10 research outputs found

    Ricci curvature on polyhedral surfaces via optimal transportation

    Get PDF
    The problem of defining correctly geometric objects such as the curvature is a hard one in discrete geometry. In 2009, Ollivier defined a notion of curvature applicable to a wide category of measured metric spaces, in particular to graphs. He named it coarse Ricci curvature because it coincides, up to some given factor, with the classical Ricci curvature, when the space is a smooth manifold. Lin, Lu & Yau, Jost & Liu have used and extended this notion for graphs giving estimates for the curvature and hence the diameter, in terms of the combinatorics. In this paper, we describe a method for computing the coarse Ricci curvature and give sharper results, in the specific but crucial case of polyhedral surfaces

    Ricci-flat cubic graphs with girth five

    Full text link
    We classify all connected, simple, 3-regular graphs with girth at least 5 that are Ricci-flat. We use the definition of Ricci curvature on graphs given in Lin-Lu-Yau, Tohoku Math., 2011, which is a variation of Ollivier, J. Funct. Anal., 2009. A graph is Ricci-flat, if it has vanishing Ricci curvature on all edges. We show, that the only Ricci-flat cubic graphs with girth at least 5 are the Petersen graph, the Triplex and the dodecahedral graph. This will correct the classification in Lin-Lu-Yau, Comm. Anal. Geom., 2014, that misses the Triplex

    Introducing Quantum Ricci Curvature

    Get PDF
    Motivated by the search for geometric observables in nonperturbative quantum gravity, we define a notion of coarse-grained Ricci curvature. It is based on a particular way of extracting the local Ricci curvature of a smooth Riemannian manifold by comparing the distance between pairs of spheres with that of their centres. The quantum Ricci curvature is designed for use on non-smooth and discrete metric spaces, and to satisfy the key criteria of scalability and computability. We test the prescription on a variety of regular and random piecewise flat spaces, mostly in two dimensions. This enables us to quantify its behaviour for short lattices distances and compare its large-scale behaviour with that of constantly curved model spaces. On the triangulated spaces considered, the quantum Ricci curvature has good averaging properties and reproduces classical characteristics on scales large compared to the discretization scale.Comment: 43 pages, 27 figure

    Self-Assembly of Geometric Space from Random Graphs

    Full text link
    We present a Euclidean quantum gravity model in which random graphs dynamically self-assemble into discrete manifold structures. Concretely, we consider a statistical model driven by a discretisation of the Euclidean Einstein-Hilbert action; contrary to previous approaches based on simplicial complexes and Regge calculus our discretisation is based on the Ollivier curvature, a coarse analogue of the manifold Ricci curvature defined for generic graphs. The Ollivier curvature is generally difficult to evaluate due to its definition in terms of optimal transport theory, but we present a new exact expression for the Ollivier curvature in a wide class of relevant graphs purely in terms of the numbers of short cycles at an edge. This result should be of independent intrinsic interest to network theorists. Action minimising configurations prove to be cubic complexes up to defects; there are indications that such defects are dynamically suppressed in the macroscopic limit. Closer examination of a defect free model shows that certain classical configurations have a geometric interpretation and discretely approximate vacuum solutions to the Euclidean Einstein-Hilbert action. Working in a configuration space where the geometric configurations are stable vacua of the theory, we obtain direct numerical evidence for the existence of a continuous phase transition; this makes the model a UV completion of Euclidean Einstein gravity. Notably, this phase transition implies an area-law for the entropy of emerging geometric space. Certain vacua of the theory can be interpreted as baby universes; we find that these configurations appear as stable vacua in a mean field approximation of our model, but are excluded dynamically whenever the action is exact indicating the dynamical stability of geometric space. The model is intended as a setting for subsequent studies of emergent time mechanisms.Comment: 26 pages, 9 figures, 2 appendice
    corecore