  4 

7.0783    5.9625    9.0975 

2.0289    3.0849    4.1540 

Synthetic2 -6  4 

 2    2 

-1  -1 

-3   -3 

-5.9234    4.0052 

  1.8901    1.9421 

  -0.9611   -1.2146 

  -2.7994    2.9561   

Synthetic3 -3  3 

-1  -1 

  2  2 

   -3.1959    2.9669 

   -0.8401   -1.1502 

    2.0215    1.8696 

Synthetic4 -8 14 

10  12 

14  -14 

-1   -1 

-3   6 

-8  -6 

-8.0344   14.0421 

  10.0285   12.0065 

  13.9763  -13.9768 

  -1.1876   -0.9205 

  -2.9580    6.0961 

  -7.9533   -6.0640 

 

Figure 1: AMSOS efficiency in clustering the Yeast2 dataset 

 

 

 

 

 

 

 

Figure 2: AMSOS efficiency in determining number of clusters for synthetic2 dataset 
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Figure 3.The results obtained by AMSOS for the Synthetic1 data set when initial k=9. 

Starting with initial clusters  to final clusters and their obtained centers. The 

obtained centers are marked with ‘
 

‘ whereas original centers are marked in red 

colored triangles. 
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