9 research outputs found

    Brief Announcement: Persistent Software Combining

    Get PDF
    We study the performance power of software combining in designing recoverable algorithms and data structures. We present two recoverable synchronization protocols, one blocking and another wait-free, which illustrate how to use software combining to achieve both low persistence and synchronization cost. Our experiments show that these protocols outperform by far state-of-the-art recoverable universal constructions and transactional memory systems. We built recoverable queues and stacks, based on these protocols, that exhibit much better performance than previous such implementations

    Optimization of thread affinity and memory affinity for remote core locking synchronization in multithreaded programs for multicore computer systems

    Get PDF
    This paper proposes the algorithms for optimization of Remote Core Locking (RCL) synchronization method in multithreaded programs. The algorithm of initialization of RCL-locks and the algorithms for threads affinity optimization are developed. The algorithms consider the structures of hierarchical computer systems and non-uniform memory access (NUMA) to minimize execution time of RCL-programs. The experimental results on multi-core computer systems represented in the paper shows the reduction of RCL-programs execution time

    The Power of Choice in Priority Scheduling

    Full text link
    Consider the following random process: we are given nn queues, into which elements of increasing labels are inserted uniformly at random. To remove an element, we pick two queues at random, and remove the element of lower label (higher priority) among the two. The cost of a removal is the rank of the label removed, among labels still present in any of the queues, that is, the distance from the optimal choice at each step. Variants of this strategy are prevalent in state-of-the-art concurrent priority queue implementations. Nonetheless, it is not known whether such implementations provide any rank guarantees, even in a sequential model. We answer this question, showing that this strategy provides surprisingly strong guarantees: Although the single-choice process, where we always insert and remove from a single randomly chosen queue, has degrading cost, going to infinity as we increase the number of steps, in the two choice process, the expected rank of a removed element is O(n)O( n ) while the expected worst-case cost is O(nlogn)O( n \log n ). These bounds are tight, and hold irrespective of the number of steps for which we run the process. The argument is based on a new technical connection between "heavily loaded" balls-into-bins processes and priority scheduling. Our analytic results inspire a new concurrent priority queue implementation, which improves upon the state of the art in terms of practical performance

    Parallel Working-Set Search Structures

    Full text link
    In this paper we present two versions of a parallel working-set map on p processors that supports searches, insertions and deletions. In both versions, the total work of all operations when the map has size at least p is bounded by the working-set bound, i.e., the cost of an item depends on how recently it was accessed (for some linearization): accessing an item in the map with recency r takes O(1+log r) work. In the simpler version each map operation has O((log p)^2+log n) span (where n is the maximum size of the map). In the pipelined version each map operation on an item with recency r has O((log p)^2+log r) span. (Operations in parallel may have overlapping span; span is additive only for operations in sequence.) Both data structures are designed to be used by a dynamic multithreading parallel program that at each step executes a unit-time instruction or makes a data structure call. To achieve the stated bounds, the pipelined data structure requires a weak-priority scheduler, which supports a limited form of 2-level prioritization. At the end we explain how the results translate to practical implementations using work-stealing schedulers. To the best of our knowledge, this is the first parallel implementation of a self-adjusting search structure where the cost of an operation adapts to the access sequence. A corollary of the working-set bound is that it achieves work static optimality: the total work is bounded by the access costs in an optimal static search tree.Comment: Authors' version of a paper accepted to SPAA 201

    Highly-Efficient Persistent FIFO Queues

    Full text link
    In this paper, we study the question whether techniques employed, in a conventional system, by state-of-the-art concurrent algorithms to avoid contended hot spots are still efficient for recoverable computing in settings with Non-Volatile Memory (NVM). We focus on concurrent FIFO queues that have two end-points, head and tail, which are highly contended. We present a persistent FIFO queue implementation that performs a pair of persistence instructions per operation (enqueue or dequeue). The algorithm achieves to perform these instructions on variables of low contention by employing Fetch&Increment and using the state-of-the-art queue implementation by Afek and Morrison (PPoPP'13). These result in performance that is up to 2x faster than state-of-the-art persistent FIFO queue implementations

    Monotonically relaxing concurrent data-structure semantics for performance: An efficient 2D design framework

    Full text link
    There has been a significant amount of work in the literature proposing semantic relaxation of concurrent data structures for improving scalability and performance. By relaxing the semantics of a data structure, a bigger design space, that allows weaker synchronization and more useful parallelism, is unveiled. Investigating new data structure designs, capable of trading semantics for achieving better performance in a monotonic way, is a major challenge in the area. We algorithmically address this challenge in this paper. We present an efficient, lock-free, concurrent data structure design framework for out-of-order semantic relaxation. Our framework introduces a new two dimensional algorithmic design, that uses multiple instances of a given data structure. The first dimension of our design is the number of data structure instances operations are spread to, in order to benefit from parallelism through disjoint memory access. The second dimension is the number of consecutive operations that try to use the same data structure instance in order to benefit from data locality. Our design can flexibly explore this two-dimensional space to achieve the property of monotonically relaxing concurrent data structure semantics for achieving better throughput performance within a tight deterministic relaxation bound, as we prove in the paper. We show how our framework can instantiate lock-free out-of-order queues, stacks, counters and dequeues. We provide implementations of these relaxed data structures and evaluate their performance and behaviour on two parallel architectures. Experimental evaluation shows that our two-dimensional data structures significantly outperform the respected previous proposed ones with respect to scalability and throughput performance. Moreover, their throughput increases monotonically as relaxation increases

    Efficient Communication and Synchronization on Manycore Processors

    Get PDF
    The increased number of cores integrated on a chip has brought about a number of challenges. Concerns about the scalability of cache coherence protocols have urged both researchers and practitioners to explore alternative programming models, where cache coherence is not a given. Message passing, traditionally used in distributed systems, has surfaced as an appealing alternative to shared memory, commonly used in multiprocessor systems. In this thesis, we study how basic communication and synchronization primitives on manycore processors can be improved, with an accent on taking advantage of message passing. We do this in two different contexts: (i) message passing is the only means of communication and (ii) it coexists with traditional cache-coherent shared memory. In the first part of the thesis, we analytically and experimentally study collective communication on a message-passing manycore processor. First, we devise broadcast algorithms for the Intel SCC, an experimental manycore platform without coherent caches. Our ideas are captured by OC-Bcast (on-chip broadcast), a tree-based broadcast algorithm. Two versions of OC-Bcast are presented: One for synchronous communication, suitable for use in high-performance libraries implementing the Message Passing Interface (MPI), and another for asynchronous communication, for use in distributed algorithms and general-purpose software. Both OC-Bcast flavors are based on one-sided communication and significantly outperform (by up to 3x) state-of-the-art two-sided algorithms. Next, we conceive an analytical communication model for the SCC. By expressing the latency and throughput of different broadcast algorithms through this model, we reveal that the advantage of OC-Bcast comes from greatly reducing the number of off-chip memory accesses on the critical path. The second part of the thesis focuses on lock-based synchronization. We start by introducing the concept of hybrid mutual exclusion algorithms, which rely both on cache-coherent shared memory and message passing. The hybrid algorithms we present, HybLock and HybComb, are shown to significantly outperform (by even 4x) their shared-memory-only counterparts, when used to implement concurrent counters, stacks and queues on a hybrid Tilera TILE-Gx processor. The advantage of our hybrid algorithms comes from the fact that their most critical parts rely on message passing, thereby avoiding the overhead of the cache coherence protocol. Still, we take advantage of shared memory, as shared state makes the implementation of certain mechanisms much more straightforward. Next, we try to profit from these insights even on processors without hardware support for message passing. Taking two classic x86 processors from Intel and AMD, we come up with cache-aware optimizations that improve the performance of executing contended critical sections by as much as 6x

    Revisiting the combining synchronization technique

    No full text
    corecore