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Constant-Size Dynamic
k-Times Anonymous Authentication

Man Ho Au, Member, IEEE, Willy Susilo, Senior Member, IEEE, Yi Mu, Senior Member, IEEE, Sherman S.M.
Chow Member, IEEE,

Abstract—Dynamic k-times anonymous authentication (k-
TAA) schemes allow members of a group to be authenticated
anonymously by application providers for a bounded number
of times, where application providers can independently and
dynamically grant or revoke access right to members in their own
group. In this paper, we construct a dynamic k-TAA scheme with
space and time complexities of O(log(k)) and a variant in which
the authentication protocol only requires constant time and space
complexities at the cost of O(k)-sized public key. We also describe
some trade-off issues between different system characteristics.

We detail all the zero-knowledge proof-of-knowledge protocols
involved and show that our construction is secure in the random
oracle model under the ¢-Strong Diffie-Hellman assumption and
q-Decisional Diffie-Hellman Inversion assumption. We provide a
proof-of-concept implementation, experiment on its performance
and show that our scheme is practical.

Index Terms—anonymity, applied cryptography, authentica-
tion, implementation, pairings

I. INTRODUCTION

NONYMOUS authentication allows users to show their

membership of a particular group without revealing their
exact identities. Teranishi, Furukawa and Sako [2] proposed a
k-times anonymous authentication (k-TAA) scheme (TFS04)
so that users of a group can access applications anonymously
while application providers (AP’s) can decide the number of
times users can access their applications. To do so, users first
register to the group manager (GM) and each AP announces
independently the allowable number of access to its appli-
cation. A registered user can then authenticate himself to the
AP’s anonymously, up to the allowed number of times. Anyone
can trace a dishonest user who tries to access an application
for more than the allowable number of times.

For higher flexibility, AP’s may wish to select their own
group of users. However, there is no control over who can
access which applications in k-TAA. In dynamic k-TAA,
proposed by Nguyen and Safavi-Naini [3] (NS05), the role
of AP’s is more active and they can select their user groups,
granting and revoking access of registered users independently.

Previous k-TAA schemes such as TSF04 and NSOS5 are quite
efficient in the sense that both time and space complexities are
independent of the total number of users. However, the size
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of AP’s public key and the communication cost between users
and AP’s are both O(k). The computational cost of the user
for an authentication protocol is also O(k).

A. Our Contributions

In this paper, we construct a dynamic k-TAA scheme with
complexity of O(log(k)). We then propose a variant of our
scheme with cost O(1) at the cost of O(k)-sized public key.
The security of our scheme is proven in the random oracle
model under the g-Strong Diffie-Hellman (¢-SDH) assumption
and and g-Decisional Diffie-Hellman Inversion assumption.

Our construction requires a signature scheme with efficient
protocols such as CL signature [4]. As outlined in [5], a short
group signature scheme due to Boneh, Boyen and Shacham [6]
can be modified as a ¢-SDH variant of CL signature. We
supply the details of the modification with the protocols, and
get a new signature scheme which we call BBS+ signature.
We prove that BBS+ signature is strongly-unforgeable in the
standard model under the ¢g-SDH assumption. Besides, the
protocol of showing possession of a signature is different
from [6] in which the modified protocol achieves perfect zero-
knowledge, while the original protocol is only computational
due to the identity-escrow feature. This BBS+ signature is a
building block which can be employed in other settings and
may be of independent interest.

Compared with the conference version [1], we gave the
details of all zero-knowledge proof-of-knowledge (ZKPoK)
used in our system. BBS+ and the ZKPoK we built has been
adopted as a building block for a range of applications.

Most importantly, with these details, we can provide a
formal proof of security of our system, which was not available
before.

Finally, we provide a sample implementation of our con-
struction and experiment on its performance. The result con-
firms our theoretical complexities analysis that our protocol is
practical. The result of this part is done after the publication
of [1].

B. Subsequent Work

The BBS+ signature described in this paper has been used in
various subsequent work on anonymous authentication system
and privacy-enhancing technologies. For example, [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16]. BBS signature [6] has
also been extended or modified in other work. For example,
Yang et al. [12] proposed a re-randomizable (and hence cannot
be strongly unforgeable by definition) variant.



Some of the conceptual building blocks used by our scheme
have also been improved or generalized. For example, Ca-
menisch, Chaabouni and Shelat [17] generalized the signature-
based range proof used by our system. Another pairing-based
accumulator has been proposed in [18]. ZKPoK used by our
systems are all instantiated by using Fiat-Shamir heuristics.
A common-reference string approach of ZKPoK for pairing-
product equations has been proposed by Groth and Sahai [19],
which provides stronger formal security guarantee at the cost
of run-time performance.

Some design principles used in our system have also influ-
enced the design of other kinds of anonymous authentication
systems, such as the notion of real traceable signature [10].
This notion is put forth by Chow [10] which gives an efficient
cryptographic building block for various applications, namely,
transforming an anonymous system to one with “fair privacy”,
a mix-net application where originators of messages can
be opened, and open-bid auctions [20]. The mechanism for
tracing the signatures of malicious users is very efficient.

C. Related Work

Teranishi and Sako [21] (TS06) proposed a k-TAA scheme
with constant proving cost. Our construction can be seen as
an extension of TS06 to dynamic k-TAA in which AP can
control their access group dynamically. This is achieved by
the use of dynamic accumulator as in [3] due to the idea in
[22]. Instead of pseudorandom function (PRF), TS06 uses a
weakened version which they termed as partial pseudorandom
function (PPRF). Nevertheless, our choice of PRF is more
efficient than their PPRF.

As pointed out in [21], k-TAA schemes share certain
similarities with compact e-cash schemes, introduced in [23].
In the latter, a user can only spend (c.f. authenticate) up to
k times to all shops (c.f. application providers) combined;
while for k-TAA, each application provider may choose its
own allowable number of access and the number of accesses
to different applications by a user are not related. For instance,
a user could authenticate himself n; times to one AP and ns
times to another AP, provided that ny and no are less than the
limit imposed by the respective AP. Despite these differences,
similar techniques can be used to build £-TAA and compact
e-cash.

One may view identity-based ring signatures as group
signatures with no anonymity management mechanism, by
treating the key generation center as the group manager.
However, many schemes such as [24] produce signature of
size linear in the number of group members, although the
verification procedure may be efficient. Some schemes such
as [25] do feature constant-size signature sizes. On top of
that, linkability is considered which can be seen as a kind
of anonymity management mechanism. However, the standard
notion of linkable identity-based ring signatures just leads to
2-times anonymous authentication.

Another closely related notion is event-oriented k-times
revocable-iff-linked group signatures (k-RiffLGS), introduced
by Au, Susilo and Yiu [26]. k-RiffLGS is a group signature
scheme such that every user can sign on behalf of the group

anonymously for up to k times per event, represented by a bit
string. No one, not even the group manager, can revoke the
identity of the signer. Signatures of the same user for different
event cannot be linked. If the user signs for more than k times
for any event, his identity can be revoked by everyone. Thus,
every legitimate user can sign on behalf of the group for up
to k times per event and there is no limit for the number
of events. In fact, as mentioned in [26], k-RiffLGS can be
viewed as a non-interactive version of k-TAA. On the other
hand, dynamic k-TAA can be viewed as an interactive version
of k-RiffLGS with revocation.

Other signature schemes with efficient protocol, such as CL
signature [4] and CL+ signature [5], could also be used for
our construction. BBS+ is good in our case for two reasons.

1) Signature size of BBS+ is shorter than CL or CL+ sig-
nature for multi-block messages. Specifically, signature
size of CL+ is linear to number of message blocks to be
signed; while CL and BBS+ are constant size, of length
1346 and 511 bits respectively, for security comparable
to 1024-bit standard RSA signature.

2) The accumulator we will use is secure based on the same
assumption for which security of BBS+ signature also
relies on. On the other hand, the security of CL signature
and CL+ signature is based on Strong RSA assumption
and LRSW assumption respectively.

Organization. The rest of the paper is organized as follows.
Preliminaries are presented in Section II. The framework and
the security notions of dynamic k-TAA are reviewed in Section
ITI. We present our construction in Section IV, followed by its
variants in Section V. We analyze the security and complexity
of our systems in Sections VII and VIII. Details of our sample
implementation and efficiency analysis are given in Section
IX. We conclude our paper and discuss some future research
directions in Section X.

II. PRELIMINARIES
A. Bilinear Pairing

We review the notion of bilinear pairing here. A mapping
€ : G1 x Gy — Gy is a bilinear pairing if
e G and G, are cyclic multiplicative groups of prime order
D.

e g, h are generators of G; and G, respectively.

e P : Go — G is a computable isomorphism from Gs to
G, with ¥(h) = g.

« (Bilinear) Vz € G, y € Go and a, b € Z,, é(z%,y°) =
é(w,y)?.

o (Non-degenerate) é(g,h) # 1.

« (Unique Representation) each element of Gy, Go and G

has unique binary representation.

Gy and G4 can be the same group or different groups. We
say that two groups (G, G3) are a bilinear group pair if the
group action in Gy, Go, the isomorphism 1) and the bilinear
mapping é are all efficiently computable.

B. Mathematical Assumptions

Definition 1 (Decisional Diffie-Hellman): The Decisional
Diffie-Hellman (DDH) problem in G = (g) is defined as



follow: On input a quadruple (g, g%, g%, ¢¢) € G*, output 1
if ¢ = ab and 0 otherwise. We say that the DDH assumption
holds in G if no PPT algorithm has non-negligible advantage
over random guessing in solving the DDH problem in G.

Definition 2 (q-Strong Diffie-Hellman): The ¢-Strong Diffie-
Hellman (¢-SDH) problem in a bilinear group pair (G1,G2)
with trace map ¢ is defined as follow: On input a (¢ + 2)-
tuple (g, h, R, R LB € Gy x GL™ such that there
exists a trace map ¢ from Gy to G; with g = ¥ (h), output a
pair (B, e) such that BOT®) = g where e € Z7. We say that
the ¢-SDH assumption holds in (G1, G2) if no PPT algorithm
has non-negligible advantage in solving the ¢-SDH problem
in (Gq, Go).

The ¢-SDH assumption is shown to be true in the generic
group model [27] even when (G1,G3) is a bilinear group pair
with trace map.

Definition 3 (q-Decisional Diffie-Hellman Inversion): The
g-Decisional Diffie-Hellman Inversion problem (¢g-DDHI) in
prime order group G = (g) is defined as follow: On input
a (q + 2)-tuple g, g%, g, ..., g%, g° € GIt2, output 1 if
¢ = 1/z and 0 otherwise. We say that the ¢-DDHI assumption
holds in G if no PPT algorithm has non-negligible advantage
over random guessing in solving the g-DDHI problem in G.

C. Building Blocks

Signature Scheme. Signature scheme is a basic cryptographic
primitive for message authentication. There are various secu-
rity notions for unforgeability of signatures. A weak notion is
that the set of messages to be signed is known in advance,
even before the generation of the public key. Scheme that is
existentially unforgeable under this setting is called weakly-
secure. On the other hand, strong unforgeability guarantees
that it is difficult to come up with a new signature on a message
m even if the adversary can adaptively get many signatures
on the messages he wants, including one on m. In a variant
of our dynamic k-TAA scheme with constant proving effort,
we employed a weakly-secure short signature by Boneh and
Boyen [27] as in [21]. For the BBS+ signature we are going
to describe, we will show that it is strongly-unforgeable. We
use the notation Sig(m) to denote a signature on the message
m.

Zero-Knowledge Proof of Knowledge. In zero-knowledge
proof of knowledge [28], a prover proves to a verifier that
a statement is true without revealing anything other than the
veracity of the statement. Our construction involves statements
related to knowledge of discrete logarithms constructed over a
cyclic group G of prime order p. These proofs can also be done
non-interactively by incorporating the Fiat-Shamir heuristic
[29]. The non-interactive counterpart is referred to as signature
proof of knowledge, or SPK for short. They are secure in the
random oracle model. Following the notation introduced by
Camenisch and Stadler [30], PoK{(z) : y = ¢®} denotes a
zero-knowledge proof of knowledge protocol between a prover
and a verifier such that the prover knows some = € Z, where
y = ¢g® € G. The corresponding non-interactive signature
proof of knowledge on a message m shall be denoted as
SPK{(x) : y = ¢g*}(m). One can view this as a signature

on the message m signed by a discrete-logarithm based key
pair (g%, ).

Signature with Efficient Protocols. In this paper, a signature
scheme with efficient protocols refers to a signature scheme
with two protocols: (1) a protocol between a signature re-
quester and a signer in which the requester obtains a signature
on (mq,...,myz) from the signer while the signer only gets
a commitment of a multi-block message (mi,...,my) but
learns nothing about all these messages; (2) a protocol for the
proof of the knowledge of a signature with respect to some
multi-block message without revealing any information about
the signature nor the messages. For signature scheme with
efficient protocols, the security notion allows the adversary
to get signatures through the signature generation protocol or
“directly” (by supplying the messages in clear and obtaining
only the final output of the protocol). Details can be found in
[4]. In our construction, we employed BBS+ signature to be
described.

Pseudorandom Function. Another building block of our
construction is a pseudorandom function with efficient proof of
correctness of its output. We employed a particular construc-
tion of PRF due to Dodis and Yampolskiy [31] (DY-PRF).
DY-PREF is defined by a tuple (G,,p, g, s), where G, = (g) is
a cyclic group of prime order p and s is an element in Z,. On
input z, PRF, ;(x) is defined as PRF, ((x) : = g
Efficient proof for correctly formed output (with respect to
s and x in some commitments such as Pedersen commitment
[32]) exists and the output of PRF ; is indistinguishable from
random elements in G, provided that the g-DDHI assumption
holds, see [23] for details.

Accumulator. The dynamic feature of our construction is built
from the dynamic accumulator with one-way domain due to
Nguyen [33] (N-Acc). Roughly speaking, an accumulator is
an algorithm that combines a large set of values {x;} into a
short accumulator V. For each value z; € {z;}, there exists
a witness w; which can prove x is indeed accumulated in
accumulator V. An accumulator is dynamic if it allows values
to be added or deleted dynamically. SPK of a witness is also
described in [33]. N-Acc is a secure dynamic accumulator
under the ¢-SDH assumption, see [33] for details.

III. FRAMEWORK
A. Syntax

We briefly review the model of dynamic k-TAA in [3].
A dynamic k-times anonymous authentication involves three
kinds of entities, namely, group manager (GM), application
providers (AP;) and users (U;). It consists of seven polyno-
mial time algorithms or protocols (GMSetup, Join, APSetup,
GrantAccess, RevokeAccess, Authentication, PublicTrac-
ing). The following enumerates the syntax.

« GMSetup. On input a security parameter 17, the algo-
rithm outputs GM secret key gsk and group public key
gpk. For simplicity of the framework, we assume the
GM is also responsible for the generation of the system
parameter, which is included in gpk. All algorithms below
have gpk as one of their implicit inputs.



« Join. This protocol allows a user U; to join the group and
obtain a membership public/secret key pair (mpk;, msk;)
from GM. GM also adds U;’s identification and member-
ship public key to the membership public key archive. A
user is called a group member if its identification and
membership public key is in the membership public key
archive.

o APSetup. An application provider AP; publishes its
identity and announces the number of times k; that a
user can access its application. The algorithm may also
generates the public and private key (apk;, ask;) of AP;.

« GrantAccess. Each AP; manages its own access group
L; which is initially empty. This procedure allows AP;
to add a user U; to its access group £; and thus grant
him the permission to use its application.

« RevokeAccess. It allows AP to remove a member from
his access group L£; and stop this group member from
accessing his application.

o Authentication. User U; authenticates himself to an
application provider AP; through this protocol. U; is
authenticated only if he is in the access group £; and
the number of accesses have not exceeded the allowed
number k;. AP records the transcripts of authentication
in an authentication log.

« PublicTracing. Anyone can execute this procedure using
public information and the authentication log. The out-
puts are the membership public key of a user U;, GM or
NIL which indicates user “U; tries to access more than the
allowed number of times”, “GM cheated” and “‘there is no
malicious party in this authentication log” respectively.

For correctness, an honest member who is in the access

group and has not authenticated himself for more than the
allowed number of times, must be authenticated by an honest
AP.

B. Security Requirements

We briefly recall security requirements here, for formal
definition please refer to [3], [2].

o D-Detectability. A subset of colluded users cannot per-
form the authentication procedure with the same honest
application provider for more than the allowed number
of times, or they must be detected by the PublicTracing
algorithm.

o D-Anonymity. No collusion of application providers, users
and group manager can distinguish between authentica-
tion executions of two honest group members who are in
the access group of that application provider.

o D-Exculpability. An honest user cannot be proven to have
performed the authentication procedure with the same
honest AP for more than the allowed number of times. It
is also required that the PublicTracing algorithm shall not
output GM if the group manager is honest even though
all application providers and users collude.

IV. OUR CONSTRUCTION

Our dynamic k-TAA is built from the ¢-SDH based accu-
mulator due to Nguyen [33] (N-Acc), the PRF due to Dodis

and Yampolskiy [31] (DY-PRF) and BBS+ signature described
below.

A. Global Common Parameters

Let \ be the security parameter. Let (G, G2) be a bilinear
group pair with computable isomorphism ¢/ as discussed in
Section II-A such that G; = (g), G = (h) and |g| = |h| =p
for some prime p of A bits. Assume G, = (u) is a cyclic
group of order p such that the DDH assumption holds. Let gg
Jo0> 91> 91> - - -» 8L, gr be additional random elements in Gj.
They are required for the construction of the zero-knowledge
proof-of-knowledge protocols. L is the number of messages
in BBS+ signature. In our dynamic k-TAA scheme, L = 2.

The generation of this common parameter can be done by
the GM or by a trusted third party.

B. BBS+ Signature

KeyGen. Choose ;1 €r Z; and compute Z = h*'. The secret
key is p and the public key is Z.

Signing Multi-block Messages. On input (mq, ..., mp) €
Z,", choose e, s €p Z;. Compute ¢ = [g9g597" ... g7 F] .
Signature on (ma,..., mr) is (s, e,5) € (G1 x Z, x Zj).

Signature Verification. To verify a signature (¢, e,s) on a
multi-block message (mq, ..., mr) , check if é(s, Zh®) =
é(ggom™ - 91" h).-

Protocol for Signing Committed Messages. The protocol is
also known as the signature generation protocol. The user first
computes a Pedersen commitment on the multi-block message
to be signed. That is, the user randomly generate s’ € Z,, and
computes C,, = g5 g™ ... g7'". He sends C,, to the signer,

along with the following proof
POKO{(S’,ml, coeomp):Copo=g5 97" ... g}

After verifying PoKo, the signer chooses s”,e €r Zj,

! omy mr }

computes ¢ = [ggg//Cm}ﬁ” and sends (s, e,s”) back to
the user. The user computes s = s’ + s”. The signature
on the multi-block messages is (<, e,s). For any block of
messages (my, ..., my), there exists an s’ such that C,, =
gS/ 91"t ... g7" and thus C,, reveals no information about the
multi-block message signed.

Proof of Knowledge of A Signature on Committed Mes-
sages. We give a zero-knowledge proof of knowledge protocol
for showing possession of a message-signature pair. Using
any protocol for proving relations amongst components of
a discrete-logarithm representation of a group element [34],
it can be used to demonstrate relations among components
of the multi-block message signed. Specifically, let &, =
9607 " ... 97" be a commitment of a multi-block message
(mq, ..., my) with randomness 7, a user who is in posses-
sion of a signature (g, e, s) can conduct the following zero-
knowledge proof-of-knowledge protocol with any verifier.

(§76757m1a"'7mL7r) :
PoK; é(s,Zh®) = é(gg59y™ ... 97 h) A
Cn = go07" .07



Instantiation of PoK; is shown in Section VI-A. We would
like to remark that our instantiation is different from the proto-
col in [6] in which the later is computational zero-knowledge
(under the Decision-Linear Diffie-Hellman assumption) while
ours is perfect zero-knowledge.

Security Analysis. Unforgeability of BBS+ signature is
asserted by the following theorem.

Theorem I: BBS+ signature is strongly unforgeable against
adaptively chosen message attack under the ¢g-SDH assump-
tion.

Proof is deferred to Section VII-A.

C. Overview of Our Construction
We give a high-level description of our construction here.

GMSetup and APSetup. The GM generates the key pair of
BBS+ signature. Each AP publishes a bound £ together with
the public parameters for the accumulator N-Acc and those
for the pseudorandom function DY-PRF.

Join. To join the group, user randomly generates x,t €r Zj,.
A membership public key is (y = u”, e) while the membership
secret key is (z,¢, s,t) such that (, e, s) is a BBS+ signature
from the GM on “message” (x,t). We stress that x,t is
unknown to the GM due to signature generation protocol of
BBS+. The membership public key (y,e) is placed on the
membership public key archive.

GrantAccess and RevokeAccess. To grant access to a
user with membership public key (y, e), the AP adds e into
his accumulator N-Acc and gives the witness w to the user. To
revoke access of the user, AP removes e from the accumulator.
For every GrantAccess, RevokeAccess, all users included
in the access group of that AP have to update their own witness
using the update algorithm from N-Acc.

In the variant of our scheme (to be discussed in the next
section), AP only publishes the access group which is a list
of e’s and let users work with the accumulator themselves.
Consequently, the interactive GrantAccess or RevokeAc-
cess protocols are not required. The drawback is that users
have to perform O(|L|) operations, where |L| is the size of
the list, to compute his own witness.

Authentication. The idea is to have the user to demonstrate
to AP, that he is in possession of a BBS+ signature (g, e, s)
from the GM on values (¢, x), and that e is inside the accumu-
lator of AP;. To restrict the user from authenticating himself
for more than k times, we borrow the idea of double spender
revocation in e-cash system. Specifically, let u; = H(AP;)
be some random element of G,, for some cryptographic hash
function H and n; be the number of times the user has
authenticated with AP;. The user computes a value S =
PRF,; s(n;). S is called a “one-time pass” corresponding
to that authentication. In our construction, S = u;/ (s4n;+1)
The user is required to prove that S is correctly formed
by demonstrating he is in possession of a BBS+ signature
component (s, e, s) and 0 < n; < k. For any AP, a user can
only generate k valid one-time pass.

The user is also required to compute 7’ = u® PRF,,, +(n;)",
where R is a random challenge issued by AP;. T is called

a tracing tag. Specifically, T = uT(qu/ (VR and the

user is required to prove that 7' is correctly formed. Each
authentication is accompanied by a pair of one-time pass and
tracing tag.

In case a user attempts to authenticate more than £ times,
he will have to use repeated one-time pass and will thus be
detected. Since the R values are different, the two tracing tags
accompanying those authentication attempts shall be different.
With different tracing tags, identity of the user who attempt
to authenticate more than k times can be computed.

D. Details of Our Construction

GMSetup. The GM randomly selects p €g Z; and computes
Z = h*. The GM also manages a membership public key
archive which is a list of 3-tuple (U;, y;, e;). The list is initially
empty.

APSetup. AP, publishes his identity (denoted by AP;) and
a number k; which is much smaller than 2*. In addition, AP;
selects hj €r G2, v; €r Z;, and computes u; = H(AP;) €
Gy, for some hash function H and Y; = h;-“ € Go. The public
key and the secret key of AP; are (AP;,k;,h;,u;,Y;) and
«y; respectively. AP, maintains an authentication log and an
access group list £; of 3-tuple. The list is initialized to (L,
L. ¥ (hy)).

Join. User U; obtains his membership public/secret key pair
from GM through the following interactive protocol.

1) U; randomly selects s}, t;,7; €r Z, and sends C" =
95 gii g5 to GM, along with proof

PoKo{ (s, ti, ) : C' = gy' gt 95" }

2) GM verifies the proof and randomly selects s; €g Z;.
He sends s} to the user.

3) User computes and sends s; = s} + s/ mod p, y; = u™
to GM (recall that u is the generator of G,), along with
proof

PoKs{(si,ti, i) t s =u™ A C'gy’ =go'giigs' }

4) GM verifies the proof computes C' = C’ gSH and1 selects
e; €r Z;. He then computes g; = (gC)<+* and
sends (s, e;) to the user. The GM also adds the entry
(U;,y4,€;) to its membership public key archive,

5) U; checks if é(si, Zh®) = é(ggsigiigs, h). He stores
his membership public key and membership secret key
as (yi, €i) and (gi, Si, ti, Z‘l)

GrantAccess. AP, grants access to user U; who has a
public key (y;, e;) in this protocol. Suppose the last entry in £
is (x,%, V;). AP; computes V] as V;ﬁw and sets w; ; = V.
He returns w; ; to U; and appends (e;, ADD, V/) to L. w;
is called a membership witness of U; for AP;. U; can check
its correctness by checking if é(w; j, Y;hi') = é(V}, h).

The following describe how other users update his witness
when the list £; is updated. This is simply a rephrase of the
update algorithm of N-Acc. Specifically, suppose user U; such
that e; is in £; is required to update their membership witness



w; ; and é(w
V}wg’e;_e%) and sets w; ; as wéj.

RevokeAccess. This protocol allows AP; to remove the
access right of user U,;. Suppose the last entry of L, is
(%, %, V;). AP, wishes to remove the access right of U; implies
there exists an entry (e;, ADD,V;) in £; and there is no

entry of the form (e;, REMOVE, ) in the list after that. AP,
1
(V;)=*7i and appends (e;, REMOVE, V}) to

8.7

Y;hi) = é(Vj, hy). U; just computes w =

computes V/ =
L;.

User U; (except U;) such that e; is in L£; is required
to update their membership witness w; j using the update
algorithm of N-Acc. Suppose 1é(w;7j7 thj) = é(Vj, hj), user
(UY—])? and sets w; ; as w} .

3,d s 2,7
Authentication. User U, manages a set of counters {n; ;},
such that n;; is the number of times U; has authenticated
himself to AP;. The protocol below shows how U; authen-
ticates himself to AP;. We assume the membership witness
w; ; of U; for AP, is update, that is, if the last entry of L,
is (%, ‘/;)’ é(wl}jv Y;hjeq) = é(‘/ﬁ h])

o AP, sends a random challenge m to U;. Denote R =
H(m||AP;) such that H is a cryptographic hash function
which maps to Z;. Both parties compute R locally. In
practice, m can also be a random number together with
some information about the current sesgion.

sitng i+

o U; computes one-time pass S = u, " tracing tag
R

U; computes w;] =

j
T = u‘”u;L+” "' and proves in non-interactive zero-
knowledge manner (1) - (5):
1) U; is in possession of a BBS+ signature (s;, e;, ;)
from GM on (¢;, x;).
2) e; is in the accumulator of APj, that is, é(wm-,
Yjh3') = é(Vj, hy).

1
3) Sis PRFy; s, (n;;), thatis, S = u;ﬁ”i,ﬁl'

N | S
tiFng ;+1

4) T is u® PRF,, +(n;)", thatis, T = u®u}
5) 0< N5 < kj
o The above can be abstracted as SPK, whose instantiation
is shown in Section VI-D.

(Cz',67:757:,157:7%7”1‘,]‘,101‘,]') :
~ . ~ i ti Ti
é(si, Zhe) = 6(998191 95 h) A
S = j”"”’“ A
SPK4 T — uxiufﬁﬂﬁ,jﬁ'l A (m)
‘7 .
e(Vi,hy) = é(wi;,Y;h) A
0 < ni A
n; 5 < k‘j

o AP; verifies SPKy is correct. If yes, AP; accepts and
adds (SPKy, S, T, R, m) to its authentication log.
« U; increases its counter, n; ;, by one.

PublicTracing. For two entries (SPK, S, T, R) and (SPK’,
S', T, R, if S # S’, the underlying user of these authen-
tications has not exceed its prescribed usage k; or they are
from different user.

If S =
(%)((R,*R)_l) and outputs the corresponding U, as the
cheating user by looking up for the entry indexed by y; in
the membership public key archive. If y; does not exist, it can
be concluded that GM has deleted some data from the list and
this algorithm outputs GM.

S’, everyone can compute y; = u

Security Analysis. Regarding the security of our dynamic
k-TAA, we have the following theorem whose proof is shown
in Section VII-B.

Theorem 2: Our scheme possesses D-Detectability, D-
Anonymity and D-Exculpability under the k-DDHI assump-
tions in the random oracle model.

V. VARIANTS OF OUR CONSTRUCTION
A. Local Witness Update

We propose a variant of our scheme where the APs do
not need to interact with the users via GrantAccess and
RevokeAccess when the group of users are changed dynam-
ically.

We highlight the changes. In the initialization phase, a
common accumulator is initialized for all AP’s by randomly
selecting ¢ €r Z, and computing ¢; = hoql for ¢ =
1,-- ,tmaz, Where t,,4, is the maximum number of users
in an access group. This procedure can be done by the GM
or a trusted third party.

In APSetup, the AP only needs to publish its identity and
bound k. It also needs to maintain a list of users’ membership
public key of users allowed to access its application. Granting
access and revoking access simply means that the AP change
such a list of users.

Finally, user in the access group have to compute their own
witness as follows. A user with membership public key e;
first retrieves the list of membership public key {e;} of the
AP’s access group. If e; € {e;}, the user accumulates the

. . 1= ey 1)
set {e;} into a value v by computing v = hg *=* .

This quantity could be locally computed by both user and AP
without knowledge of g. The user also computes the witness

w=I{e;31 _
w by hOHkZI"“#( wta) such that vf,?“l) = .
The rest of the protocol follows the original scheme, and

the same SPK (SPK},) is used.

B. Key-Size versus Proving Effort

Motivated by [21], we can construct dynamic k-TAA with
constant proving effort by requiring each AP to publish &
signatures Sig(1),...,Sig(k). In the authentication, instead
of proving 0 < n < k (which is the only part with complexity
O(logk)), the user proves possession of a signature on n
(which can be done in O(1)). This indirectly proves that n
is within the range. The trade-off is that public key size of
the AP is now linear in k, and user colluding with AP can
be untraceable, says the malicious AP can issue Sig(n*) for
some user where n* > k. However, we can trust the AP
would not issue Sig(n) for users because it is against the
interest of the AP. The weakly-secure short signature from
Boneh and Boyen [27] is sufficient for our purpose since



the choice of message is fixed (1 to k). That is, there are
a fixed and polynomial number of messages to be signed and
the security of weakly-secure Boneh-Boyen short signature
guarantees that under this condition the scheme is unforgeable.
The advantage is that the signature is extremely short, only
1 single group element. Our implementation employs this
approach and details can be found in Section VI-E.

VI. DETAILS OF THE ZERO-KNOWLEDGE
PROOF-OF-KNOWLEDGE PROTOCOLS

A. Details of PoK;

To conduct PoKj, the prover first computes 20y = g7'g52,
Ay = ¢gs* for some randomly generated 71,72 Eg Z;. Then
he conducts the following protocol with the verifier.

e (Commitment.) The prover randomly generates p,,

Pras PBis PBas Prs Pmis -+ Pmp> Pes Ps €R 7,
computes T = gfl’n 9/2’7‘2’ T, = que nggﬁz,
Ty = gfrgt™ ...gh"t € Gy and Ty = é(UAp, h) P

(g2, 2) é(g2,h)PPr é(go, )= é(gi, h)Pm ...
é(gr,h)?mr € Gr. The prover sends (Tq, To, T3, Ty4)
to the verifier.

o (Challenge.) The verifier chooses a random challenge
¢ €R Z,, and sends c to prover.

o (Response.) The prover computes z,, = pr, —Cr1, 2r, =
Pr, — CT'2, 23, = pPB, — C€T1, 28, = PB, — C€T2, Zp =

Pr —CTy Zmy = Pmy — CMA, -y Zmyp = Pmy, — CML,
Ze = pe — CE, zg = ps — cs and sends (z,,, 2z, 28, 28,5
Zrs Zmys -+ s Zmps Zes Zs) to verifier.

o (Verify.) The verifier outputs 1 if

T, = A gy
Ty, = A gl g
? Zm Zm
Ty = €50t ...9 "
? (9[27Z) R . ~
T4 = Aiemg,h Zeegg,erlegg,hzﬁl
o o) e 2) (g )
é(go, h)*é(gr, h)*™ ... é(gr, h)*me

and 0 otherwise.
Regarding PoK;, we have the following theorem which is
straightforward and the proof is thus omitted.
Theorem 3: PoK; is an interactive honest-verifier zero-
knowledge proof-of-knowledge protocol with special sound-
ness.

B. Details of PoKs

PoKs can be done using standard proof of representation
of discrete logarithms.
¢ (Commitment.) U; randomly generates sty Tt To; €R

L, computes T = gOs/g1 'go"" € Gy and sends T to
GM

o (Challenge.) GM chooses a random challenge ¢ €g Z;;
and sends c to U,.

o (Response.) U; computes Zgt =Tg) — sty 2, =Ty, — Cty
and 2, = 1y, —cx; € Zyp and sends (247,21, 2z,) to GM.

e (Verify.) GM outputs 1 if T = C’ngségf“g;” and 0
otherwise.

C. Details of PoKs

PoKs can be done using standard proof of representation
of discrete logarithms together with equality of discrete loga-
rithms.

o (Commitment.) U; randomly generates 7s,, 7t,, 7z, €R
Zy, computes T1 = u" € G, and Ty = 907 g1 gyt €
G; and sends (%1,%5) to GM.

o (Challenge.) GM chooses a random challenge ¢ €g Z,
and sends ¢ to U,.

o (Response.) U; computes zs, = s, — CS;, 2, = Tt, — Cl;
and z,, = ry, —cx; € Z,, and sends (zs,;,2,, 22,) to GM.

o (Verify) GM outputs 1if T, = !

Cu**s and To =
, s o Zs; y 2
(C'95" )90 ’91 92 ; and 0 otherwise.

D. Details of SPK,

To conduct SPK,, U; computes 2y = g7 gh", As = g7°g57,
As = ol*, Ay = wi gt As = g7 gh® for some
randomly generated p1, p2, p3, pa, p5s €r Zy,. Next, U; sends
Aq, %o, A3, Ay, A5 to AP; and computes the following two

SPKs.

( €3y Sivtis Tis i j P15 P25 P35 P4, P5 ) .
B1, B2, B3, B4, Bs, Be, Br, Bs '
A, = gi'gh A
Ay = g7’y A
As = g, g5 A
1 = 91 Psgﬁlgﬁ2 A
1 = Q‘l l>4gﬁsg A
1 = Ajtighgle A
SPK44 1 = le ni Jg?7g2 A
WD) = o(go, h)é(g, h)"
é(g2, h)* é(gm Z)’”
- (g, h)Prée(As, h)= A
vy~ (2[4, ) “é(gn, h‘)ﬁ3
ws (Sgl’ ]) * A
Té = S%iSmiig A
UTJ wu—Bsq BTy Tt TG

SPKis { (n10p5) 25 = g7 A0 < iy < by )
Instantiation of SPKyp is a simple range proof and is dis-
cussed in Section VI-E. Below we show how to instantiate

SPK 4.

e (Commitment.) U; randomly generates re,, 7s,, Tt Tz;»
Tnij> Tpis Tpas Tpz> Tpss Tpss TB1s TBas 7“,@3, T'B4» 7;‘55’
T8gs 7“57, 7ss €r Z, and computes T o= g8,
To= 0,70y T =g, 0y, T = r”f‘gi‘“ 927,
35 _ Q[;Tp4g713392 56 — lerf 97"559 rs _

.
2 ’J971B7£12B8 in Gi1, Ts = ¢é(go, h)"™ (gl,h) b
é(ga, h)=i é(g1, Z)"s é(gn, )"1 e(RAz, h) e, Ty =
é( “Tei é(g1,h;)"%s é(g1,Y;) s in Gp and 1o =
s T = w s BT T T ™G i Gy,

= (11,...7‘3:11).

e



o (Challenge.) U; computes challenge ¢ =
using a cryptographic hash function H.

o (Response.) U; computes, in Zy, ze, = Te, — C€;, Zs;, =
Ts; = CSiy Zt; = Tty — Cliy Zp; = Ty — CTiy 2y ; = Ty
CNi,j» Zpy = Tpy = CPL> Zpy = Tpp = CP2, Zpy = Tpy — CP3,
Zps = Tpy = CP4s Zps = Tps — CPs, 28, = T3y — CP3E4,
2By = TRy —CP3P1s 283 = T3 —CP4€4, 23, = T'p, —CP4PI,

H{(ml|AP;|[%)

25 = Tps —CTiti, 255 = T —CP2lis 2, = g, —CTiNG 5,
285 = 1Tgg — CP2anij. Uy Sets 3 = (Ze;s Zs;s 281> Zays Zny s
Zp1s Rpas Bpss Rpas RBpss ZP1s ZBas ZB3s B> ZBs> ZPe> FPr>
285)-

e (Output.) U; outputs (c,3) as SPKy4.
o (Verify.) Upon receiving SPK, 4 := (¢, 3), AP, computes
the following.

Ty = Afg; "0y
T2 = R
= Ao, 0y
P=2A Z"f‘gz‘“g
F=2A g gy
To =2y g, g
P, g ey

é Ql[ 7Z Cch z pa z - Zx
3 = (L2 D a0, g, g )
é(ghZ)Zpgé(glvh)zmé(m?nh)_zei
e(Ag,Yj) o 2
T = S e, ) el ), ;)
0= [gj]cszs’szn”
ukt
/11 — [?J]cufz[gsufzmufzzi T?t: Tz"i,j
Set T = (T},...,T,,). Output 1 if ¢ = H(m)||AP,||T’)

and 0 otherw1se

E. Range Proof of SPK,

Exact Range Proof. Secure and efficient exact proof of range
is possible in groups of unknown order under factorization
assumption [35]. However, observe that the range proof re-
quired in our authentication protocol is always of the form of
0 <n < k. If we set k = 2%, a simple range proof of order
O(k) can be constructed easily.

For the ease of presentation, we let ¢, = ggg] be a
commitment of n and the goal is the following zero-knowledge
proof-of-knowledge.

PoKrance{ (n,7) : €, = gfgi A0 < n <27}

We show the non-interactive version here for two reasons.
Firstly, it is more space-efficient. Secondly, it is compatible
with our protocol in which the non-interactive version (signa-
ture of knowledge) is used.

The prover do the following. Let n[¢] be the ¢-th bit of
n such that ¢ starts from 0. For £ = 0 to x — 1, compute
¢, = g7y such that r, e Z;.

Conduct the following two SPK’s.

(n,r,a):
SPKs54 < = 989714 A (m)
k—1 @22 _ n. o
=0 C = 8192
(7‘0,...77“,.%_1)5 )
SPKsp K—1 & = g;’f V (m)
- /g = 8y

We describe SPK 4 first, which can be done using standard
proof of representation of discrete logarithms together with
equality of discrete logarithms.
¢ (Commitment.) The prover randomly generates p,, pr,
pa €r G, and computes T; = g5 gl", T = gi"gh".
Set T = (gl,gz).

e (Challenge.) The prover computes challenge ¢ =
H(m||%) using a cryptographic hash function H.

o (Response.) The prover computes z, = p, — cn, 2, =
pr—cr and zy = po — ¢Sy 27 € Z,, and sets 3 as
(Zns Zrs Za)-

o (Output.) The prover outputs (c,3) as SPKs 4.

o (Verify.) The verifier computes ¥} = €% gi"g7" and T, =
(TI=y €2)° gi"gi~. The verifier sets T = (T}, T5)
and outputs 1 if ¢ ZH H(m||%') and 0 otherwise.

SPK;55 is constructed using techniques of conjunction of
disjunction of discrete logarithms.

e (Commitment.) For £ = 0 to x — 1, randomly picks

Co1—nll]s Zryl-nll]s Prong EZR Z, and computes
_ [ Ce,1—nle) T0,1—nle] o
‘zé,l—n[l] = (gi—ft[e]) 92 and T@,n[é] =
Py nie)
9 .For{=0tok—1,set Ty = (%po0,%e1)-

o (Challenge.) For £ = 0 to x — 1, the prover computes
challenge ¢, = H(m||%,) using a cryptographic hash

function H.
o (Response.) For { = 0 to k — 1, the prover com-
putes confg = C¢ — Ce1—nlg- The prover computes

K—1
Zren[l] = Pren[e] *fz,n[e]w- Sets ¢ = (Ce,o,Cz,l)ZZO
3= (ng,Ov Zrz,1)£:0 .

e (Output.) The prover outputs (3,¢) as SPKsp.

. (Verify) For ¢/ = 0 to k — 1, verifier computes T@,o =
€, 0gy " and T) | = € g Set T = (T}, T),).
Output lifepo+cepn = (mH‘IE) forall/ =0tox—1
and 0 otherwise.

The two SPK’s consists of (4x + 4) elements in Z,, and
k @¢’s in Gy. In our protocol, total size of the range proof is
(44 4k) * 170 4+ K * 171 bits.

Signature-Based Proof. The idea has been described in
Section V. While not exactly a range proof, it suffices for all
our purpose. Let ¢ € Z,, be a secret value of an AP, and I = h*
be a public value. Spemﬁcally, a weakly-secure Boneh -Boyen
short signature[27] Sig(n) on n is Sig(n) = g'+" . Note
that each (Sig(n),n) pair satisfies é(Sig(n), Ih™) = é(g, h).
The AP also publishes Sig(1), ..., Sig(k) as public parameter.
Then, SPK,5 can be instantiated as SPK5¢

and



(n,r,Sig(n)) :
SPK5C Q[E) = 9391
é(Sig(n), Ih") é(g,h)

To conduct SPKj5¢, the prover first computes 2 = g7 952,
27 = Sig(n)gy' for some randomly generated 71,72 €r Z,.

¢ (Commitment.) The prover randomly generates p,,, pr,,
Prs PBis PP Pr Er L5, computes Ty = gi"'gh?,
T, = Qlﬁ—pn PB1 /)52 , T3 = é(m,?’h)_pn é(9271)p7‘1
é(ge, h)Per € GT and T4 = gi"gh. The prover sets
T = (T1, T2, T3, Ty).

o (Challenge.) The prover

o (Response.) The prover computes z,, = pr, —Cri, 2r, =
Pro — CT'2, 28, = Pg, — CNT1, 28, = PB, — CNT2, Zp =
pr —cr, zn = pp —cn and sets 3 = (2, Zrys 28,5 28,
Zry Zn)-

o (Output.) The prover outputs (c,3) as SPKsc.

o (Verify.) Upon receiving SPKsc := (¢, 3), verifier com-
putes the following.

A (m)

computes challenge ¢ =

Z'r‘

! c #ry 2
T =2U50,"9

’ Zy Zﬁl ZB2
Ty =A""91"9,

/ é(Ql'T?I) ca —2Zn A Zpa A z
= - n I I B
(53 [ A(g,h) ] 6(9[77h) 6(927 ) 16(927h) 1
T = A507" 95"
Set T = (T}, ..., T,). Output 1 if ¢ = H(m||T’) and 0
otherwise.

VII. SECURITY ANALYSIS
A. Analysis of BBS+

Capabilities of the Forger. F is allowed to issue two types
of signing query, namely, normal signing and signing through
the signature generation protocol. F is a successful forger if,
after issuing ¢ signature queries in total, it can output ¢ + 1
valid and distinct message-signature pairs.

Simulation and Reduction. Assume there exists a forger F
which could forge a BBS+ signature under adaptively chosen
message attack. Suppose it makes ¢ signature queries. We
construct a simulator S which solves the ¢-SDH problem in a
bilinear group pair.

S is given an instance of the ¢-SDH problem (¢’, b/, h'#,
..., /") and its goal is to output a pair (A’,e’) such that
A'®tr = ¢/ This pair satisfies (A’ h'® h'*) = é(¢',1'). S
first randomly chooses, for ¢ = 1 to ¢ — 1, e; € R Z* and
denotes the ¢ — 1 degree polynomial f(z) = [, 'z + €;).
§ also randomly chooses €, k*, a* €g Z;, and computes h =

WIW, 7 = hit = W) and by = BT Next S
randomly chooses ju; €x Z7 and sets h; = hy’ for j =1 to
L. Finally, S computes g = ¢ (h) and g; = ¢(h;) for j =0
to L and gives (h,Z, go,...,gr) to F as the public key of
the BBS+ signature.

F is allowed to issue up to g signature queries. If it is
a signing query through the signature generation protocol,

S needs to rewind F during execution of POK; to obtain
the multi-block message committed. Then each signing query
through the signature generation protocol can be handled in
the same way as the normal signing query. Due to the need
of rewinding, BBS+ signature generation protocol cannot be
run in parallel. Below we only describe how normal signing
query is handled.

For the i-th query, denote the multi-block message to be
signed as (mgq 4, ..., my, ;) such that ¢; < L. For each query,
S computes M; = Zﬁ;l M il

Out of these ¢ queries, S randomly chooses one, called
query * which shall be handled differently. For the other ¢ — 1
queries, S randomly picks s; €g Z7, computes S; = s; + M;

1
and ¢; = (ggos"’) eiti Note that

Si = gggi
_ ( (e* +u)k +a* —1)e L
= (g/(efi(jrlft) ) az:l (gl f(ﬂgii*:—“) )k*

and is computable by S even though p is unknown since (e; +

w) divides f(u) and (e* + p)( ef (J‘:L) is a degree ¢ polynomial.

S returns (g;, e;, 8;) as the answer of the i-th signature query.

For query %, S computes s* = a* — M, and returns
(g"",e*,s*) as the answer. Note that
R .
(9" ) ™" = gg5
= 996
* M.
=99 90
s* M1 « Mg, *
=995 91 -9y,

and thus (¢*",e*, s*) is a valid signature.

Finally, F outputs ¢ + 1 message-signature pairs. At least
one of them is different from the ¢ message-signature pairs
obtained during the signing query phase.

Let this signature- message pair be (¢
m},). Denote S’ = s +ZJ TR

There are three possibilities.

o CaseI[e¢ ¢ {e;,e*}]:

e, ), (my, ...,

gle +uo ggS

*_g'  (e*4uk*Ss’
JOt = g g e

Since € ¢ {e;,e*}, (¢/ + p) does not divide f(u)
(respectively f(u)(p—+e*)) and S computes a g— 2 (resp.
g—1) degree polynomial (1) (resp. @*(u)) and constant
Q (resp. Q) such that f(p) = Q(u)(p +€') + Q (resp.
f)(p+e*) = Q" (u)(p + €') + Q). Thus,

g/ — (g/%ﬁ)Q(H)"F%(g/M)Q*(H)J’_%
1)

g = (¢ (g"W) %%

Thus, (g'ﬁ,e’ ) is the solution the to ¢-SDH problem.

e Case II: [¢/ = e; and ¢’ = ¢]: This happens with
negligible probability unless F solves the relative discrete
logarithm amongst two of the h;’s.

( Q” (u)) )Q+Q*



o Case IIl: [¢/ € {e;,e*} and ¢’ # ¢]: With probability,
1/q, ¢’ = e*.

re* 4+ S’
¢¢ T =gg5

* ) k* S a* — 8!
§/€*+M :gwa—*a

, K*s! a*_s’
g =g a* g(€*+u)a*
Since (e* + u) does not divide f(u), S computes g — 2
degree polynomial () and constant @) such that f(u) =
(e" +u)Q(p) + Q. Thus,
* gl Q a*_g’

o = g (A

_k*s!  S'—aq* L

g/wrle* = (g/g ]Z* g o )Q
Thus, (g/ﬁ,e’ ) is the solution the to g-SDH problem.

If the success probability of F is e, then in the worst case,
success probability of S is €/q.

B. Analysis of Our k-TAA

D-Detectability. Let .A be an adversary who executes f Join
protocol with simulator S acting as the GM. Let Epok, , Epoks,
be extractors of the POKy and PoKj respectively. For each
join request, S acts exactly as an honest GM would, except
during step 3, where S runs the extractor Epok, to extract
the values (s,t,z). From the value s, S compute the tuple
w; = (S1,...,8k,s,t,x) such that S; = u(l)/(JAP+S+1) for
i=1,...,k Let Af = {Si7]‘|1 <1< f,l <5< k} after f
executions of the Join protocol.

Since the protocol is done non-interactively, S is given
control over the random oracle in addition to the black-
box access to A. Moreover, such extraction requires rewind
simulation and thus the Join protocol cannot be executed
concurrently.

For each AP, let u; = H(AP;) = uy’ for some randomly
chosen r;. Due to the soundness of the underlying SPK, Ay,
together with the set {r;} contains all valid one-time pass S
that .4 can produce, except with negligible probability. For .A
to break D-Detectability, one of the following two happens.
(1) A convinces an honest AP to accept a one-time pass S
for which it cannot generate an honest proof of validity with
some non-negligible probability. (2) A uses duplicated .S but
public tracing does not output the identity of the user within
the f Join protocol.

Consider case (1) such that A convinces an honest AP to
accept an invalid one-time pass S during the authentication
protocol. Then A must have conducted a false proof as part
of the signature of knowledge such that one of the following
is fake:

D) <t = ggigigs

2) wje_+'yj =V

3) S = u1/("j+3+1)

4) T = uguR/(”_7+t+1)

Item 1 happens with negligible probability under the g¢-
SDH assumption, as violating item 1 implies breaking the
unforgeability of the BBS+ signature discussed above. Item

2 happens with negligible probability under the assumption
that the accumulator is secure[33] (also relied on ¢-SDH
assumption). Item 3,4 happen with negligible probability under
the DL assumption (which will be subsumed by the k-DDHI
assumption in the theorem). Item 5 happens with negligible
probability if the proof-of-knowledge of committed number
lies in an exact interval exists. For instance, [35] proposes such
a zero-knowledge proof under the factorization assumption. If
technique of [35] is used, in the setup procedure, a group of
unknown order have to be chosen during set up. On the other
hand, if we set k = 2%, then we can use the protocol outlined
in Section VI-E. We omit the details of exact range proof
in the protocol for simplicity. To conclude, the total success
probability of A in case 1 is negligible.

Consider case (2), it has already been proved in case (1)
that .4 cannot have an honest AP to accept an invalid .S with
non-negligible probability. Since .4 must use valid one-time
pass .S, to authenticated more than k times for the same AP,
it must uses duplicated S. Let (S, SPK7) and (S, SPK>) be
the transcript of authentication for which an honest AP (AF;)
accept a duplicated one-time pass S such that S/7i e Ag.
Since the AP is honest, R; # R with high probability. We are
to show that 7} = ugufl/("ﬁtﬂ) and Ty = u?jufz (nj+i+1)
so that identity of the cheater could be recovered from the
PublicTracing algorithm.

Since R, Ro are chosen by the honest AP, this uniquely
fixes 71, 15 as the only valid tracing tags to accompany
the duplicated one-time pass S in these two authentications.
To deviate from these S and 7, A must conduct fake
proof of validity of the authentication protocol which we
already shown to happen with only negligible probability.
Thus, PublicTracing output the identity of the cheater without
overwhelming probability.

During the course of the running of A4, it is allowed to query
several oracles. We outline how S simulates these oracles. The
join oracle is simulated by invoking the signing oracle of the
BBS+ signature (S needs to extract the multi-block message
from the commitment and this makes the join procedure non-
concurrent). Authentication oracle is simulated by randomly
generating s,t,x,n;, backpatching the random oracle and
simulating the signature of knowledge of the authentication
procedure.

D-Anonymity. The adversary A, colluding with the GM and

all AP’s, creates the global system parameters. Finally, 4 will

be asked to engage in a legal number of authentication protocol

with some real user j or simulator S.

For each authentication procedure, S simulates as follow.

o S is given seed and compute R = H(seed).

o S random chooses s, ¢,z and arandom n; € {1,...,k}
and compute S = u;/("ﬁsﬂ), T = uﬁuf”"ﬁtﬂ),

o S simulates a proof of ¢,w,e,s,t, x,n; such that (1)
geer, — ggggig%’ (2) ,weJr'yj — ’Vj’ (3) S = u;/(”j"l‘s"l‘l)’
@ T =ugul/ "D (5) 0 <ny < k.

¢ The proof of item (3), (4), (5) are real while (1) is handled
by the simulator for a proof of knowledge of a BBS+
signature and (2) is handled by the simulator for a proof
of knowledge of the accumulator.



We now explain why the output of S is computationally
indistinguishable from the output of a real user. The idea is
that during the Join protocol A learn nothing about the set
of secrets of (s,t,x) of the real user, due to the security of
the BBS+ signature. Thus, the values (s, ¢, x) chosen by S is
indistinguishable from those chosen by real users. Due to the
security of the PRF [31], S and T are indistinguishable from
randomly elements under the k-DDHI assumption. Thus, A
can distinguish a real user and a simulator only if it could
distinguish a real proof or a simulated proof of the BBS+
signature, or it could break the security of the PRF. The
probability is negligible under k-DDHI assumption.

D-Exculpability. = D-Exculpability for the GM is quite
straightforward to show. Suppose the GM is honest
but PublicTracing on input two authentication transcripts
(S,R1,SPKy), (S, Ry, SPK3) outputs an entry not exists
in the identification list, then someone have been able to
fake the proof of knowledge either in the Join protocol or
in the authentication protocol, which happen with negligible
probability. Proof of D-Exculpability for honest user is also
quite straightforward. The proof of knowledge of T in the
authentication protocol involve the user secret x. To slander
an honest user, adversary without knowledge of user secret x
have to fake the knowledge of 7" which involve knowledge of
z to base ug. This happens with negligible probability.

VIII. COMPLEXITY ANALYSIS

We analyze the efficiency of our system in terms of both
time and communication complexities. Both complexities are
not dependent on the number of users and APs but on the
number of allowable accesses k (in different manner, accord-
ing to how range proof in authentication is implemented).
In the system with constant size public key, both time and
communication complexities are logarithmic in &k (log(k)).
For the variant described in Section V-B, the complexities are
constant (O(1)); however, the space complexity of an AP’s
public key is O(k) (and the time complexity is also O(k)).

In the analysis here, we focus on the variant of our system
described in Section V-B since it is more efficient in terms of
communication cost. In particular, an authentication protocol
consists of a one-time pass S, a tracing tag 7', a random
challenge m and a proof-of-correctness SPKy. Assume m is
also an element in Z;, the total communication cost consists
of 2 elements in G, 7 elements in G; and 24 elements in Z,,.

For time complexity, we count the number of multi-
exponentiations (multi-EXP’s) in various groups and the num-
ber of pairings. Operations such as hashing, element negation
or addition are neglected as they take insignificant time
compared with multi-EXP or pairing. A multi-EXP computes
the product of exponentiations faster than performing the
exponentiations separately. For our usage, we assume one
multi-EXP operation multiplies up to 3 exponentiations. In
fact, our experimental result confirms that a multi-EXP with
3 different bases is almost as fast as a single exponentiation.

For computation, user is required to compute 16 multi-
EXP’s in Gy, 2 multi-EXP’s in G, 4 multi-EXP’s in G and 3
pairings. We would like to stress that a large part of the user’s

work can be pre-computed. In fact, out of the above operations,
only 2 multi-EXP in G,, should be computed online. We shall
see in the experiment result that online computation for user
is very efficient.

On the other hand, AP is required to compute 9 multi-EXP’s
in G, 2 multi-EXP’s in G, 2 multi-EXP’s in G, 7 multi-
EXP’s in G and 3 pairings. However, they cannot be pre-
computed, since they are dependent on the choice of the user.

IX. EXPERIMENTAL RESULTS

The test machine is a Dell GX620 with an Intel Pentium-4
3.0 GHz CPU and 2GB RAM running Windows XP Profes-
sional SP2 as the host. We used Sun xVM VirtualBox 2.0.0
to emulate a guest machine of 1GB RAM running Ubuntu
7.04. Our implementation is written in C and relies on the
Pairing-Based Cryptography (PBC) library (version 0.4.18) for
the underlying elliptic-curve group and pairing operations.

We chose the type D pairing bundled with the PBC library.
Specifically, p is of size 181-bit. An element in Z,, G, can
be represented by 24 and 25 bytes respectively. As for G,
we have two choices. We could take G, as G; if we assume
DDH problem is difficult in G;. Such a assumption is formally
called the external Diffie-Hellman (XDH) assumption, which
implies there is no efficient mapping from G to Ga. On the
other hand, we could take G, as G and in this case no extra
assumption is needed. We implemented both solutions. In both
cases, experimental results show that 1 pairing operation takes
roughly 6 ms on our test machine. A single base exponentia-
tion (respectively 3-base exponentiation) in G; takes 2.32ms
(resp. 2.36ms).

When we take G, to be Gy, it takes 89 ms and 4 ms
for the user to complete the offline and online computation
respectively. It takes 72 ms for the application provider to
complete the protocol. Timing figures are similar when we
do not make the XDH assumption. For instance, it takes 93
ms and 4 ms for the user to complete the offline and online
computation respectively. For the application provider, it takes
70 ms to complete the protocol.

The main difference between the two implementations is
the bandwidth requirement. With XDH assumption made, the
total bandwidth required is 777 bytes; while it becomes 1015
bytes without such an assumption. The reason is that 144 bytes
is required to represent an element in Gr.

The public key size of the APs is the only quantity that
is linear in k in our system, which involves k& weakly-secure
Boneh-Boyen short signature, 25 bytes each. In addition, it
takes roughly 3 ms for the AP to generate one such signature.
Thus, for moderate k, the public key size of the AP and
the parameter generation time, while linear in k, are more
acceptable than one may expect.

X. CONCLUSION AND RESEARCH DIRECTIONS

It has been suggested that anonymous authentication sys-
tems like k-TAA systems [3], [2], [21] are suitable crypto-
graphic primitives for secure applications with privacy concern
like e-voting [36]. In this paper, we constructed a constant-size
dynamic k-TAA scheme, which solved the open problem left



in [37]. We also provided a proof-of-concept implementation
and analyzed its efficiency. Finally, BBS+ signature derived
as a building block of our system could be useful for other
cryptographic systems.

Our dynamic k-TAA system requires constant proving ef-
fort but linear-size AP public keys. One technical challenge
remains to be solved is to design a dynamic k-TAA scheme
with constant complexities for all parameters.

The dynamic feature of our scheme relies on the use of
dynamic accumulator, but in order to prove useful relationship
between the accumulated value, the signature, and the pseudo-
random function, etc., we take an accumulator which requires
either a secret or a long public parameter (increases linearly
with the size of the membership) for the dynamic update. A
real dynamic accumulator which we can prove things about,
without the need of a secret or a long parameter, will be a
useful cryptographic construct.

Our construction is built from specific building blocks. It
will be nice to have a generic construction of dynamic k-TAA,
perhaps borrowing the generic design of traceable signatures
in [38].

Similar to the discussions in [26] and [25], authentication
schemes can be classified according to their revocability level
(unrevocable, revocable-iff-linked, revocable) and anonymity
level (fully anonymous, escrowed-linkable [25], publicly link-
able). It is also interesting is to identify practical application
for authentication scheme with a “nice” level of privacy.
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