4 research outputs found

    A fundamental non-classical logic

    Full text link
    We give a proof-theoretic as well as a semantic characterization of a logic in the signature with conjunction, disjunction, negation, and the universal and existential quantifiers that we suggest has a certain fundamental status. We present a Fitch-style natural deduction system for the logic that contains only the introduction and elimination rules for the logical constants. From this starting point, if one adds the rule that Fitch called Reiteration, one obtains a proof system for intuitionistic logic in the given signature; if instead of adding Reiteration, one adds the rule of Reductio ad Absurdum, one obtains a proof system for orthologic; by adding both Reiteration and Reductio, one obtains a proof system for classical logic. Arguably neither Reiteration nor Reductio is as intimately related to the meaning of the connectives as the introduction and elimination rules are, so the base logic we identify serves as a more fundamental starting point and common ground between proponents of intuitionistic logic, orthologic, and classical logic. The algebraic semantics for the logic we motivate proof-theoretically is based on bounded lattices equipped with what has been called a weak pseudocomplementation. We show that such lattice expansions are representable using a set together with a reflexive binary relation satisfying a simple first-order condition, which yields an elegant relational semantics for the logic. This builds on our previous study of representations of lattices with negations, which we extend and specialize for several types of negation in addition to weak pseudocomplementation; in an appendix, we further extend this representation to lattices with implications. Finally, we discuss adding to our logic a conditional obeying only introduction and elimination rules, interpreted as a modality using a family of accessibility relations.Comment: added topological representation of bounded lattices with implications in Appendi

    Rewriting for Fitch style natural deductions

    Get PDF
    Contains fulltext : 104040.pdf (author's version ) (Open Access)15th Internat. Conference on Rewriting Techniques and Applications, RTA 2004, Aache

    Rewriting for Fitch style natural deductions

    No full text
    Logical systems in natural deduction style are usually presented in the Gentzen style. A different definition of natural deduction, that corresponds more closely to proofs in ordinary mathematical practice, is given in [Fitch 1952]. We define precisely a Curry-Howard interpretation that maps Fitch style deductions to simply typed terms, and we analyze why it is not an isomorphism. We then describe three reduction relations on Fitch style natural deductions: one that removes garbage (subproofs that are not needed for the conclusion), one that removes repeats and one that unshares shared subproofs. We also define an equivalence relation that allows to interchange independent steps. We prove that two Fitch deductions are mapped to the same ¿-term if and only if they are equal via the congruence closure of the aforementioned relations (the reduction relations plus the equivalence relation). This gives a Curry-Howard isomorphism between equivalence classes of Fitch deductions and simply typed ¿-terms. Then we define the notion of cut-elimination on Fitch deductions, which is only possible for deductions that are completely unshared (normal forms of the unsharing reduction). For conciseness, we restrict in this paper to the implicational fragment of propositional logic, but we believe that our results extend to full first order predicate logic

    Rewriting for Fitch style natural deductions

    No full text
    Abstract. Logical systems in natural deduction style are usually presented in the Gentzen style. A different definition of natural deduction, that corresponds more closely to proofs in ordinary mathematical practice, is given in [Fitch 1952]. We define precisely a Curry-Howard interpretation that maps Fitch style deductions to simply typed terms, and we analyze why it is not an isomorphism. We then describe three reduction relations on Fitch style natural deductions: one that removes garbage (subproofs that are not needed for the conclusion), one that removes repeats and one that unshares shared subproofs. We also define an equivalence relation that allows to interchange independent steps. We prove that two Fitch deductions are mapped to the same λ-term if and only if they are equal via the congruence closure of the aforementioned relations (the reduction relations plus the equivalence relation). This gives a Curry-Howard isomorphism between equivalence classes of Fitch deductions and simply typed λ-terms. Then we define the notion of cut-elimination on Fitch deductions, which is only possible for deductions that are completely unshared (normal forms of the unsharing reduction). For conciseness, we restrict in this paper to the implicational fragment of propositional logic, but we believe that our results extend to full first order predicate logic.
    corecore