313 research outputs found

    Hybridizable compatible finite element discretizations for numerical weather prediction: implementation and analysis

    Get PDF
    There is a current explosion of interest in new numerical methods for atmospheric modeling. A driving force behind this is the need to be able to simulate, with high efficiency, large-scale geophysical flows on increasingly more parallel computer systems. Many current operational models, including that of the UK Met Office, depend on orthogonal meshes, such as the latitude-longitude grid. This facilitates the development of finite difference discretizations with favorable numerical properties. However, such methods suffer from the ``pole problem," which prohibits the model to make efficient use of a large number of computing processors due to excessive concentration of grid-points at the poles. Recently developed finite element discretizations, known as ``compatible" finite elements, avoid this issue while maintaining the key numerical properties essential for accurate geophysical simulations. Moreover, these properties can be obtained on arbitrary, non-orthogonal meshes. However, the efficient solution of the resulting discrete systems depend on transforming the mixed velocity-pressure (or velocity-pressure-buoyancy) system into an elliptic problem for the pressure. This is not so straightforward within the compatible finite element framework due to inter-element coupling. This thesis supports the proposition that systems arising from compatible finite element discretizations can be solved efficiently using a technique known as ``hybridization." Hybridization removes inter-element coupling while maintaining the desired numerical properties. This permits the construction of sparse, elliptic problems, for which fast solver algorithms are known, using localized algebra. We first introduce the technique for compatible finite element discretizations of simplified atmospheric models. We then develop a general software abstraction for the rapid implementation and composition of hybridization methods, with an emphasis on preconditioning. Finally, we extend the technique for a new compatible method for the full, compressible atmospheric equations used in operational models.Open Acces

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    Notes in Pure Mathematics & Mathematical Structures in Physics

    Full text link
    These Notes deal with various areas of mathematics, and seek reciprocal combinations, explore mutual relations, ranging from abstract objects to problems in physics.Comment: Small improvements and addition

    Bio-inspired robotic control in underactuation: principles for energy efficacy, dynamic compliance interactions and adaptability.

    Get PDF
    Biological systems achieve energy efficient and adaptive behaviours through extensive autologous and exogenous compliant interactions. Active dynamic compliances are created and enhanced from musculoskeletal system (joint-space) to external environment (task-space) amongst the underactuated motions. Underactuated systems with viscoelastic property are similar to these biological systems, in that their self-organisation and overall tasks must be achieved by coordinating the subsystems and dynamically interacting with the environment. One important question to raise is: How can we design control systems to achieve efficient locomotion, while adapt to dynamic conditions as the living systems do? In this thesis, a trajectory planning algorithm is developed for underactuated microrobotic systems with bio-inspired self-propulsion and viscoelastic property to achieve synchronized motion in an energy efficient, adaptive and analysable manner. The geometry of the state space of the systems is explicitly utilized, such that a synchronization of the generalized coordinates is achieved in terms of geometric relations along the desired motion trajectory. As a result, the internal dynamics complexity is sufficiently reduced, the dynamic couplings are explicitly characterised, and then the underactuated dynamics are projected onto a hyper-manifold. Following such a reduction and characterization, we arrive at mappings of system compliance and integrable second-order dynamics with the passive degrees of freedom. As such, the issue of trajectory planning is converted into convenient nonlinear geometric analysis and optimal trajectory parameterization. Solutions of the reduced dynamics and the geometric relations can be obtained through an optimal motion trajectory generator. Theoretical background of the proposed approach is presented with rigorous analysis and developed in detail for a particular example. Experimental studies are conducted to verify the effectiveness of the proposed method. Towards compliance interactions with the environment, accurate modelling or prediction of nonlinear friction forces is a nontrivial whilst challenging task. Frictional instabilities are typically required to be eliminated or compensated through efficiently designed controllers. In this work, a prediction and analysis framework is designed for the self-propelled vibro-driven system, whose locomotion greatly relies on the dynamic interactions with the nonlinear frictions. This thesis proposes a combined physics-based and analytical-based approach, in a manner that non-reversible characteristic for static friction, presliding as well as pure sliding regimes are revealed, and the frictional limit boundaries are identified. Nonlinear dynamic analysis and simulation results demonstrate good captions of experimentally observed frictional characteristics, quenching of friction-induced vibrations and satisfaction of energy requirements. The thesis also performs elaborative studies on trajectory tracking. Control schemes are designed and extended for a class of underactuated systems with concrete considerations on uncertainties and disturbances. They include a collocated partial feedback control scheme, and an adaptive variable structure control scheme with an elaborately designed auxiliary control variable. Generically, adaptive control schemes using neural networks are designed to ensure trajectory tracking. Theoretical background of these methods is presented with rigorous analysis and developed in detail for particular examples. The schemes promote the utilization of linear filters in the control input to improve the system robustness. Asymptotic stability and convergence of time-varying reference trajectories for the system dynamics are shown by means of Lyapunov synthesis

    Pierre Duhem’s philosophy and history of science

    Get PDF
    LEITE (FĂĄbio Rodrigo) – STOFFEL (Jean-François), Introduction (pp. 3-6). BARRA (Eduardo Salles de O.) – SANTOS (Ricardo Batista dos), Duhem’s analysis of Newtonian method and the logical priority of physics over metaphysics (pp. 7-19). BORDONI (Stefano), The French roots of Duhem’s early historiography and epistemology (pp. 20-35). CHIAPPIN (JosĂ© R. N.) – LARANJEIRAS (CĂĄssio Costa), Duhem’s critical analysis of mecha­ni­cism and his defense of a formal conception of theoretical phy­sics (pp. 36-53). GUEGUEN (Marie) – PSILLOS (Stathis), Anti-­scepticism and epistemic humility in Pierre Duhem’s philosophy of science (pp. 54-72). LISTON (Michael), Duhem : images of science, historical continuity, and the first crisis in physics (pp. 73-84). MAIOCCHI (Roberto), Duhem in pre-war Italian philos­ophy : the reasons of an absence (pp. 85-92). HERNÁNDEZ MÁRQUEZ (VĂ­ctor Manuel), Was Pierre Duhem an «esprit de finesse» ? (pp. 93-107). NEEDHAM (Paul), Was Duhem justified in not distinguishing between physical and chemical atomism ? (pp. 108-111). OLGUIN (Roberto Estrada), «Bon sens» and «noĂ»s» (pp. 112-126). OLIVEIRA (Amelia J.), Duhem’s legacy for the change in the historiography of science : An analysis based on Kuhn’s writings (pp. 127-139). PRÍNCIPE (JoĂŁo), PoincarĂ© and Duhem : Resonances in their first epistemological reflec­tions (pp. 140-156). MONDRAGON (DamiĂĄn Islas), Book review of «Pierre Duhem : entre fĂ­sica y metafĂ­sica» (pp. 157-159). STOFFEL (Jean-François), Book review of P. Duhem : «La thĂ©orie physique : son objet, sa structure» / edit. by S. Roux (pp. 160-162). STOFFEL (Jean-François), Book review of St. Bordoni : «When historiography met epistemology» (pp. 163-165)

    Rigorous Verification of Poincaré Map Generated by a Continuous Piece-Wise Linear Vector Field and Its Application

    No full text
    SUMMARY This paper provides algorithms in order to solve an interval implicit function of the Poincaré map generated by a continuous piecewise linear (CPWL) vector field, with the use of interval arithmetic. The algorithms are implemented with the use of MATLAB and INTLAB.We present an application to verification of canards in two-dimensional CPWL vector field appearing in nonlinear piecewise linear circuits frequently, and confirm that the algorithms are effective. key words: interval arithmetic, computer assisted rigorous proof, Poincaré map, canard, slow-fast system, continuous piece-wise linear vector field 1. CPWL Vector Field and Its PoincaréMap Analyses of a CPWL circuits i.e. a CPWL vector field is based on an implicit form of composition map [2]. It is generally impossible to obtain exact solution of such implicit form of Poincaré map (composition map) generated by a CPWL vector field. On one hand, interval computations fo
    • 

    corecore