
Hybrid Publicly Verifiable Computation?

James Alderman??, Christian Janson, Carlos Cid, and Jason Crampton

Information Security Group, Royal Holloway, University of London
Egham, Surrey, TW20 0EX, United Kingdom

{James.Alderman, Carlos.Cid, Jason.Crampton}@rhul.ac.uk
Christian.Janson.2012@live.rhul.ac.uk

Abstract. Publicly Verifiable Outsourced Computation (PVC) allows
weak devices to delegate computations to more powerful servers, and to
verify the correctness of results. Delegation and verification rely only on
public parameters, and thus PVC lends itself to large multi-user sys-
tems where entities need not be registered. In such settings, individual
user requirements may be diverse and cannot be realised with current
PVC solutions. In this paper, we introduce Hybrid PVC (HPVC) which,
with a single setup stage, provides a flexible solution to outsourced com-
putation supporting multiple modes: (i) standard PVC, (ii) PVC with
cryptographically enforced access control policies restricting the servers
that may perform a given computation, and (iii) a reversed model of
PVC which we call Verifiable Delegable Computation (VDC) where data
is held remotely by servers. Entities may dynamically play the role of
delegators or servers as required.

Keywords Publicly Verifiable Computation, Outsourced Computation, Dual-
Policy Attribute-based Encryption, Revocation, Access Control

1 Introduction

The trend towards cloud computing means that there is a growing trust depen-
dency on remote servers and the functionality they provide. Publicly Verifiable
Computation (PVC) [20] allows any entity to use public information to delegate
or verify computations, and lends itself to large multi-user systems that are likely
to arise in practice (as delegators need not be individually registered).

However, in such a system, the individual user requirements may be diverse
and require different forms of outsourced computation, whereas current PVC
schemes support only a single form. Clients may wish to request computations
from a particular server or to issue a request to a large pool of servers; in the latter
case, they may wish to restrict the servers that can perform the computation to

? The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-
319-29485-8 9.

?? Partial funding by the European Commission under project H2020-644024
“CLARUS”, and support from BAE Systems Advanced Technology Centre is grate-
fully acknowledged.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/43779032?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

only those possessing certain characteristics. Moreover, the data may be provided
by the client as part of the computation, or it may be stored by the server; and
the role of servers and clients may be interchangeable depending on the context.

Consider the following scenarios: (i) employees with limited resources (e.g. us-
ing mobile devices when out of the office) need to delegate computations to more
powerful servers. The workload of the employee may also involve responding to
computation requests to perform tasks for other employees or to respond to inter-
departmental queries over restricted databases; (ii) Entities that invest heavily
in outsourced computations could find themselves with a valuable, processed
dataset that is of interest to other parties, and hence want to selectively share
this information by allowing others to query the dataset in a verifiable fashion;
(iii) database servers that allow public queries may become overwhelmed with
requests, and need to enlist additional servers to help (essentially the server acts
as a delegator to outsource queries with relevant data). Finally, (iv) consider a
form of peer-to-peer network for sharing computational resources – as individual
resource availability varies, entities can sell spare resources to perform computa-
tions for other users or make their own data available to others, whilst making
computation requests to other entities when resources run low.

Current PVC solutions do not handle these flexible requirements particularly
well; although there are several different proposals in the literature that realise
some of the requirements described above, each requires an independent (po-
tentially expensive) setup stage. We introduce Hybrid PVC (HPVC) which is a
single mechanism (with the associated costs of a single setup operation and a
single set of system parameters to publish and maintain) which simultaneously
satisfies all of the above requirements. Entities may play the role of both delega-
tors and servers, in the following modes of operation, dynamically as required:

– Revocable PVC (RPVC) where clients with limited resources outsource
computations on data of their choosing to more powerful, untrusted servers
using only public information. Multiple servers can compute multiple functions.
Servers may try to cheat to persuade verifiers of incorrect information or to avoid
using their own resources. Misbehaving servers can be detected and revoked so
that further results will be rejected and they will not be rewarded for their effort;

– RPVC with access control (RPVC-AC) which restricts the servers that
may perform a given computation. Outsourced computations may be distributed
amongst a pool of available servers that are not individually authenticated and
known by the delegator. Prior work [1] used symmetric primitives and required
all entities to be registered in the system (including delegators) but we achieve
a fully public system where only servers need be registered (as usual in PVC);

– Verifiable Delegable Computation (VDC) where servers are the data
owners and make a static dataset available for verifiable querying. Clients request
computations on subsets of the dataset using public, descriptive labels.

We begin, in Section 2, with a summary of related work and the KP-ABE-
based PVC schemes [3, 20] on which we base our HPVC construction. In Sec-
tion 3, we define the generic functionality and security properties of HPVC. We
then, in Section 4.1, discuss each supported mode of computation, and how it

fits our generic definition. To support user revocation [3], we introduce a new
cryptographic primitive called Revocable-Key Dual-policy Attribute-based En-
cryption (rkDPABE) in Section 4.2, and finally, in Section 4.3, we instantiate
HPVC using rkDPABE. Additional details, formal security games and proofs
can be found in the full version online [2].

2 Background and Related Work

Verifiable computation [10,12,13,15,16,20,24] may be seen as a protocol between
a (weak) client C and a server S, resulting in the provably correct computation
of F (x) by the server for the client’s choice of F and x. The setup stage may
be computationally expensive (amortised over multiple computations) but other
operations should be efficient for the client. Some prior work used garbled circuits
with fully homomorphic encryption [13,16] or targeted specific functions [10,12,
15]. Chung et al. [14] introduced memory delegation which is similar to VDC; a
client uploads his memory to a server who can update and compute a function
F over the entire memory. Backes et al. [8] consider a client that outsources data
and requests computations on a data portion. The client can efficiently verify
the correctness of the result without holding the input data. Most work requires
the client to know the data in order to verify [9, 11, 17, 19]. Verifiable oblivious
storage [5] ensures data confidentiality, access pattern privacy, integrity and
freshness of data accesses. Work on authenticated data lends itself to verifiable
outsourced computations, albeit for specific functions only. Backes et al. [7] use
privacy-preserving proofs over authenticated data outsourced by a trusted client.
Similar results are presented in [22] using public logs. It is notable that [7]
and [11] achieve public verifiability. In independent and concurrent work, Shi
et al. [21] use DP-ABE to combine keyword search on encrypted data with the
enforcement of an access control policy.

Parno et al. [20] introduce Publicly Verifiable Computation (PVC) where
multiple clients outsource computations of a single function to a single server, and
verify the results. Alderman et al. [3] introduce a trusted Key Distribution Centre
(KDC) to handle the expensive setup for all entities, to allow multiple servers
to compute multiple functions, and to revoke misbehaving servers. Informally,
the KDC acts as the root of trust to generate public parameters and delegation
information, and to issue secret keys and evaluation keys to servers. To outsource
the evaluation of F (x), a delegator sends an encoded input σF (x) to a server S,
and publishes verification tokens. S uses an evaluation key for F to produce
an encoded output θF (x). Any entity can verify correctness of θF (x) using a
verification key and learn the value of F (x). If S cheated they may be reported
to the KDC for revocation.

The constructions of [3,20] to outsource a Boolean function, F , are based on
Key-policy Attribute-based encryption (KP-ABE), which links ciphertexts with
attribute sets and decryption keys with a policy; decryption only succeeds if the
attributes satisfy the policy. For PVC, two random messages are encrypted and
linked to the input data X (represented as attributes) to form the encoded input.

The evaluation key is a pair of decryption keys linked to F and F (the comple-
ment function of F). Exactly one message can be recovered, implying whether F
or F was satisfied, and hence if F (X) = 1 or 0. Ciphertext indistinguishability
ensures S cannot return the other message to imply an incorrect result.

3 Hybrid Publicly Verifiable Computation

To accommodate different modes of computation, we define HPVC generically
in terms of parameters ω, O, ψ and S. Depending on the mode (and which party
provides the input data), O or S will encode functions, while ω or ψ encode input
data, as detailed in Section 4.1. We retain the single, trusted key distribution
centre (KDC) from RPVC [3] who initialises the system for a function family
F resulting in a set of public parameters PP and a master secret key. For each
function F ∈ F , the KDC publishes a delegation key PKF . It also registers each
entity Si that wants to act as a server by issuing a signing key SKSi

. It may
also update PP during any algorithm to reflect changes in the user population.

Depending on the mode, servers either compute functions O on behalf of
clients, or make a dataset ψ available for public querying. The Certify algorithm
is run by the KDC to produce an evaluation key EK(O,ψ),Si

enabling Si to
perform these operations. Si chooses a set of labels Li – in RPVC or RPVC-
AC modes, Li uniquely represents the function F that Si should be certified to
compute; in VDC mode, Li is a set of labels, each uniquely representing a data
point contained in the dataset Di owned by Si.

1 In the VDC setting, the server is
the data owner and so Si also provides a list Fi advertising the functions that he
is willing to evaluate on his data in accordance with his own data usage policies;
in RPVC settings, Fi advertises the functions Si is certified to compute.

To request a computation of F (X) (encoded in ω or S) from Si, a delegator
uses public information to run ProbGen. He provides labels LF,X ⊆ Li describing
the computation: in RPVC or RPVC-AC modes, the delegator provides the input
data X and LF,X labels the function F to be applied; in VDC mode, the client
uses the descriptive labels to choose a subset of data points X ⊆ Di, X ⊆
Dom(F) held by Si that should be computed on. ProbGen generates an encoded
input σF,X and a public verification key V KF,X .

A server combines σF,X with its evaluation key to compute θF (X) encoding
the result F (X). Any entity can verify the correctness of θF (X) using V KF,X .
Verification outputs the result y = F (X) of the computation (if correct) and
generates a token τF (X) which is sent to the KDC; if the token signifies that
the result was incorrectly formed then the server is revoked from performing
further evaluations. This prevents delegators wasting their (limited) resources
outsourcing to a server known to be untrustworthy, and also acts as a deterrent,
especially when servers are rewarded per computation.

Definition 1. A Hybrid Publicly Verifiable Computation (HPVC) scheme for a
family of functions F comprises the following algorithms:

1 These descriptive labels (e.g. field names in a database) allow delegators to select
data points to be used in a computation without knowing the data values.

1. (PP,MK)
$← Setup(1`,F) : run by the KDC to establish public parameters

PP and a master secret key MK for the system. The inputs are the security
parameter `, and the family of functions F that may be computed;

2. PKF
$← FnInit(F,MK,PP): run by the KDC to generate a public delegation

key, PKF , allowing entities to outsource, or request, computations of F ;

3. SKSi

$← Register(Si,MK,PP): run by the KDC to enrol an entity Si within
the system to act as a server. It generates a personalised signing key SKSi ;

4. EK(O,ψ),Si

$← Certify(mode, Si, (O, ψ), Li,Fi,MK,PP): run by the KDC to
generate an evaluation key EK(O,ψ),Si

enabling the server Si to compute
on the pair (O, ψ). The algorithm also takes as input the mode in which it
should operate, a set of labels Li and a set of functions Fi;

5. (σF,X , V KF,X)
$← ProbGen(mode, (ω,S), LF,X , PKF ,PP): run by an entity

to request a computation of F (X) from Si. The inputs are the mode, the
pair (ω,S) representing the computation, a set of labels LF,X ⊆ Li, the
delegation key for F and the public parameters. The outputs are an encoded
input σF,X and a verification key V KF,X ;

6. θF (X)
$← Compute(mode, σF,X , EK(O,ψ),Si

, SKSi
,PP): run by an entity Si

to compute F (X). The inputs are the mode, an encoded input, and an
evaluation key and signing key for Si. The output, θF (X), encodes the result;

7. (y, τF (X)) ← Verify(θF (X), V KF,X ,PP): run by any entity. The inputs are
an encoded output produced by Si and verification key; the outputs are
the computation result y = F (X) if the result was computed correctly, or
else y =⊥, and a token τF (X) which is (accept, Si) if θF (X) is correct, or
(reject, Si) otherwise;

8. UM
$← Revoke(τF (X),MK,PP): run by the KDC if a misbehaving server

is reported. It returns UM =⊥ if τF (X) = (accept, Si). Otherwise, all eval-
uation keys EK(·,·),Si

for Si are rendered non-functional and the update
material UM is a set of updated evaluation keys {EK(O,ψ),S′} for all servers.

3.1 Security Models

We now discuss desirable security properties for HPVC; additional formal models
are found in the full paper [2]2. Public verifiability, revocation and authorised
computation are selective notions in line with our rkDPABE scheme introduced
in Section 4.2.

Public Verifiability, presented in Game 1, ensures that a server that returns
an incorrect result is detected by the verification algorithm so that they can be
reported for revocation. The adversary, A, may corrupt other servers, generate

2 We do not consider input privacy here, but note that a revocable dual-policy predi-
cate encryption scheme, if found, could easily replace our ABE scheme in Section 4.3.
Security against vindictive servers and managers can also be adapted from [3].

Game 1 ExpsPubVerif
A

[
HPVC, 1`,F

]
1: (ω?,O?, ψ?, S?, LF,X? , mode)

$← A(1`,F)

2: (PP,MK)
$← Setup(1`,F)

3: if (mode = V DC) then (F ← S?, X? ← ψ?)
4: else (F ← O?, X? ← ω?)

5: PKF
$← FnInit(F,MK,PP)

6: (σ?, V K?)
$← ProbGen(mode, (ω?, S?), LF,X? , PKF ,PP)

7: θ?
$← AO(σ?, V K?, PKF ,PP)

8: (y, τθ?)← Verify(θ?, V K?,PP)
9: if (((y, τθ?) 6= (⊥, (reject, ·))) and (y 6= F (X?))) then

10: return 1
11: else return 0

arbitrary computations, and perform verification steps himself. A first selects its
challenge parameters, including the mode it wishes its challenge to be generated
in and the labels associated to its choice of inputs. We ask A to choose O? and
ψ?, despite the challenge inputs being only ω? and S?. This allows us to define
the challenge in terms of F and X? on line 3; note that O? and ψ? can also
be gleaned from the mode and labels, so this does not weaken the game – the
adversary has already determined these values through its choices.

The challenger runs Setup and FnInit for the chosen function F . It then runs
ProbGen to create the challenge parameters for the adversary, which are given to
A along with the public information. The adversary is also given oracle access to
the functions FnInit(·,MK,PP), Register(·,MK,PP), Certify(·, ·, (·, ·), ·, ·,MK,PP)
and Revoke(·,MK,PP), denoted by O. A wins the game if it creates an encoded
output that verifies correctly yet does not encode the correct value F (x).

Definition 2. The advantage of a probabilistic polynomial time adversary A
in the sPubVerif game for an HPVC construction, HPVC, for a family of
functions F is defined as:

AdvsPubVerif
A (HPVC, 1`,F) = Pr

[
1

$← ExpsPubVerif
A

[
HPVC, 1`,F

]]
.

HPVC is secure with respect to selective public verifiability if, for all PPT
adversaries A, AdvsPubVerif

A (HPVC, 1`,F) is negligible in `.

– Revocation ensures that a server that has been detected as misbehaving
cannot produce a result (even a correct result) that is accepted by a verifier
– thus, the server cannot be rewarded for future work. To reflect the revoca-
tion mechanism of the rkDPABE primitive, we include a semi-static restriction
whereby a list of entities to be revoked at the time of the challenge computation
must be declared before the adversary receives oracle access3.

– Authorised Computation extends the model of [1] to the public-key
setting to ensure that an unauthorised server cannot produce acceptable results.

3 This restriction was also used in [6] for revocable KP-ABE, and could be removed
if an adaptive, indirectly revocable ABE scheme is found.

Table 1: Parameter definitions for different modes

mode O ψ ω S

RPVC F {TS} X {{TS}}
RPVC-AC F s X P
VDC {{TO}} Di {TO} F

mode Li LF,X Fi
RPVC {l(F)} {l(F)} {F}
RPVC-AC {l(F)} {l(F)} {F}
VDC {l(xi,j)}xi,j∈Di {l(xi,j)}xi,j∈X {(F, {l(xi,j)}xi,j∈Dom(F))}F∈F

4 Instantiating HPVC

We construct an HPVC scheme for the class NC1, which includes common arith-
metic and matrix operations. Let F be the family of Boolean formulas closed
under complement – for all F ∈ F , F (x) = F (x)⊕1 is also in F . We construct our
scheme from a novel use of Dual-policy Attribute-based Encryption (DP-ABE)
which combines KP-ABE and Ciphertext-policy ABE (CP-ABE). Decryption
keys are linked to an “objective” policy O and “subjective” attribute set ψ, and
ciphertexts linked to an “objective” attribute set ω and “subjective” policy S;
decryption requires both policies to be satisfied – ω ∈ O and ψ ∈ S.

Following [20], we encrypt two random messages to form the encoded input,
while decryption keys form evaluation keys; by linking these to F , F and X
according to the mode, we ensure that exactly one message can be recovered,
implying whether F or F was satisfied, and hence if F (X) = 1 or 0. DP-ABE
security ensures a server cannot learn a message implying an invalid result.

The values of ω, O, ψ and S depend upon the mode, as detailed in Table 1.
Two additional parameters TO and TS “disable” modes when not required. Note
that, trivially, ψ ∈ S when ψ = {TS} and S = {{TS}}, and similarly for TO.

4.1 Supporting Different Modes

RPVC. In this mode, a delegator owns some input data X and wants to learn
F (X) but lacks the computational resources to do so itself; thus, the computation
is outsourced. In this setting, only the parameters O and ω are required, and
are set to be F and X respectively. The set X comprises a single datapoint: the
input data to this particular computation. The remaining parameters S and ψ
are defined in terms of the dummy parameter TS . The set of functions Fi that a
server is certified for during a single Certify operation is simply F , and the sets
of labels Li and LF,X both comprise a single element l(F) uniquely labelling F .

RPVC-AC. RPVC-AC [1] was introduced with the motivation that servers
may be chosen from a pool based on resource availability, a bidding process etc.

Delegators may not have previously authenticated the selected server, in contrast
to prior models [20] where a client set up a PVC system with a single, known
server.

The construction of [1] used a symmetric key assignment scheme allowing
only authorised entities to derive the required keys. However, the KDC had
to register all delegators and verifiers. This was due both to the policies being
enforced (e.g. to restrict the computations delegators may outsource), and to the
use of symmetric primitives – to encrypt inputs, delegators must know the secret
symmetric key. Thus, the scheme is not strictly publicly delegable as delegation
does not depend only on public information, and similarly for verification.

We retain public delegability and verifiability whilst restricting the servers
that may perform a given computation. In some sense, servers are already au-
thorised for functions by being issued evaluation keys. However, we believe that
access control policies in this setting must consider additional factors than just
functions. The semantic meaning and sensitivity of input data may affect the
policy, or servers may need to possess specific resources or characteristics, or be
geographically nearby to minimise latency. E.g. a government contractor may,
due to the nature of its work, require servers to be within the same country.

One solution could be for the KDC to issue signed attributes to each server
who attaches the required signatures to computation results for verification.
In this case, a verifier must decide if the received attributes are sufficient. We
consider the delegator that runs ProbGen to “own” the computation and, as
such, it should specify the authorisation policy that a server must meet. As
this is a publicly verifiable setting, any entity can verify and we believe (i)
verifiers should not accept a result that the delegator itself would not accept,
and (ii) it may be unreasonable to expect verifiers to have sufficient knowledge
to determine the authorisation policy. Of course, the delegator could attach a
signed authorisation policy to the verification key, but verifiers are not obliged
to adhere to this policy and doing so creates additional work for the verifier
– one of the key efficiency requirements for PVC is that verification is very
cheap. Using DP-ABE to instantiate HPVC allows the delegator to specify the
authorisation policy during ProbGen and requires no additional work on the part
of the verifier compared to standard RPVC. Furthermore, an unauthorised server
cannot actually perform the computation and hence verification will always fail.

We use the objective parameters ω and O to compute (as for RPVC) whilst
the subjective parameters ψ and S enforce access control on the server. Servers
are assigned both an evaluation key for a function F and a set of descriptive
attributes describing their authorisation rights, s ⊆ US , where US is a universe
of attributes used solely to define authorisation. ProbGen operates on both the
input dataX and an authorisation policy P ⊆ 2US\{∅} which defines the permis-
sible sets of authorisation attributes to perform this computation. Servers may
produce valid, acceptable outputs only if s ∈ P i.e. they satisfy the authorisation
policy. E.g. P = (Country = UK) ∨ ((clearance = Secret) ∧ (Country = USA))
is satisfied by s = {Country = UK, Capacity = 3TB}.

Table 2: Example database

User ID Name Age Height

001 Alice 26 165
002 Bob 22 172

Table 3: Example list Fi

F Dom(F)

Average Age of record 1, Height of record 1,
Age of record 2, Height of record 2

Most common
value

Name of record 1, Age of record 1,
Height of record 1, Name of record 2,
Age of record 2, Height of record 2

VDC. VDC reverses the role of the data owner – a server owns a static database
and enables delegators to request computations/queries over the data. Hence,
the user relationship is more akin to the traditional client-server model compared
to PVC. Delegators learn nothing more than the result of the computation, and
do not need the input data in order to verify. The efficiency requirement for
VDC is also very different from PVC: outsourcing a computation is not merely
an attempt to gain efficiency as the delegator never possesses the input data and
so cannot execute the computation himself (even with the necessary resources).
Thus, VDC does not have the stringent efficiency requirement present in PVC
(that outsourcing and verifying computations be more efficient than performing
the computation itself, for outsourcing to be worthwhile). Our solution behaves
reasonably well, achieving constant time verification; the size of the query de-
pends on the function F , while the size of the server’s response depends only on
the size of the result itself and not on the input size which may be large.

In VDC, each entity Si that wants to act as a server owns a dataset Di =
{xi,j}mi

j=1 comprising mi data points. The KDC issues a single evaluation key
EKDi,Si enabling Si to compute on subsets of Di. Si publishes a list Li com-
prising a unique label l(xi,j) ∈ Li for each data point xi,j ∈ Di, and a list of
functions Fi ⊆ F that are (i) meaningful on their dataset, and (ii) permissible
according to their own access control policies. Furthermore, not all data points
xi,j ∈ Di may be appropriate for each function e.g. only numeric data should be
input to an averaging function. Fi comprises elements (F,

⋃
xi,j∈Dom(F) l(xi,j))

describing each function and the associated permissible inputs. Labels should
not reveal the data values themselves to preserve the confidentiality of Di.

Delegators may select servers and data using only these labels e.g. they may
ask Si to compute F (X) for any function F ∈ Fi on a set of data points X ⊆
Dom(F)4 by specifying labels {l(xi,j)}xi,j∈X . Although it may be tempting to
suggest that Si simply caches the results of computing each F ∈ Fi, the number
of input sets X ⊆ Dom(F) could be large, making this an unattractive solution.

As an example, consider a server Si that owns the database in Table 2.
The dataset Di represents this as a set of field values for each record in turn:
Di = {001,Alice, 26,165, 002, Bob, 22, 172}. Si publishes data labels Li = {User
ID of record 1, Name of record 1, Age of record 1, Height of record 1, User ID

4 In contrast to prior modes where X was a single data point, F now takes |X| inputs.

of record 2, Name of record 2, Age of record 2, Height of record 2}. In Table 3,
Fi lists the functions and domains that Si is willing to compute. To find the
average age, a delegator queries “Average” on input X = {Age of record 1, Age
of record 2}.

4.2 Revocable Dual-policy Attribute-based Encryption

Before instantiating HPVC, we first introduce a new cryptographic primitive
which forms the basic building-block of our construction. If revocation is not
required then a standard DP-ABE scheme can be used.

Definition 3. A Revocable Key Dual-policy Attribute-based Encryption scheme
(rkDPABE) comprises five algorithms:

– (PP,MK)
$← Setup(1`,U): takes the security parameter and attribute uni-

verse and generates public parameters PP and a master secret key MK;

– CT(ω,S),t
$← Encrypt(m, (ω,S), t,PP): takes as input a message to be en-

crypted, an objective attribute set ω, a subjective policy S, a time period t
and the public parameters. It outputs a ciphertext that is valid for time t;

– SK(O,ψ),ID
$← KeyGen(ID, (O, ψ),MK,PP): takes an identity ID, an objec-

tive access structure O, a subjective attribute set ψ, the master secret key
and the public parameters. It outputs a secret decryption key SK(O,ψ),ID;

– UKR,t
$← KeyUpdate(R, t,MK,PP): takes a revocation list R containing

all revoked identities, the current time period, the master secret key and
public parameters. It outputs updated key material UKR,t which makes the
decryption keys SK(O,ψ),ID, for all non-revoked identities ID 6∈ R, functional
to decrypt ciphertexts encrypted for the time t.

– PT ← Decrypt(CT(ω,S),t, (ω,S), SK(O,ψ),ID, (O, ψ), UKR,t,PP): takes as in-
put a ciphertext formed for the time period t and the associated pair (ω,S),
a decryption key for entity ID and the associated pair (O, ψ), an update key
for the time t and the public parameters. It outputs a plaintext PT which
is the encrypted message m, if and only if the objective attributes ω satis-
fies the objective access structure O and the subjective attributes ψ satisfies
the subjective policy S and the value of t in the update key matches that
specified during encryption. If not, PT is set to be a failure symbol ⊥.

Definition 3 suffices to comprehend the remainder of this paper as we shall
use an rkDPABE scheme in a black-box manner. For completeness, we give
correctness and security definitions, a construction and a security proof in the
full, online version of the paper [2].

4.3 Construction

As mentioned, we base our construction on rkDPABE by encoding inputs as
attributes in a universe Ux, and encoding Boolean functions as access structures

over Ux. Computations with n-bit outputs can be built from n Boolean functions
returning each bit in turn. Negations can be handled by building rkDPABE
from non-monotonic ABE [18] or, as here, by adding negated attributes to the
universe [23]. For the ith bit of a binary input string X = x1 . . . xn, define
attributes A0

X,i and A1
X,i ∈ Ux5; X is encoded as AX = {AjX,i ∈ Ux : xi = j}.

Let Ul be a set of attributes (disjoint from Ux) uniquely labelling each function
and data item, and let UID represent server identities. Let g be a one-way function
and DPABE be a revocable key DP-ABE scheme for F with attribute universe
U = Ux ∪ Ul ∪ UID. We initialise two independent DP-ABE systems over U ,
and define four additional “dummy” attributes to disable modes: T 0

O, T
0
S for the

first system, and T 1
O, T

1
S for the second. We denote the complement functions

as follows: in RPVC and RPVC-AC, recall O = F and S = {{T 0
S}}; we define

O = F and S = {{T 1
S}}. Similarly, for VDC, O = {{T 1

0 }} and S = F .

1. Setup initialises two rkDPABE schemes over U , an empty two-dimensional
array LReg to list registered entities, a list of revoked entities LRev and a time
source T (e.g. a networked clock or counter) to index update keys.6

Algorithm 1 (PP,MK)
$← HPVC.Setup(1`,F)

1: (MPK0
ABE,MSK0

ABE, T
0
O, T

0
S)

$← DPABE.Setup(1`,U)
2: (MPK1

ABE,MPK1
ABE, T

1
O, T

1
S)

$← DPABE.Setup(1`,U)
3: for Si ∈ UID do
4: LReg[Si][0]← ε, LReg[Si][1]← {ε}
5: Initialise T
6: LRev ← ε
7: PP← (MPK0

ABE,MPK1
ABE, LReg, T

0
O, T

1
O, T

0
S , T

1
S ,T)

8: MK← (MSK0
ABE,MSK1

ABE, LRev)

2. FnInit sets the public delegation key PKF (for all functions F) to be the
public parameters for the system (since we use public key primitives).

Algorithm 2 PKF
$← HPVC.FnInit(F,MK,PP)

1: PKF ← PP

3. Register runs a signature KeyGen algorithm and adds the verification key
to LReg[Si][0]. These prevent servers being impersonated and wrongly revoked.

Algorithm 3 SKSi

$← HPVC.Register(Si,MK,PP)

1: (SKSig, V KSig)
$← Sig.KeyGen(1`)

2: SKSi
← SKSig

3: LReg[Si][0]← LReg[Si][0] ∪ V KSig

4. Certify first adds an element (F,
⋃
l∈Li

l) to the list LReg[Si][1] for each
F ∈ Fi; this publicises the computations that Si can perform (either functions

5 Either by defining a large enough Ux or by hashing strings to elements of the attribute
group. Unlike prior schemes [3, 20], we include an identifier of the data X (based
on the label l(xi,j)) in the attribute mapping to specify the data items to be used;
alternatively, Di could be a long bitstring formed by concatenating each data point,
and the labels should identify the attributes corresponding to each data point.

6 Our KDC will act as the trusted KeyGen authority already inherent in ABE schemes.

in RPVC and RPVC-AC modes, or functions and data labels in VDC). The
algorithm removes Si from the revocation list, gets the current time from T and
generates a decryption key for (O, Aψ ∪

⋃
l∈Li

l) (where Aψ is the attribute set
encoding ψ) in the first DP-ABE system. The additional attributes for the labels
l ∈ Ul ensure that a key cannot be used to evaluate computations that do not
correspond to these labels. In RPVC and RPVC-AC, this means that a key for a
function G cannot evaluate a computation request for F (X). In VDC, it means
that an evaluation key must be issued for a dataset Di that includes (at least)
the specified input data X?. It is sufficient to include labels only on the subjec-
tive attribute set; as these labels are a security measure against a misbehaving
server, we amend the servers key but need not take similar measures against the
delegator. Delegators can then specify, in the subjective policy that they cre-
ate, the labels that are required; these must be in the server’s key for successful
evaluation (decryption). The KDC should check that the label corresponds to
the input to ensure that a server does not advertise data he does not own. It
also generates an update key for the current time period to prove that Si is not
currently revoked. In RPVC mode, another pair of keys is generated using the
second DP-ABE system for the complement inputs.

Algorithm 4 EK(O,ψ),Si

$← HPVC.Certify(mode, Si, (O, ψ), Li,Fi,MK,PP)

1: for F ∈ Fi do
2: LReg[Si][1]← LReg[Si][1] ∪ (F,

⋃
l∈Li

l)

3: LRev ← LRev \ Si, t← T
4: SK0

ABE
$← DPABE.KeyGen(Si, (O, Aψ ∪

⋃
l∈Li

l),MSK0
ABE,MPK0

ABE)

5: UK0
LRev,t

$← DPABE.KeyUpdate(LRev, t,MSK0
ABE,MPK0

ABE)

6: if (mode =RPVC) or (mode =RPVC-AC) then

7: SK1
ABE

$← DPABE.KeyGen(Si, (O, Aψ ∪
⋃
l∈Li

l),MSK1
ABE,MPK1

ABE)

8: UK1
LRev,t

$← DPABE.KeyUpdate(LRev, t,MSK1
ABE,MPK1

ABE)

9: else
10: SK1

ABE ←⊥, UK
1
LRev,t

←⊥
11: EK(O,ψ),Si

← (SK0
ABE, SK

1
ABE, UK

0
LRev,t

, UK1
LRev,t

)

5. ProbGen chooses messages m0 and m1 randomly from the message space.
m0 is encrypted with (Aω,S ∧

∧
l∈LF,X

l) in the first DPABE system, whilst m1

is encrypted with the complement policy and either the first DPABE system
for VDC or the second for RPVC (the attributes remain the same as it is the
same attribute T 0

O or input data X respectively). The verification key comprises
g applied to each message; the one-wayness of g allows the key to be published.

Algorithm 5 (σF,X , V KF,X)
$← HPVC.ProbGen(mode, (ω, S), LF,X , PKF ,PP)

1: (m0,m1)
$←M×M

2: t← T
3: c0

$← DPABE.Encrypt(m0, (Aω , S ∧
∧
l∈LF,X

l), t,MPK0
ABE)

4: if mode = VDC then c1
$← DPABE.Encrypt(m1, (Aω , S ∧

∧
l∈LF,X

l), t,MPK0
ABE)

5: else c1
$← DPABE.Encrypt(m1, (Aω , S ∧

∧
l∈LF,X

l), t,MPK1
ABE)

6: return σF,X ← (c0, c1), V KF,X ← (g(m0), g(m1), LReg)

6. Compute attempts to decrypt both ciphertexts, ensuring that different
modes use the correct parameters. Decryption succeeds only if the function eval-
uates to 1 on the input data X i.e. the policy is satisfied. Since F and F output
opposite results on X, exactly one plaintext will be a failure symbol ⊥. The re-
sults are signed, along with the ID of the server Si performing the computation.

Algorithm 6 θF (X)
$← HPVC.Compute(mode, σF,X , EK(O,ψ),Si

, SKSi ,PP)

1: Parse EK(O,ψ),Si
as (SK0

ABE, SK
1
ABE, UK

0
LRev,t

, UK1
LRev,t

) and σF,X as (c0, c1)

2: d0 ← DPABE.Decrypt(c0, SK0
ABE,MPK0

ABE, UK
0
LRev,t

)

3: if mode = V DC then d1 ← DPABE.Decrypt(c1, SK0
ABE,MPK0

ABE, UK
0
LRev,t

)

4: else d1 ← DPABE.Decrypt(c1, SK1
ABE,MPK1

ABE, UK
1
LRev,t

)

5: γ
$← Sig.Sign((d0, d1, Si), SKSi

)
6: θ(ω,S),(O,ψ) ← (d0, d1, Si, γ)

7. Verify verifies the signature using the verification key for Si stored in LReg.
If correct, it applies g to each plaintext in θF (X) and compares the results to
the components of the verification key. If either comparison results in a match
(i.e. the server successfully recovered a message), the output token is accept.
Otherwise the result is rejected. If m0 was returned then F (X) = 1 as m0 was
encrypted for the non-complemented inputs; if m1 was returned then F (X) = 0.

Algorithm 7 (y, τF (X))← HPVC.Verify(θF (X), V KF,X ,PP)

1: Parse V KF,X as (g(m0), g(m1), LReg) and θF (X) as (d0, d1, Si, γ)

2: if accept← Sig.Verify((d0, d1, Si), γ, LReg[Si][0]) then
3: if g(m0) = g(d0) then return (y ← 1, τF (X) ← (accept, Si))

4: else if g(m1) = g(d1) then return (y ← 0, τF (X) ← (accept, Si))

5: else return (y ←⊥, τF (X) ← (reject, Si))

6: return (y ←⊥, τF (X) ← (reject,⊥))

8. Revoke first checks whether a sever, Si, should in fact be revoked. If so, it
deletes the list LReg[Si][1] of computations that Si may perform. It also adds Si
to the revocation list, and refreshes the time source. It then generates new update
keys for all non-revoked entities such that non-revoked keys are still functional
in the new time period.

Algorithm 8 UM
$← HPVC.Revoke(τF (X),MK,PP)

1: if (τF (X) 6= (reject, Si)) then return UM ←⊥
2: LReg[Si][1]← {ε}, LRev ← LRev ∪ Si
3: Refresh T, t← T
4: UK0

LRev,t
$← DPABE.KeyUpdate(LRev, t,MSK0

ABE,MPK0
ABE)

5: if (mode =RPVC) or (mode = RPVC-AC) then

6: UK1
LRev,t

$← DPABE.KeyUpdate(LRev, t,MSK1
ABE,MPK1

ABE)

7: for all S′ ∈ UID do
8: Parse EK(O,ψ),S′ as (SK0

ABE, SK
1
ABE, UK

0
LRev,t−1, UK

1
LRev,t−1)

9: EK(O,ψ),S′ ← (SK0
ABE, SK

1
ABE, UK

0
LRev,t

, UK1
LRev,t

)

10: return UM ← {EK(O,ψ),S′}S′∈UID

Theorem 1. Given an IND-sHRSS secure rkDPABE scheme, a one-way func-
tion g, and an EUF-CMA signature scheme, this construction is secure in the
sense of selective public verifiability, and selective semi-static revocation and se-
lective authorised computation.

Full proofs of security can be found in the full, online version of the paper [2].
Informally, to prove selective public verifiability, we show that we can replace
the message encrypted under the non-satisfied function evaluation (i.e. the com-
putation that evaluates to F (x)⊕1) with a randomly chosen message; due to the
IND-CPA-style security of the rkDPABE scheme (implied by the IND-sHRSS
property), an adversary cannot learn anything about a message for which the
decryption policy is not satisfied. In particular, we can (implicitly) replace the
message with the challenge message in an inversion game for the one-way func-
tion g and then the verification token for this message is the challenge input in
that game. We therefore show that breaking the public verifiability of our con-
struction (i.e. returning the message for the wrong computational result) will
allow an adversary to invert the one-way function g.

5 Conclusion

We have introduced a hybrid model of publicly verifiable outsourced computa-
tion to support flexible and dynamic interactions between entities. Entities may
request computations from other users, restrict which entities can perform com-
putations on their behalf, perform computations for other users, and make data
available for queries from other users, all in a verifiable manner.

Our instantiation, built from a novel use of DP-ABE, captures prior models of
PVC [3,20], extends RPVC-AC [1] to the public key setting to allow truly public
delegability and verifiability, and introduces a novel form of ABE-based verifiable
computation in the form of VDC. In follow up work, we have investigated VDC
further with regards to searching on remote databases [4].

ABE was developed to enforce read-only access control policies, and the use
of KP-ABE in PVC was a novel and surprising result [20]. A natural question
to ask is whether other forms of ABE can similarly find use in this context. Our
use of all possible modes of ABE provides an affirmative answer to this question.

DP-ABE has previously attracted relatively little attention, which we believe
to be primarily due to its applications being less obvious than for the single-
policy ABE schemes. Whilst KP- and CP-ABE are generally considered in the
context of cryptographic access control, it is unclear that the policies enforced
by DP-ABE are natural choices for access control. Thus an interesting side-effect
of this work is to show that additional applications for DP-ABE do exist.

References

1. J. Alderman, C. Janson, C. Cid, and J. Crampton. Access control in publicly
verifiable outsourced computation. In Proceedings of the 10th ACM Symposium

on Information, Computer and Communications Security, ASIA CCS ’15, pages
657–662, New York, NY, USA, 2015. ACM.

2. J. Alderman, C. Janson, C. Cid, and J. Crampton. Hybrid publicly verifiable
computation. Cryptology ePrint Archive, Report 2015/320, 2015. http://eprint.
iacr.org/.

3. J. Alderman, C. Janson, C. Cid, and J. Crampton. Revocation in publicly verifiable
outsourced computation. In D. Lin, M. Yung, and J. Zhou, editors, Information
Security and Cryptology, volume 8957 of Lecture Notes in Computer Science, pages
51–71. Springer International Publishing, 2015.

4. J. Alderman, C. Janson, K. M. Martin, and S. L. Renwick. Extended functionality
in verifiable searchable encryption. IACR Cryptology ePrint Archive, 2015:975,
2015.

5. D. Apon, J. Katz, E. Shi, and A. Thiruvengadam. Verifiable oblivious storage. In
H. Krawczyk, editor, Public-Key Cryptography - PKC 2014, volume 8383 of Lecture
Notes in Computer Science, pages 131–148. Springer Berlin Heidelberg, 2014.

6. N. Attrapadung and H. Imai. Attribute-based encryption supporting di-
rect/indirect revocation modes. In M. Parker, editor, Cryptography and Coding,
volume 5921 of Lecture Notes in Computer Science, pages 278–300. Springer Berlin
Heidelberg, 2009.

7. M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk. ADSNARK: nearly practical
and privacy-preserving proofs on authenticated data. In 2015 IEEE Symposium
on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages
271–286. IEEE Computer Society, 2015.

8. M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of computation on
outsourced data. In Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security, CCS ’13, pages 863–874, New York, NY, USA,
2013. ACM.

9. E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. Fast reductions from rams
to delegatable succinct constraint satisfaction problems: Extended abstract. In
Proceedings of the 4th Conference on Innovations in Theoretical Computer Science,
ITCS ’13, pages 401–414, New York, NY, USA, 2013. ACM.

10. S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation
over large datasets. In P. Rogaway, editor, Advances in Cryptology - CRYPTO
2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-
18, 2011. Proceedings, volume 6841 of Lecture Notes in Computer Science, pages
111–131. Springer, 2011.

11. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,
ITCS ’12, pages 326–349, New York, NY, USA, 2012. ACM.

12. D. Catalano, D. Fiore, R. Gennaro, and K. Vamvourellis. Algebraic (trapdoor)
one-way functions and their applications. In TCC, pages 680–699, 2013.

13. S. Choi, J. Katz, R. Kumaresan, and C. Cid. Multi-client non-interactive verifiable
computation. In A. Sahai, editor, Theory of Cryptography, volume 7785 of Lecture
Notes in Computer Science, pages 499–518. Springer Berlin Heidelberg, 2013.

14. K.-M. Chung, Y. Kalai, F.-H. Liu, and R. Raz. Memory delegation. In P. Rogaway,
editor, Advances in Cryptology - CRYPTO 2011, volume 6841 of Lecture Notes in
Computer Science, pages 151–168. Springer Berlin Heidelberg, 2011.

15. D. Fiore and R. Gennaro. Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In T. Yu, G. Danezis, and V. D. Gligor,

http://eprint.iacr.org/
http://eprint.iacr.org/

editors, the ACM Conference on Computer and Communications Security, CCS’12,
Raleigh, NC, USA, October 16-18, 2012, pages 501–512. ACM, 2012.

16. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In T. Rabin, editor, Advances in
Cryptology - CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science,
pages 465–482. Springer Berlin Heidelberg, 2010.

17. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In T. Johansson and P. Q. Nguyen, editors,
Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Athens, Greece,
May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes in Computer Science,
pages 626–645. Springer, 2013.

18. R. Ostrovsky, A. Sahai, and B. Waters. Attribute-based encryption with non-
monotonic access structures. In Proceedings of the 14th ACM Conference on Com-
puter and Communications Security, CCS ’07, pages 195–203, New York, NY, USA,
2007. ACM.

19. C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computation.
In A. Sahai, editor, Theory of Cryptography, volume 7785 of Lecture Notes in
Computer Science, pages 222–242. Springer Berlin Heidelberg, 2013.

20. B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in
public: Verifiable computation from attribute-based encryption. In R. Cramer,
editor, Theory of Cryptography, volume 7194 of Lecture Notes in Computer Science,
pages 422–439. Springer Berlin Heidelberg, 2012.

21. J. Shi, J. Lai, Y. Li, R. H. Deng, and J. Weng. Authorized keyword search on
encrypted data. In M. Kutylowski and J. Vaidya, editors, Computer Security -
ESORICS 2014 - 19th European Symposium on Research in Computer Security,
Wroclaw, Poland, September 7-11, 2014. Proceedings, Part I, volume 8712 of Lec-
ture Notes in Computer Science, pages 419–435. Springer, 2014.

22. J. van den Hooff, M. F. Kaashoek, and N. Zeldovich. Versum: Verifiable computa-
tions over large public logs. In G. Ahn, M. Yung, and N. Li, editors, Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security,
Scottsdale, AZ, USA, November 3-7, 2014, pages 1304–1316. ACM, 2014.

23. B. Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In D. Catalano, N. Fazio, R. Gennaro, and A. Ni-
colosi, editors, Public Key Cryptography - PKC 2011 - 14th International Confer-
ence on Practice and Theory in Public Key Cryptography, Taormina, Italy, March
6-9, 2011. Proceedings, volume 6571 of Lecture Notes in Computer Science, pages
53–70. Springer, 2011.

24. L. F. Zhang and R. Safavi-Naini. Private outsourcing of polynomial evaluation
and matrix multiplication using multilinear maps. In M. Abdalla, C. Nita-Rotaru,
and R. Dahab, editors, Cryptology and Network Security - 12th International Con-
ference, CANS 2013, Paraty, Brazil, November 20-22. 2013. Proceedings, volume
8257 of Lecture Notes in Computer Science, pages 329–348. Springer, 2013.

	Hybrid Publicly Verifiable Computation

