32 research outputs found

    Bohrification of operator algebras and quantum logic

    Get PDF
    Following Birkhoff and von Neumann, quantum logic has traditionally been based on the lattice of closed linear subspaces of some Hilbert space, or, more generally, on the lattice of projections in a von Neumann algebra A. Unfortunately, the logical interpretation of these lattices is impaired by their nondistributivity and by various other problems. We show that a possible resolution of these difficulties, suggested by the ideas of Bohr, emerges if instead of single projections one considers elementary propositions to be families of projections indexed by a partially ordered set C(A) of appropriate commutative subalgebras of A. In fact, to achieve both maximal generality and ease of use within topos theory, we assume that A is a so-called Rickart C*-algebra and that C(A) consists of all unital commutative Rickart C*-subalgebras of A. Such families of projections form a Heyting algebra in a natural way, so that the associated propositional logic is intuitionistic: distributivity is recovered at the expense of the law of the excluded middle. Subsequently, generalizing an earlier computation for n-by-n matrices, we prove that the Heyting algebra thus associated to A arises as a basis for the internal Gelfand spectrum (in the sense of Banaschewski-Mulvey) of the "Bohrification" of A, which is a commutative Rickart C*-algebra in the topos of functors from C(A) to the category of sets. We explain the relationship of this construction to partial Boolean algebras and Bruns-Lakser completions. Finally, we establish a connection between probability measure on the lattice of projections on a Hilbert space H and probability valuations on the internal Gelfand spectrum of A for A = B(H).Comment: 31 page

    Bohrification

    Get PDF
    New foundations for quantum logic and quantum spaces are constructed by merging algebraic quantum theory and topos theory. Interpreting Bohr's "doctrine of classical concepts" mathematically, given a quantum theory described by a noncommutative C*-algebra A, we construct a topos T(A), which contains the "Bohrification" B of A as an internal commutative C*-algebra. Then B has a spectrum, a locale internal to T(A), the external description S(A) of which we interpret as the "Bohrified" phase space of the physical system. As in classical physics, the open subsets of S(A) correspond to (atomic) propositions, so that the "Bohrified" quantum logic of A is given by the Heyting algebra structure of S(A). The key difference between this logic and its classical counterpart is that the former does not satisfy the law of the excluded middle, and hence is intuitionistic. When A contains sufficiently many projections (e.g. when A is a von Neumann algebra, or, more generally, a Rickart C*-algebra), the intuitionistic quantum logic S(A) of A may also be compared with the traditional quantum logic, i.e. the orthomodular lattice of projections in A. This time, the main difference is that the former is distributive (even when A is noncommutative), while the latter is not. This chapter is a streamlined synthesis of 0709.4364, 0902.3201, 0905.2275.Comment: 44 pages; a chapter of the first author's PhD thesis, to appear in "Deep Beauty" (ed. H. Halvorson

    Domain and range operations in semigroups and rings

    Get PDF
    A D-semigroup S is a semigroup equipped with an operation D satisfying laws asserting that for a ∈ S, D(a) is the smallest e in some set of idempotents U ⊆ S for which ea = a. D-semigroups correspond to left-reduced U-semiabundant semigroups. The basic properties and many examples of D-semigroups are given. Also considered are D-rings, whose multiplicative semigroup is a D-semigroup. Rickart *-rings provide important examples, and the most general D-rings for which the elements of the form D(a) constitute a lattice under the same meet and join operations as for Rickart *-rings are described

    Abelian groups with left comorphic endomorphism rings

    Get PDF
    A ring R is called left comorphic if for every a ∈ R there exists b ∈ R such that the left and right annihilators satisfy Ra = l(b) and r(a) = bR. In this paper, the Abelian groups with left comorphic endomorphism rings are completely determine

    Representation of non-commutative topological algebras

    Get PDF
    The well known Gelfland-Naimark theorem enables us to represent a complex commutative C*-algebra as a full algebra of complex valued functions defined on its set of primitive ideals which is called the structure space of the algebra. In is thesis we are concerned with the generalization of this type of representation theorem to non-commutative rings and algebras. In order to prove the Gelfand-Naimark theorem, we needed the Stone-Weierstrass theorem to enable us to show that a subalgebra is actually equal to a full algebra of functions. We shall see that in order to represent a non-commutative algebra as a set of functions taking values in a variable range, we shall need a suitable type of Stone-Weierstrass theorem. This thesis can therefore be considered as an illustration of the application of Stone-Weierstrass type argunents to the theory of C*-algebra representations
    corecore