319 research outputs found

    A Revocable Group Signature Scheme with Scalability from Simple Assumptions and Its Application to Identity Management

    Get PDF
    Group signatures are signatures providing signer anonymity where signers can produce signatures on behalf of the group that they belong to. Although such anonymity is quite attractive considering privacy issues, it is not trivial to check whether a signer has been revoked or not. Thus, how to revoke the rights of signers is one of the major topics in the research on group signatures. In particular, scalability, where the signing and verification costs and the signature size are constant in terms of the number of signers N, and other costs regarding signers are at most logarithmic in N, is quite important. In this paper, we propose a revocable group signature scheme which is currently more efficient compared to previous all scalable schemes. Moreover, our revocable group signature scheme is secure under simple assumptions (in the random oracle model), whereas all scalable schemes are secure under q-type assumptions. We implemented our scheme by employing Barreto-Lynn-Scott curves of embedding degree 12 over a 455-bit prime field (BLS-12-455), and Barreto-Naehrig curves of embedding degree 12 over a 382-bit prime field (BN-12-382), respectively, by using the RELIC library. We showed that the online running times of our signing algorithm were approximately 14 msec (BLS-12-455) and 11 msec (BN-12-382), and those of our verification algorithm were approximately 20 msec (BLS-12-455) and 16 msec (BN-12-382), respectively. Finally, we showed that our scheme is applied to an identity management system proposed by Isshiki et al

    Shortening the Libert-Peters-Yung Revocable Group Signature Scheme by Using the Random Oracle Methodology

    Get PDF
    At EUROCRYPT 2012, Libert, Peters and Yung (LPY) proposed the first scalable revocable group signature (R-GS) scheme in the standard model which achieves constant signing/verification costs and other costs regarding signers are at most logarithmic in N, where N is the maximum number of group members. However, although the LPY R-GS scheme is asymptotically quite efficient, this scheme is not sufficiently efficient in practice. For example, the signature size of the LPY scheme is roughly 10 times larger than that of an RSA signature (for 160-bit security). In this paper, we propose a compact R-GS scheme secure in the random oracle model that is efficient not only in the asymptotic sense but also in practical parameter settings. We achieve the same efficiency as the LPY scheme in an asymptotic sense, and the signature size is nearly equal to that of an RSA signature (for 160-bit security). It is particularly worth noting that our R-GS scheme has the smallest signature size compared to those of previous R-GS schemes which enable constant signing/verification costs. Our technique, which we call parallel Boneh–Boyen–Shacham group signature technique, helps to construct an R-GS scheme without following the technique used in LPY, i.e., we directly apply the Naor–Naor–Lotspiech framework without using any identity-based encryption

    Constant-size dynamic k-times anonymous authentication

    Get PDF
    Dynamic k-times anonymous authentication (k-TAA) schemes allow members of a group to be authenticated anonymously by application providers for a bounded number of times, where application providers can independently and dynamically grant or revoke access right to members in their own group. In this paper, we construct a dynamic k-TAA scheme with space and time complexities of O(log(k)) and a variant, in which the authentication protocol only requires constant time and space complexities at the cost of O(k) -sized public key. We also describe some tradeoff issues between different system characteristics. We detail all the zero-knowledge proof-of-knowledge protocols involved and show that our construction is secure in the random oracle model under the q-strong Diffie-Hellman assumption and q-decisional Diffie-Hellman inversion assumption. We provide a proof-of-concept implementation, experiment on its performance, and show that our scheme is practical

    Privacy-Preserving Electronic Ticket Scheme with Attribute-based Credentials

    Get PDF
    Electronic tickets (e-tickets) are electronic versions of paper tickets, which enable users to access intended services and improve services' efficiency. However, privacy may be a concern of e-ticket users. In this paper, a privacy-preserving electronic ticket scheme with attribute-based credentials is proposed to protect users' privacy and facilitate ticketing based on a user's attributes. Our proposed scheme makes the following contributions: (1) users can buy different tickets from ticket sellers without releasing their exact attributes; (2) two tickets of the same user cannot be linked; (3) a ticket cannot be transferred to another user; (4) a ticket cannot be double spent; (5) the security of the proposed scheme is formally proven and reduced to well known (q-strong Diffie-Hellman) complexity assumption; (6) the scheme has been implemented and its performance empirically evaluated. To the best of our knowledge, our privacy-preserving attribute-based e-ticket scheme is the first one providing these five features. Application areas of our scheme include event or transport tickets where users must convince ticket sellers that their attributes (e.g. age, profession, location) satisfy the ticket price policies to buy discounted tickets. More generally, our scheme can be used in any system where access to services is only dependent on a user's attributes (or entitlements) but not their identities.Comment: 18pages, 6 figures, 2 table

    Withdrawable Signature: How to Call off a Signature

    Get PDF
    Digital signatures are a cornerstone of security and trust in cryptography, providing authenticity, integrity, and non-repudiation. Despite their benefits, traditional digital signature schemes suffer from inherent immutability, offering no provision for a signer to retract a previously issued signature. This paper introduces the concept of a withdrawable signature scheme, which allows for the retraction of a signature without revealing the signer\u27s private key or compromising the security of other signatures the signer created before. This property, defined as ``withdrawability\u27\u27, is particularly relevant in decentralized systems, such as e-voting, blockchain-based smart contracts, and escrow services, where signers may wish to revoke or alter their commitment. The core idea of our construction of a withdrawable signature scheme is to ensure that the parties with a withdrawable signature are not convinced whether the signer signed a specific message. This ability to generate a signature while preventing validity from being verified is a fundamental requirement of our scheme, epitomizing the property of withdrawability. After formally defining security notions for withdrawable signatures, we present two constructions of the scheme based on the pairing and the discrete logarithm. We provide proofs that both constructions are unforgeable under insider corruption and satisfy the criteria of withdrawability. We anticipate our new type of signature will significantly enhance flexibility and security in digital transactions and communications

    A survey on group signature schemes

    Get PDF
    Group Signature, extension of digital signature, allows members of a group to sign messages on behalf of the group, such that the resulting signature does not reveal the identity of the signer. Any client can verify the authenticity of the document by using the public key parameters of the group. In case of dispute, only a designated group manager, because of his special property, is able to open signatures, and thus reveal the signer’s identity. Its applications are widespread, especially in e-commerce such as e-cash, e-voting and e-auction. This thesis incorporates the detailed study of various group signature schemes, their cryptographic concepts and the main contributions in this field. We implemented a popular group signature scheme based upon elliptic curve cryptosystems. Moreover, the group signature is dynamic i.e. remains valid, if some members leave the group or some new members join the group. Full traceability feature is also included in the implemented scheme. For enhanced security the the scheme implements distributed roles of the group manager. We also analysed various security features, formal models, challenges and cryptanalysis of some significant contributions in this area

    Linking-Based Revocation for Group Signatures: A Pragmatic Approach for Efficient Revocation Checks

    Get PDF
    Group signature schemes (GSS) represent an important privacy-enhancing technology. However, their practical applicability is restricted due to inefficiencies of existing membership revocation mechanisms that often place a too large computational burden and communication overhead on the involved parties. Moreover, it seems that the general belief (or unwritten law) of avoiding online authorities by all means artificially and unnecessarily restricts the efficiency and practicality of revocation mechanisms in GSSs. While a mindset of preventing online authorities might have been appropriate more than 10 years ago, today the availability of highly reliable cloud computing infrastructures could be used to solve open challenges. More specifically, in order to overcome the inefficiencies of existing revocation mechanisms, we propose an alternative approach denoted as linking-based revocation (LBR) which is based on the concept of controllable linkability. The novelty of LBR is its transparency for signers and verifiers that spares additional computations as well as updates. We therefore introduce dedicated revocation authorities (RAs) that can be contacted for efficient (constant time) revocation checks. In order to protect these RAs and to reduce the trust in involved online authorities, we additionally introduce distributed controllable linkability. Using latter, RAs cooperate with multiple authorities to compute the required linking information, thus reducing the required trust. Besides efficiency, an appealing benefit of LBR is its generic applicability to pairing-based GSSs secure in the BSZ model as well as GSSs with controllable linkability. This includes the XSGS scheme, and the GSSs proposed by Hwang et al., one of which has been standardized in the recent ISO 20008-2 standard

    Hybrid Publicly Verifiable Computation

    Get PDF
    Publicly Verifiable Outsourced Computation (PVC) allows weak devices to delegate com-putations to more powerful servers, and to verify the correctness of results. Delegation and verification rely only on public parameters, and thus PVC lends itself to large multi-user systems where entities need not be registered. In such settings, individual user requirements may be diverse and cannot be realised with current PVC solutions. In this paper, we in-troduce Hybrid PVC (HPVC) which, with a single setup stage, provides a flexible solution to outsourced computation supporting multiple modes: (i) standard PVC, (ii) PVC with cryptographically enforced access control policies restricting the servers that may perform a given computation, and (iii) a reversed model of PVC which we call Verifiable Delegable Computation (VDC) where data is held remotely by servers. Entities may dynamically play the role of delegators or servers as required

    Group Signature with relaxed-privacy and revocability for VANET

    Get PDF
    This paper adapts a new group signature (GS) scheme to the specific needs of certain application e.g., a vehicular adhoc network (VANET). Groth GS is the first efficient GS scheme in the BSZ-model with security proofs in the standard model. We modify the Groth GS in order to meet a restricted, but arguably sufficient set of privacy proper-ties. Although there are some authentication schemes using GS none of them satisfy all the desirable security and privacy properties. Either they follow GSs that rely on Random Oracle Model, or unable to satisfy potential application requirements. In particular, link management which allows any designated entities to link messages, whether they are coming from the same member or a certain group of members without revealing their identities; opening soundness that prevents malicious accusations by the opener against some honest member of the group; revocation system that privileges from fraudulent member like the traditional Public Key infrastructure (PKI). In order to achieve the aforementioned security properties together, we propose a new GS model where linkability, sound opening and revocability properties are assembled in a single scheme. The novelty of our proposal stems from extending the Groth GS by relaxing strong privacy properties to a scheme with a lightly lesser privacy in order to fit an existing VANET application requirements. In addition, we partially minimize the Groth GS scheme to expedite efficiency
    corecore