4,271 research outputs found

    Equational reasoning with context-free families of string diagrams

    Full text link
    String diagrams provide an intuitive language for expressing networks of interacting processes graphically. A discrete representation of string diagrams, called string graphs, allows for mechanised equational reasoning by double-pushout rewriting. However, one often wishes to express not just single equations, but entire families of equations between diagrams of arbitrary size. To do this we define a class of context-free grammars, called B-ESG grammars, that are suitable for defining entire families of string graphs, and crucially, of string graph rewrite rules. We show that the language-membership and match-enumeration problems are decidable for these grammars, and hence that there is an algorithm for rewriting string graphs according to B-ESG rewrite patterns. We also show that it is possible to reason at the level of grammars by providing a simple method for transforming a grammar by string graph rewriting, and showing admissibility of the induced B-ESG rewrite pattern.Comment: International Conference on Graph Transformation, ICGT 2015. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-21145-9_

    !-Graphs with Trivial Overlap are Context-Free

    Full text link
    String diagrams are a powerful tool for reasoning about composite structures in symmetric monoidal categories. By representing string diagrams as graphs, equational reasoning can be done automatically by double-pushout rewriting. !-graphs give us the means of expressing and proving properties about whole families of these graphs simultaneously. While !-graphs provide elegant proofs of surprisingly powerful theorems, little is known about the formal properties of the graph languages they define. This paper takes the first step in characterising these languages by showing that an important subclass of !-graphs--those whose repeated structures only overlap trivially--can be encoded using a (context-free) vertex replacement grammar.Comment: In Proceedings GaM 2015, arXiv:1504.0244

    Towards 3-Dimensional Rewriting Theory

    Full text link
    String rewriting systems have proved very useful to study monoids. In good cases, they give finite presentations of monoids, allowing computations on those and their manipulation by a computer. Even better, when the presentation is confluent and terminating, they provide one with a notion of canonical representative of the elements of the presented monoid. Polygraphs are a higher-dimensional generalization of this notion of presentation, from the setting of monoids to the much more general setting of n-categories. One of the main purposes of this article is to give a progressive introduction to the notion of higher-dimensional rewriting system provided by polygraphs, and describe its links with classical rewriting theory, string and term rewriting systems in particular. After introducing the general setting, we will be interested in proving local confluence for polygraphs presenting 2-categories and introduce a framework in which a finite 3-dimensional rewriting system admits a finite number of critical pairs

    Synthesising Graphical Theories

    Full text link
    In recent years, diagrammatic languages have been shown to be a powerful and expressive tool for reasoning about physical, logical, and semantic processes represented as morphisms in a monoidal category. In particular, categorical quantum mechanics, or "Quantum Picturalism", aims to turn concrete features of quantum theory into abstract structural properties, expressed in the form of diagrammatic identities. One way we search for these properties is to start with a concrete model (e.g. a set of linear maps or finite relations) and start composing generators into diagrams and looking for graphical identities. Naively, we could automate this procedure by enumerating all diagrams up to a given size and check for equalities, but this is intractable in practice because it produces far too many equations. Luckily, many of these identities are not primitive, but rather derivable from simpler ones. In 2010, Johansson, Dixon, and Bundy developed a technique called conjecture synthesis for automatically generating conjectured term equations to feed into an inductive theorem prover. In this extended abstract, we adapt this technique to diagrammatic theories, expressed as graph rewrite systems, and demonstrate its application by synthesising a graphical theory for studying entangled quantum states.Comment: 10 pages, 22 figures. Shortened and one theorem adde

    Encoding !-tensors as !-graphs with neighbourhood orders

    Full text link
    Diagrammatic reasoning using string diagrams provides an intuitive language for reasoning about morphisms in a symmetric monoidal category. To allow working with infinite families of string diagrams, !-graphs were introduced as a method to mark repeated structure inside a diagram. This led to !-graphs being implemented in the diagrammatic proof assistant Quantomatic. Having a partially automated program for rewriting diagrams has proven very useful, but being based on !-graphs, only commutative theories are allowed. An enriched abstract tensor notation, called !-tensors, has been used to formalise the notion of !-boxes in non-commutative structures. This work-in-progress paper presents a method to encode !-tensors as !-graphs with some additional structure. This will allow us to leverage the existing code from Quantomatic and quickly provide various tools for non-commutative diagrammatic reasoning.Comment: In Proceedings QPL 2015, arXiv:1511.0118

    Tensors, !-graphs, and non-commutative quantum structures

    Full text link
    Categorical quantum mechanics (CQM) and the theory of quantum groups rely heavily on the use of structures that have both an algebraic and co-algebraic component, making them well-suited for manipulation using diagrammatic techniques. Diagrams allow us to easily form complex compositions of (co)algebraic structures, and prove their equality via graph rewriting. One of the biggest challenges in going beyond simple rewriting-based proofs is designing a graphical language that is expressive enough to prove interesting properties (e.g. normal form results) about not just single diagrams, but entire families of diagrams. One candidate is the language of !-graphs, which consist of graphs with certain subgraphs marked with boxes (called !-boxes) that can be repeated any number of times. New !-graph equations can then be proved using a powerful technique called !-box induction. However, previously this technique only applied to commutative (or cocommutative) algebraic structures, severely limiting its applications in some parts of CQM and (especially) quantum groups. In this paper, we fix this shortcoming by offering a new semantics for non-commutative !-graphs using an enriched version of Penrose's abstract tensor notation.Comment: In Proceedings QPL 2014, arXiv:1412.810

    Linear lambda terms as invariants of rooted trivalent maps

    Full text link
    The main aim of the article is to give a simple and conceptual account for the correspondence (originally described by Bodini, Gardy, and Jacquot) between α\alpha-equivalence classes of closed linear lambda terms and isomorphism classes of rooted trivalent maps on compact oriented surfaces without boundary, as an instance of a more general correspondence between linear lambda terms with a context of free variables and rooted trivalent maps with a boundary of free edges. We begin by recalling a familiar diagrammatic representation for linear lambda terms, while at the same time explaining how such diagrams may be read formally as a notation for endomorphisms of a reflexive object in a symmetric monoidal closed (bi)category. From there, the "easy" direction of the correspondence is a simple forgetful operation which erases annotations on the diagram of a linear lambda term to produce a rooted trivalent map. The other direction views linear lambda terms as complete invariants of their underlying rooted trivalent maps, reconstructing the missing information through a Tutte-style topological recurrence on maps with free edges. As an application in combinatorics, we use this analysis to enumerate bridgeless rooted trivalent maps as linear lambda terms containing no closed proper subterms, and conclude by giving a natural reformulation of the Four Color Theorem as a statement about typing in lambda calculus.Comment: accepted author manuscript, posted six months after publicatio
    corecore