
Continuous User Identity Verification for Trusted

Operators in Control Rooms

Enrico Schiavone (), Andrea Ceccarelli, Andrea Bondavalli

Department of Mathematics and Informatics, University of Florence, 50134 Florence, Italy

{enrico.schiavone,andrea.ceccarelli,bondavalli}@unifi.it

Abstract. Human operators in control rooms are often responsible of issuing

critical commands, and in charge of managing sensitive data. Insiders must be

prevented to operate on the system: they may benefit of their position in the

control room to fool colleagues, and gain access to machines or accounts. This

paper proposes an authentication system for deterring and detecting malicious

access to the workstations of control rooms. Specifically tailored for the

operators in the control room of the crisis management system Secure!, the

solution aims to guarantee authentication and non-repudiation of operators,

reducing the risk that unauthorized personnel (including intruders) misuses a

workstation. A continuous multi-biometric authentication mechanism is

developed and applied in which biometric data is acquired transparently from

the operator and verified continuously through time. This paper presents the

authentication system design and prototype, its execution and experimental

results.

Keywords: Biometrics; Verification; Trust; Security; Control Rooms.

1 Introduction

Secure user authentication is fundamental for several ICT (Information and

Communication Technology) systems. User authentication systems are traditionally

based on pairs of username and password and verify the identity of the user only at

login phase. No checks are performed during working sessions, which are terminated

by an explicit logout or expire after an idle activity period of the user. While this is

often sufficient, it may not result enough against insider attackers [14, 18] in control

rooms, where operators are using their workstation to access potentially sensitive data

and to issue critical commands for the entire working session; the operators are

directly responsible for such commands and for the data accessed, modified and

deleted.

In this paper we consider the behavior and actions of the human operators working

in the control room of the Secure! [1] crisis management system. Such operators are in

charge of analysing and interpreting situations that describe the current status of an

emergence. Using the information available, the operator from his workstation

(mainly via text messages, using a keyboard) is able to command intervention teams

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Florence Research

https://core.ac.uk/display/301569811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

on field, and to dispatch instructions to civilians in the target area. More details

regarding the objectives of the Secure! project and its resulting system are available in

[1].

It is required to protect the control rooms and its workstations from unauthorized

people (intruders) and insiders that may want to acquire privacy-sensitive data, disrupt

the crisis management operations, disseminate false information, or simply commit

errors, which will be ascribed to the operator in charge of the workstation.

Consequently, in order to protect the workstations, we need to guarantee (i)

authenticity of the commands/functions executed, meaning that commands that are

transmitted and expected from an operator, are actually generated from him, and (ii)

non-repudiation of the commands/functions executed, meaning that the worker which

sends the commands from a workspace is known.

To timely detect misuses of computer resources and prevent that an unauthorized

user maliciously replaces an authorized one, solutions based on biometric continuous

authentication [2] are proposed in literature, turning user verification into a

continuous process rather than a one time occurrence [3]. Additionally, to improve its

security, biometrics authentication can rely on multiple biometrics traits thus, being

multi-modal. Finally, biometric data can be acquired transparently i.e., without

explicitly notifying the user or requiring his/her interaction, aiming to improve service

usability [5].

In this paper, we investigate a continuous multi-modal biometric authentication

protocol for transparent verification of the operator identity in the Secure! control

room, concretely presenting how to implement the approach on a real life case study.

Starting from an analysis of solutions available in the state of the art, we tailored a

solution that integrates face, fingerprint and keystroke recognitions. Face data is

acquired using a camera, fingerprint data is acquired via a fingerprint sensor

integrated in the mouse, and keystroke data is instead acquired via the keyboard.

The protocol removes the necessity of explicit interactions to prove the operator

identity, and thanks to the multi-modality, it allows acquiring biometric data also

when different operators are using the same workstation. For example, if more

operators are in front of the camera thus in some cases compromising the face

recognition, the legitimate operator can still use the fingerprint reader. Finally,

authenticity and non-repudiation are guaranteed by the continuous authentication,

which is intended to assure that the operator is within range of the workstation during

its use.

The rest of the paper describes in Sect. 2 some of the available solution from the

state of the art and the advancements of our work, in Sect. 3 the design of our tailored

solution and in Sect. 4 the realization of our prototype. Results on its execution are

reported in Sect. 5. Finally, conclusions are in Sect. 6.

2 Multi-modal Biometric Continuous Authentication

Biometrics refers to a measurement of physiological and/or behavioral characteristics

of the human body; a biometric recognition system provides an automated method for

confirming (verification) or determining (identification) the identity of an individual

based on his characteristics [7]. Identity verification, which is the target of our work,

consists of a one-to-one matching and occurs when an individual claims his identity.

The system needs to compare the newly acquired biometric data and the previously

enrolled digital representation of an individual’s biometric characteristics, usually

called templates. It is well-known that using multiple biometric characteristics

combined with an appropriate rule, that is, providing a multi-modal biometric

authentication, can yield a higher performance than using only one trait [15, 16].

Surveying the state of the art, a large number of studies can be identified regarding

biometric continuous authentication. We review approaches on biometric

authentication systems based on multi-modality and continuous verification where a

transparent acquisition of biometric data is researched. Each of them could be used for

our purpose but for each one we can find at least one reason that suggests the

introduction of a new approach, ad-hoc for our requirements.

The work in [2] describes a multi-modal biometric passive continuous

authentication system, combining face and fingerprint recognition to verify the physical

presence of a user. The authors state that it introduces a significant overhead (between

26% and 42%) and the user’s task are delayed; the reason is probably the bottleneck

generated by a too frequent acquisition of the face (two times for each second) and

fingerprint images (once per second).

The work in [3] proposes a multi-modal continuous biometric authentication system

integrating information temporally as well as across multiple biometric modalities. The

main idea of the method is based on the assumption that as time passes, the

authentication system is less and less certain about the authentication score value.

Experiments show that temporal information improves authentication accuracy.

However, the acquisition of 15 images in less than a second suggests that the impact of

this solution in terms of computational resource usage would be relevant, and seems

legitimate to expect it would weigh down the system.

In [4] the objective is to investigate the opportunity of using a multimodal biometric

system as input of a fuzzy controller for preventing user substitution after the initial

authentication process. The chosen modalities are face and fingerprint. The role of the

fuzzy controller is to request the fingerprint data only if the face recognition matching

produces a trust level that is below a threshold. Nevertheless, we need a transparent

acquisition of the traits and the explicit request of the fingerprint does not meet this

requirement.

Finally, the work in [12, 13] proposes a continuous multi-modal sequential

biometric authentication solution, where trust in the user is computed after each

successful user identity verification and it is decreased as time passes without

successful verifications. An authentication server is in charge of receiving biometric

data, performs verifications and computes trust in the user. We adopt the trust

formulation from [12, 13] because of its simplicity and easiness to adapt to different

systems and sensors. Relevant tailoring w.r.t. [12, 13] was needed due to the different

requirements of our system, in fact we are considering a control room with

workstations and a defined set of sensors, selected on the basis of the usual actions of

trained operators, rather than potentially any environment, kind of device, and user. For

example, the operator is expected to have his hand on the mouse for most of the time,

and this leads to introducing a fingerprint reader in the mouse. In addition, our system

automatically grants access to all critical functions after login, while [12, 13] protects

communication towards each specific service individually.

3 Our Approach to Continuous Authentication

The overall architecture of the biometric system is composed of the operators'

workstations and the connected sensors required to acquire the biometric data.

Biometric data are transmitted to an authentication system, which includes a database

with the biometric templates of the operators.

3.1 The protocol

In our protocol, the different biometric data are acquired continuously by the

workstation, and the identity of the operator is verified; an estimation of the trust in

the operator is then computed. Such trust is described as a value ranging through time

in the interval [0; 1], and that decreases through time, at different rating speeds,

depending on the action and behaviour of the operator (w.r.t. the available sensors).

The trust value increases only when fresh biometric data is acquired and successfully

verified. When such trust value is lower than a given threshold, the permissions of the

operator are reduced thus limiting the possible actions that they can execute on the

Secure! system until a new login is performed.

Considering the operator of the Secure! system and comparing a set of well-known

biometric traits [6], we selected the following three traits for multimodal biometric

authentication. First, fingerprints are acquired using a sensor integrated in the mouse

[8] that will be described in Section 4, thus allowing fingerprint recognition. Second,

facial images are acquired using a camera (a webcam) allowing face recognition.

Third, keystroke data are acquired with keyboard allowing keystroke recognition. The

objective is to combine the transparent and sequential acquisition of the above data to

continuously assure trust in the operator.

The three above biometric traits have different levels of performance and

measurability [6, 7] and complement each other. High measurability of facial images

will help covering temporal gaps that could exist between two fingerprint

acquisitions. Keystroke supports the other two traits despite its low performance.

Especially keystroke can results useful when fingerprint acquisitions are missing e.g.,

because the operator is not touching the mouse: in fact, when the operators are typing

on the keyboard, they are most likely unable to place their finger on the fingerprint

reader.

Thus, we introduce a mechanism where (i) keystroke recognition on the text typed

is executed in order to recognize the operator, and (ii) the usage of the keyboard is

considered a justification for the absence of fingerprint acquisition. All these

considerations will influence the computation of the trust in the operator.

In the rest of the paper, we present the implementation of the authentication system,

where we choose three exemplary recognition algorithms, but we imagine that our

method can work efficiently also with different face, fingerprint and keystroke

recognition algorithms, and they can be changed if necessary.

The proposed continuous authentication protocol is shown in the sequence

diagram of Fig. 1. It is based on three biometric subsystems, one for each trait, where

each subsystem is composed of hw/sw elements necessary for the acquisition of biometric

traits and for the verification process, including sensors and recognition algorithms.

The protocol is divided in two phases: the initial phase and the maintenance phase.

Initial phase. It is composed of the following steps:

- The user logs in to start a session that will also imply the possibility of using

functionalities that need authentication. A strong authentication is here needed for

login, with a one-time password (a password that is valid for only one login session

or transaction) or by a successful biometric verification executed with all the three

subsystems in a short time interval.

- Data are acquired by the workstation and transmitted to the authentication server.

- The authentication server uses the operator’s templates contained in a biometric

database and verifies his identity. In case of successful verification, the

authentication server communicates to the Secure! system to establish a session

and to allow all restricted functions expected for the operator's role. In addition, the

authentication server computes and updates a trust level that decreases as time

passes (trust computation is described in the next subsection); the session will expire

when such level becomes lower than a threshold. The maintenance phase is started

to compute a new trust level.

Fig. 1. Sequence diagram of the protocol

Maintenance phase. The biometric continuous authentication protocol works as

follows:

- The authentication server waits for fresh biometric data, from any of the three

subsystems. No active participation of the operator is necessary, which only needs

to use the mouse, the keyboard or to be positioned in front of the camera.

- When new biometric data is available for the different biometric subsystems, the

authentication server verifies the identity claimed by the operator and, depending

on the matching results of each subsystem, updates the trust level.

- When the trust level is close to the threshold, the authentication server sends a

notification to the operator, to signal that in case biometric data is not transmitted,

the session will expire soon.

- If the trust level is below the threshold, the authentication server communicates to

the Secure! system to disable the restricted functions and notifies the operator that

his session is expired. In this case, the operator can access only a set of non-

restricted functions, i.e., functions with no or reduced criticality in terms of privacy

and confidentiality.

The disabled functions will be available again only when the operator performs a

strong authentication, restarting from the initial phase.

3.2 Internals: the trust level computation

We now introduce some concepts useful to describe the algorithm for trust level

computation, without the intent of being generic but focusing the discussion on the

specificities of our system and the biometric traits used. A generic approach can be

derived from the discussion below whenever needed.

Given the three unimodal biometric subsystems S1=fingerprint recognition, S2=face

recognition, S3=keystroke recognition such that each one is able to decide

independently if the user is genuine or not, we define m(S1), m(S2), m(S3) as the trust in

the subsystem respectively S1, S2, S3. The m(S1), m(S2), m(S3) are static values that lie

in the interval [0,1]; the more trust we place in a subsystem, the higher its value.

We also define the trust level trust(u, t) that represents the trust put in the user u at

time t by the authentication server. In other words, it corresponds to the probability that

the operator u is legitimate considering his behavior using the workstation. It takes into

account the time from last acquisition of biometric data, and the combination of the

individual decisions of the three subsystems S1, S2, S3. Being considered as a

probability, it is a value that lies the interval [0, 1].

Finally, we define a lower bound trustmin corresponding to the minimum threshold

of the trust level requested by the authentication system. If trust(u, t) < trustmin, the

authentication server disables the restricted functions. If instead trust(u, t) ≥ trustmin the

user is maintained authenticated and the access to all restricted functions is granted. To

ease the readability of the notation, in the following the operator u is often omitted.

The algorithm for the computation of the trust level is executed iteratively on the

authentication server as explained in what follows. In the initial phase, at time t0, the

operator performs a strong authentication: if successful, the trust is set to trust(t0) =1.

The maintenance phase is here started. Each subsystem continuously tries to

acquire, on the workstation, the biometric data of the operator and transmits them to

the authentication server. The authentication server verifies the operator identity using

all biometric data provided in a specific time interval; let us consider the time interval

[ti-1; ti] and consequently we reason for the status of the system at time instant ti. We

have the following options at ti. In the first case, all the three biometric subsystems led

to successful verification: the trust level is set to trust(ti) = 1. In the second case, two

of the three biometric subsystems led to successful verification. This means that one

biometric subsystem could not acquire data or decided that the operator is not

legitimate. The trust level is computed following (1):

 𝑡𝑟𝑢𝑠𝑡(𝑡𝑖) = 𝑚(𝑆𝑘1) + (𝑟 ∙ 𝑚(𝑆𝑘2)). (1)

Where:

 Sk1 and Sk2 are the two subsystems, which correctly verified the identity of the

operator, and Sk2 is the one with the lower performance;

 r is a parameter that allows to weight m(Sk2) in order to have trust(t0) between 0

and 1.

For example, setting r = 0.1, Sk1 = 0.9, Sk2 = 0.8, Sk3 = 0.7, we have the

combinations reported in Table 1. The selection of these values can be conducted

comparing the biometric traits, and from an analysis of their performance, i.e., in

terms of number of false positives and false negatives produced by each. We found

that these values can represent properly the accuracy of each subsystem, but other

different values can be easily adopted, if necessary, following a similar approach.

Until at least two subsystems do not decide that the user is legitimate in the same time

interval, thus updating trust(ti) following Table 1, the trust level decreases and the

session will expire when it is smaller than trustmin. If at ti at most one biometric

verification is successful (e.g., for two biometric subsystems no biometric data is

acquired, or verifications failed), the trust level trust(ti) is computed using the

following.

Supposing we have trust(ti-1) that is, the trust level computed at the previous

iteration of the algorithm, we want to compute the new trust(ti), which will be smaller

than trust(ti-1). Therefore, at time ti, the trust level is given by (2), [13]:

𝑡𝑟𝑢𝑠𝑡(𝑡𝑖) =
(− arctan((∆ti − 𝑠) ∙ 𝑘) +

𝜋
2

) ∙ trust(ti−1)

− arctan(−𝑠 ∙ 𝑘) +
𝜋
2

. (2)

Table 1. Example of the trust level computation

Pair of biometric subsystems Trust level computed as in equation (1)

Sk1, Sk2 0.9 + (0.1∙ 0.8) =0.98

Sk1, Sk3 0.9 + (0.1∙ 0.7) =0.97

Sk2, Sk3 0.8 + (0.1∙ 0.7) =0.87

Where ∆ti = ti - ti-1, and parameters k and s are introduced to tune the decreasing

function: k affects the inclination towards the falling inflection point and s allows

anticipating or delaying the decay.

The selection of k in particular affects the speed of the decrease of the trust level.

We adopt three different values of k in order to provide three different kinds of

decrease, described below. A fast decrease (k=0.01) is set when no verifications are

successful or no biometric data is transmitted. In this case, the trust will rapidly

decrease towards trustmin. An average decrease (k=0.001) is set if only one verification

is successful, for any biometric subsystem. Finally, a slow decrease (k=0.0008) is set if

face verification is successful and the usage of keyboard is detected, although data is

not sufficient to perform keystroke recognition or keystroke recognition fails. This

situation means that the Secure! operator is actually busy using the keyboard and he

cannot send any fingerprint data, and that the amount of keys pressed is too low or too

sparse to permit keystroke recognition. Thus, a small penalization is assigned to the

trust in the operator, smoothly decreasing the trust level.

4 The prototype

4.1 Hardware prototype

Our prototype is composed of two PCs. On the client side, the workstation that we are

using in our Secure! prototype is a Fujitsu Lifebook A-530 with an Intel® Pentium®

P6200, 4GB RAM, and running Windows 7, equipped with the following biometric

sensors. For fingerprint acquisition, our choice is the SecuGen OptiMouse Plus mouse

[8], which incorporates an optical fingerprint scanner at the place where a user would

normally place their thumb. Such fingerprint scanner does not require active

participation by the user, and therefore does not require that the operators periodically

perform biometric-related tasks that are not part of their normal activities. For

acquisition of the images for face recognition, we use the built-in camera of the

workstation that can continuously capture images without the active cooperation of

the user. For the acquisition of keyboard data, we collected them using the standard

PS/2 keyboard integrated in the Fujitsu Lifebook. As authentication server, we are

using an HP Pavilion Desktop PC500-420nl with processor i5-4460S and 8 GB RAM

which is in the same local network of the workstation.

4.2 Software design

In this section, we describe our software implementation. All software we developed

is implemented in Java. Client-server communication is based on RESTful web

services, and developed using the Jersey framework, following the design

specification of the Secure! project.

The workstation software is started by a Client object, which activates the

methods of (i) InvisibleFaceTracker, (ii) KeyListener and (iii) FingerPrintDetection.

Each class contains respectively: (i) an algorithm that, exploiting the camera, saves an

image if (at least one) face is detected, (ii) a procedure that, exploiting the SecuGen

OptiMouse Plus, cyclically detects and saves a fingerprint which, when available, is

transmitted to Client, (iii) an algorithm that detects the pressing of the keys. At fixed

time intervals, a text file is saved containing, for each row, the press and release times

for each pressed key. Such file is delivered to the authentication server. The Client is

in charge of invoking the UploadFileService REST client to transmit via HTTP post

the saved image, fingerprint and text file to the authentication server together with the

client ID.

On the authentication server, the TrustCalcService guides the biometric

verification, the calculation of the trust level, and the communication of session

expiration to the Secure! system and to the workstation. The TrustCalcService class

contains the RESTful web service that receives the transmitted biometric traits from

the client, and a REST client to communicate the session expiration to the

workstation. Getting the information from the client, the web service decides which

methods of the RecognitionHandler class should be called to start the verification

process. Each subsystem produces a decision about the legitimate of the user, as

explained in Sect. 3. At fixed time intervals, the trust level is raised according to Table

1. Example of the trust level computation or, if less than two traits are correctly

verified, selecting the trust decaying function with the appropriate k value as in Eq.

(2).

However, for a final product realization, the implementation should integrate

recognition algorithms with very high performance. Moreover, depending on the

specific characteristics of the algorithms, the parameters and the time intervals have to

be tuned properly.

4.3 Enabling technologies

The SecuGen’s FDx Software Developer Kit [8] provides low-level APIs for device

initialization, fingerprint capture and matching functions. In the enrollment phase,

templates are computed and stored in raw format.

We customized the face recognition software available in [10]; this is able to (i)

analyze the frames captured via a camera, (ii) locate a face in the frames, and then (iii)

verify user’s identity. When a face is present in front of the camera, the algorithm [10]

detects its presence; in most of the cases, this happens within approximately 40 ms.

Otherwise, if a face is not present, the algorithm takes up to 200 ms to ultimately

notify that no face is present. The implementation available in [10] requested the

installation and configuration of OpenCV [9], an open source library that includes

several hundreds of computer vision algorithms, and of JavaCV, the related Java

interface. Our customization of the software was necessary in order to i) structure the

implementation available in [10] in two client and a server sides, where the first is in

charge of capturing images and deciding if a face is present, and the second performs

verification, and ii) make the acquisition of the biometric data transparent and

automatic, removing the graphical interface and interactions of the user with the

software. An enrollment phase is obviously required, in which the operator ID is

associated to a set of face templates. The verification phase compares the selected face

to the enrolled templates to produce a matching result.

Keystroke data acquisition relies on the library JNativeHook that provides

keyboard (and mouse) listeners for Java. In particular, this library allows detecting

keys press and release events and captures, in correspondence to those events, the time

instant of the events. JNativeHook also permits to detect the keyboard usage (and the

keys pressed), both if the user is typing in a specific text area or not: the cursor

position is not relevant. This is consistent with our needs as we can capture keystroke

data without being invasive for the activity of the control room operator.

Relying on such library, we realized the keystroke recognition in the KeyAnalyzer

class, implementing the algorithm described in [11]. Such algorithm continuously

collects the keystroke dynamics (the typed key and related pressing and release time)

and applies a penalty/reward function on the dataset to measure the confidence that

the user has not changed in the selected time interval. An enrollment session is

required where the operator types several sentences, to create a biometric template

based on the timing information for each typed key and key combination [11].

In our implementation of [11], when the keyboard is used with continuity i.e.,

there is evidence that someone is currently typing, we collect keystroke dynamics for

a defined time interval and then we transmit all values to the authentication server.

The selection of the time interval is critical because if the number of values collected

is too low, verification will most likely fail: a short time interval would probably

result ineffective for keystroke authentication following [11]. Moreover, a long time

interval would imply a long wait before transmitting the values, thus risking that the

session expires meanwhile. We evaluated that listening for up to 10 seconds of

continuous typing was deemed sufficient to allow successful verification (we also

remember that keystroke is the weakest of our biometric traits, and it is easily prone to

false positives).

4.4 Availability, security, privacy and performance

The Secure! system implements solutions for the overall availability of the system, the

security and the privacy of the information managed, stored or exchanged, following a

threat and risk analysis that was performed at the beginning of the project [14]. The

mitigations identified for risks and threats, including time-related ones, also consider

the workstations, the authentication server, and the related communication channels.

Although such analysis and the Secure! architecture are not within the scope of this

paper, we present considerations on availability, security, privacy and performance

that we believe relevant.

Regarding availability, our authentication mechanism clearly requires that the

authentication server and all communications channels in Fig. 1 are up and running. In

case of unavailability of any of the above, the system administrator of the Secure!

system is able to temporarily disable the continuous authentication, thus switching to a

traditional password-based authentication approach. However, such alternative should

be exploited only when needed and matched to immediate intervention for

maintenance (strategies for rapid maintenance intervention are foreseen for the whole

Secure! system).

Protection of the biometric data exchanged and stored, together with protection of

the communication between the entities of Fig. 1 is mandatory. Briefly, the system in

Fig. 1 represents a closed system, where all interacting entities are known, all

communications are cabled, and no external machines are accepted. Communications

are ciphered, and access to the entities is protected; solutions for the protection of data

and communications are defined and applied to the whole Secure! system, as it

manages several other sensitive and secure data, in addition to the biometric ones.

Privacy of data is fundamental in Secure! both for data related to crisis

management and for data related to the continuous authentication, which describes the

behaviour of the worker in the operating room. Although data management is part of

the Secure! architecture, it is worthy to discuss the authentication data. Such data is

stored for a limited time (few days), and then removed, thus the system maintains only

the recent history on the behaviour of the user. Access to such history is regulated by

the procedures of the operating room and it is allowed only to investigate on suspected

security breaches.

Regarding performance, the continuous authentication software executing on the

workstation may potentially slow down the Secure! application used by the operator.

We measured the overhead introduced on our prototype, resulting in approximately an

increase of usage of 6% for CPU and 2% for RAM. Such overhead is limited and shall

not affect the execution of the Secure! application. The authentication server is instead

in charge of managing the biometric database and verifying the identities of the team

of operators, thus it is subject to a relevant computational load especially for large

teams. However, the authentication server is one of the (powerful) nodes of the

Secure! framework, which has been built with scalability [17] in mind so that its

nodes can be easily adapted to sustain high computational loads.

4.5 Usability

We comment on the impact of our authentication solution on the daily activities of the

operator. The authentication solution and the values of its parameters were selected to

achieve a compromise between security (a malicious operator is disconnected in at

worst approximately 40 s, see Fig. 3) and usability (the worker maintains the session

active, mostly thanks to the fingerprint reader in the mouse, which is used most of the

time, and the face recognition). The experiments in Sect. 5, which adopt the

configurations selected for Secure!, confirm that a worker is able to maintain the

authentication until he voluntarily leaves the workstation. We are aware that usability

studies in daily working sessions with multiple Secure! operators are required; this is

the main objective of the ongoing experimentation of our solution.

5 Explanatory Results

We report on three typical scenarios where 10 runs have been performed using the

prototype and the data for one case are plotted. The configurations selected for

Secure! are the same as Sect. 3; trust threshold is set to trustmin = 0.5. The objectives

of the three scenario analysis are respectively i) verify that the operator working at a

workstation is able to maintain authentication for a whole working the workstation is

left unattended by the legitimate user, the trust will decay below the thresholds, iii)

verify the requirements on the environment, especially on illumination.

In the first scenario, an operator is in front of the client, working in an environment

with good illumination. A working session of 50 minutes is performed: the operator

does not leave the workstation, and alternates the usage of keyboard and mouse to

perform his work. An extract showing the initial part of one run is shown in Fig. 2 to

clarify the behavior of the protocol. At the beginning of the run (at second 13), a

strong authentication is successfully performed providing in a time slot the three

biometric traits (the time slot is set to 10 seconds): this means that the three biometric

data should be provided and successfully verified in such interval. Note that

additional delays due to transmission and processing time should always be taken into

account. After the initial authentication, at time intervals of around 20 seconds, the

authentication server verifies the biometric data. The first and second time intervals

resulted in successfully performed verification for face and detection of the usage of

keyboard (keyboard detection, or k.d., in Figs 2 and 3), leading to a slow decrease of

trust level with k=0.0008. In the third time interval, only face is successfully verified,

with no usage of keyboard detected. This leads to an average decrease of trust level,

with k set to 0,001. For clarity, this interval is also identified in Fig. 2 with the arrow

with label "average". In the fifth time interval, at second 111 face and fingerprint

subsystems session¸ ii) verify that if successfully verify the operator identity, resulting

in raising the trust level to 0,98 according to Table 1. Note that in Fig. 2 every time

the operator is using the keyboard the trust level drops, in fact the usage of the

keyboard was detected (keystroke detection), but keystroke recognition failed or was

not performed due to insufficient data. Then the algorithm follows in a similar manner

alternating different successful verifications in the time intervals for the whole

duration of the experiment, with a predominance of face recognitions (the cases in

which only one biometric trait is verified always refer to face). On the whole set of 10

runs, 1 facial image per second was acquired, and if face was detected, the algorithm

processed the image. This resulted in an average of 5 missed face recognition per run

(obviously, this is strictly dependent on the face recognition algorithm). Fingerprint

lead only to an average of 2 mismatches out of approximately 200 checks per run,

while keystroke lead to an average of 15 mismatches out of 24 attempts per run.

The second scenario aims to show the possible behavior of the prototype when the

operator leaves the workstation unattended, and consequently it is expected that the

session will terminate due to failed biometric recognition or no acquisition of

biometric data. In this experiment, we observe that ultimately the trust level decays

Fig. 2. Successful verifications: trust level is

always above the threshold

Fig. 3. Operator leaving the workstation

unattended after a while.

below the threshold, resulting in session expiration. We show a sample run of the

experiment in Fig. 3, as the others behave similarly. A strong authentication is

initially performed with the same outcome as in the previous experiment. Then the

trust level slowly decreases, given the recognition of face and the usage of keyboard,

until second 131 in which the two biometric traits face and fingerprint are correctly

acquired and verified. These are newly verified at second 149. Then the decay of the

trust level is set to average because only the face is verified, until second 267 when

the trust level is raised thanks to identity verification via face and keystroke

recognition (e.g., the operator after reading some text was able to write an answer).

The resulting trust is set to 0.87 following Table 1. At this point, no more biometric

verification are successful, resulting in a fast decrease of the trust that leads to

reaching the timeout in around 36 seconds. The threshold is ultimately reached at

second 303. Such timeout is considered adequate for the purpose of Secure!, as in

general this time is too short to have the operator leave the workstation unattended

and execute commands or acquire data.

Finally, the last scenario is conducted in a room where the only source of lighting

is a window placed behind the operator. The runs performed led to an unexpected

termination of the session, because the facial recognition failed repeatedly leading to a

decay of the trust thresholds. The implication is that it is required to set the control

room environment appropriately in order to have our solution work properly.

6 Conclusions

This paper presented our realization of a continuous multi-modal biometric

authentication system for the operator active in the Secure! control room. The

protocol is able to transparently acquire face, fingerprint and keystroke traits to

continuously verify the identity of the operator without his explicit involvement. The

paper described the solution, its prototype realization and execution. Results show

that, despite obvious limitations due to the necessity of continuously provide

biometric data, when appropriately tailored for a working environment our solution

allows maintaining the worker authenticated and improving system security.

As future work we are building and executing several test sessions with a larger

number of different operators using Secure!, to investigate the tradeoff between

security and usability for the different settings of the authentication system.

Acknowledgments This work has been partially supported by the POR-CREO

2007-2013 Secure! project funded by the Tuscany Region, by the European FP7-

IRSES project DEVASSES, and by the TENACE PRIN Project (n. 20103P34XC)

funded by the Italian Ministry of Education, University and Research.

References

1. Secure! Project, http://secure.eng.it

2. Kumar, S., Sim, T., Janakiraman, R., Zhang, S: Using continuous biometric
verification to protect interactive login sessions. In: 21st Annual Computer

Security Applications Conference (ACSAC), pp. 441-450 (2005)

3. Altinok, A., Turk, M.: Temporal integration for continuous multimodal

biometrics. In: Proceedings of the Workshop on Multimodal User Authentication

(2003)

4. Azzini, A., Marrara, S., Sassi, R., Scotti, F.: A fuzzy approach to multimodal

biometric continuous authentication. In: Fuzzy Optimization and Decision

Making, 7(3), pp. 243-256 (2008)

5. Crawford, H., Renaud, K., Storer, T.: A framework for continuous, transparent

mobile device authentication. In: Computers & Security, 39, pp. 127-136 (2013)

6. Jain, A. K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. In:

IEEE Transactions on Circuits and Systems for Video Technology, 14(1), pp. 4-
20 (2004)

7. Tripathi, K. P.: A comparative study of biometric technologies with reference to

human interface. In: International Journal of Computer Applications, 14(5), pp.

10-15 (2011)

8. SecuGen OptiMouse Plus, http://www.secugen.com/products/po.htm.

9. The OpenCV Reference Manual, Release 2.4.9.0, (2014)

10. Davison, A.: Killer Game Programming in Java. O'Reilly Media Inc. (2005)

11. Bours, P., Barghouthi, H.: Continuous Authentication using Biometric Keystroke

Dynamics. In: The Norwegian Information Security Conference (NISK), (2009).

12. Ceccarelli, A., Bondavalli, A., Brancati, F., La Mattina, E.: Improving Security of

Internet Services through Continuous and Transparent User Identity Verification.
In: IEEE 31st Symposium on Reliable Distributed Systems, (SRDS), pp. 201-206

(2012)

13. Ceccarelli, A., Montecchi, L., Brancati, F., Lollini, P., Marguglio, A., Bondavalli,

A.: Continuous and Transparent User Identity Verification for Secure Internet

Services. In: IEEE Transactions on Dependable and Secure Computing, 12(3), pp.

270-283 (2015)

14. Nostro, N., Ceccarelli, A., Bondavalli, A., Brancati, F.: Insider threat assessment:

A model-based methodology. In: Operating Systems Review (ACM), 48 (2), pp.

3-12 (2014)

15. Ross, A., Jain, A. K.: Information fusion in biometrics. In: Pattern Recognition

Letters, 24(13), pp. 2115–2125 (2003)

16. Hong, L., Jain, A. K., Pankanti, S.: Can Multibiometrics Improve Performance?.
In: Proceedings AutoID, (99), pp. 59-64, (1999)

17. Montecchi, L., Nostro, N., Ceccarelli, A., Vella, G., Caruso, A., Bondavalli, A.:

Model-based Evaluation of Scalability and Security Tradeoffs: a Case Study on a

Multi-Service Platform. In: Electronic Notes in Theoretical Computer Science,

310, pp. 113-133 (2015)

18. Nostro, N., Ceccarelli, A., Bondavalli, A., Brancati, F.: A methodology and

supporting techniques for the quantitative assessment of insider threats. In:

Proceedings of the 2nd International Workshop on Dependability Issues in Cloud

Computing (ACM), (3), pp. 1-6 (2013)

http://secure.eng.it/
http://www.secugen.com/products/po.htm

