2,598 research outputs found

    Risk assessment of a biometric continuous authentication protocol for internet services

    Get PDF

    Critical success factors for preventing E-banking fraud

    Get PDF
    E-Banking fraud is an issue being experienced globally and is continuing to prove costly to both banks and customers. Frauds in e-banking services occur as a result of various compromises in security ranging from weak authentication systems to insufficient internal controls. Lack of research in this area is problematic for practitioners so there is need to conduct research to help improve security and prevent stakeholders from losing confidence in the system. The purpose of this paper is to understand factors that could be critical in strengthening fraud prevention systems in electronic banking. The paper reviews relevant literatures to help identify potential critical success factors of frauds prevention in e-banking. Our findings show that beyond technology, there are other factors that need to be considered such as internal controls, customer education and staff education etc. These findings will help assist banks and regulators with information on specific areas that should be addressed to build on their existing fraud prevention systems

    Continuous Authentication and Non-repudiation for the Security of Critical Systems

    Get PDF

    Continuous User Identity Verification for Trusted Operators in Control Rooms

    Get PDF

    Challenges of Multi-Factor Authentication for Securing Advanced IoT (A-IoT) Applications

    Full text link
    The unprecedented proliferation of smart devices together with novel communication, computing, and control technologies have paved the way for the Advanced Internet of Things~(A-IoT). This development involves new categories of capable devices, such as high-end wearables, smart vehicles, and consumer drones aiming to enable efficient and collaborative utilization within the Smart City paradigm. While massive deployments of these objects may enrich people's lives, unauthorized access to the said equipment is potentially dangerous. Hence, highly-secure human authentication mechanisms have to be designed. At the same time, human beings desire comfortable interaction with their owned devices on a daily basis, thus demanding the authentication procedures to be seamless and user-friendly, mindful of the contemporary urban dynamics. In response to these unique challenges, this work advocates for the adoption of multi-factor authentication for A-IoT, such that multiple heterogeneous methods - both well-established and emerging - are combined intelligently to grant or deny access reliably. We thus discuss the pros and cons of various solutions as well as introduce tools to combine the authentication factors, with an emphasis on challenging Smart City environments. We finally outline the open questions to shape future research efforts in this emerging field.Comment: 7 pages, 4 figures, 2 tables. The work has been accepted for publication in IEEE Network, 2019. Copyright may be transferred without notice, after which this version may no longer be accessibl
    • …
    corecore