37,704 research outputs found

    Lorentz violations in multifractal spacetimes

    Full text link
    Using the recent observation of gravitational waves (GW) produced by a black-hole merger, we place a lower bound on the energy above which a multifractal spacetime would display an anomalous geometry and, in particular, violations of Lorentz invariance. In the so-called multifractional theory with qq-derivatives, we show that the deformation of dispersion relations is much stronger than in generic quantum-gravity approaches (including loop quantum gravity) and, contrary to the latter, present observations on GWs can place very strong bounds on the characteristic scales at which spacetime deviates from standard Minkowski. The energy at which multifractal effects should become apparent is E∗>1014 GeVE_*>10^{14}\,{\rm GeV} (thus improving previous bounds by 12 orders of magnitude) when the exponents in the measure are fixed to their central value 1/21/2. We also estimate, for the first time, the effect of logarithmic oscillations in the measure (corresponding to a discrete spacetime structure) and find that they do not change much the bounds obtained in their absence, unless the amplitude of the oscillations is fine tuned. This feature, unavailable in known quantum-gravity scenarios, may help the theory to avoid being ruled out by gamma-ray burst (GRB) observations, for which E∗>1017 GeVE_*> 10^{17}\,{\rm GeV} or greater.Comment: 12 pages, 1 figure. v2: discussion expanded at several points, comparison with the Lorentz-violating Standard-Model extension added, references adde

    Adiabatic limit and the slow motion of vortices in a Chern-Simons-Schr\"odinger system

    Full text link
    We study a nonlinear system of partial differential equations in which a complex field (the Higgs field) evolves according to a nonlinear Schroedinger equation, coupled to an electromagnetic field whose time evolution is determined by a Chern-Simons term in the action. In two space dimensions, the Chern-Simons dynamics is a Galileo invariant evolution for A, which is an interesting alternative to the Lorentz invariant Maxwell evolution, and is finding increasing numbers of applications in two dimensional condensed matter field theory. The system we study, introduced by Manton, is a special case (for constant external magnetic field, and a point interaction) of the effective field theory of Zhang, Hansson and Kivelson arising in studies of the fractional quantum Hall effect. From the mathematical perspective the system is a natural gauge invariant generalization of the nonlinear Schroedinger equation, which is also Galileo invariant and admits a self-dual structure with a resulting large space of topological solitons (the moduli space of self-dual Ginzburg-Landau vortices). We prove a theorem describing the adiabatic approximation of this system by a Hamiltonian system on the moduli space. The approximation holds for values of the Higgs self-coupling constant close to the self-dual (Bogomolny) value of 1. The viability of the approximation scheme depends upon the fact that self-dual vortices form a symplectic submanifold of the phase space (modulo gauge invariance). The theorem provides a rigorous description of slow vortex dynamics in the near self-dual limit.Comment: Minor typos corrected, one reference added and DOI give

    General partonic structure for hadronic spin asymmetries

    Get PDF
    The high energy and large p_T inclusive polarized process, (A, S_A) + (B, S_B) --> C + X, is considered under the assumption of a generalized QCD factorization scheme. For the first time all transverse motions, of partons in hadrons and of hadrons in fragmenting partons, are explicitly taken into account; the elementary interactions are computed at leading order with noncollinear exact kinematics, which introduces many phases in the expressions of their helicity amplitudes. Several new spin and k_T dependent soft functions appear and contribute to the cross sections and to spin asymmetries; we put emphasis on their partonic interpretation, in terms of quark and gluon polarizations inside polarized hadrons. Connections with other notations and further information are given in some Appendices. The formal expressions for single and double spin asymmetries are derived. The transverse single spin asymmetry A_N, for p(transv. polarized) p --> pion + X processes is considered in more detail, and all contributions are evaluated numerically by saturating unknown functions with their upper positivity bounds. It is shown that the integration of the phases arising from the noncollinear kinematics strongly suppresses most contributions to the single spin asymmetry, leaving at work predominantly the Sivers effect and, to a lesser extent, the Collins mechanism.Comment: RevTeX, 46 pages, 5 ps figures. v2: some clarifying comments and appendix on kinematics added, references updated, published versio

    Ultraviolet modifications of dispersion relations in effective field theory

    Full text link
    The existence of a fundamental ultraviolet scale, such as the Planck scale, may lead to modifications of the dispersion relations for particles at high energies, in some scenarios of quantum gravity. We apply effective field theory to this problem and identify dimension 5 operators that do not mix with dimensions 3 and 4 and lead to cubic modifications of dispersion relations for scalars, fermions, and vector particles. Further we show that, for electrons, photons and light quarks, clock comparison experiments bound these operators at 10^{-5}/Mpl.Comment: Version to appear in Phys.Rev.Let

    Relativistic Constraints for a Naturalistic Metaphysics of Time

    Full text link
    The traditional metaphysical debate between static and dynamic views in the philosophy of time is examined in light of considerations concerning the nature of time in physical theory. Adapting the formalism of Rovelli (1995, 2004), I set out a precise framework in which to characterise the formal structure of time that we find in physical theory. This framework is used to provide a new perspective on the relationship between the metaphysics of time and the special theory of relativity by emphasising the dual representations of time that we find in special relativity. I extend this analysis to the general theory of relativity with a view to prescribing the constraints that must be heeded for a metaphysical theory of time to remain within the bounds of a naturalistic metaphysics
    • …
    corecore