
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. W. Zwaenepoel, président du jury
Prof. A. Schiper, directeur de thèse

Prof. S. V. Adve, rapporteuse
Prof. P. Fatourou, rapporteuse
Prof. R. Guerraoui, rapporteur

Efficient Communication and Synchronization
on Manycore Processors

THÈSE NO 6552 (2015)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 20 MARS 2015

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE SYSTÈMES RÉPARTIS

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2015

PAR

Darko PETROVIĆ

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148011167?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To Iva and Ivana

Acknowledgements
Before writing these lines, as an obedient citizen willing to conform, I checked out what my

fellow graduates usually write under this title. Doing some research on the acknowledgement

sections of PhD theses reveals that there is a nice, established pattern to reuse. Following it, I

would first and foremost thank my outstanding advisor for giving me all the research freedom

in the world. Then I would carry on with a list of my great labmates, specially thanking those

who had tons of patience for my stubbornness and imperfect French, followed by a list of my

dear friends, where many would stand out for various reasons. A special thanks, of course,

would go to the thesis jury members for taking their time to thoroughly review the pages to

follow, as well as for providing many useful comments. Last but not least would be expressing

my deepest gratitude to my beloved family that has always been there as an eternal source of

inspiration, support, and understanding. But despite the urge I feel to elaborate on my thanks,

the next few paragraphs will be somewhat different. They will summarize some important

lessons I have learned during these years, which is what I am most thankful for. As for the who

part, you people already know who you are and what you mean to me.

Lesson I: Being outsmarted is not a defeat. When this journey started, my belief was that

doing a doctorate means being tucked in with your project for years, with no external factors

that can influence the outcome of your work. It turns out that, as you are developing an

interesting idea, odds are there are some smarter people who are working on the very same

idea at the very same time. Seeing their shiny and polished results while your work is still

half-baked can get quite frustrating. One of the things that doing a PhD teaches you is that,

when this happens, you should not stop. On the contrary, pushing even harder is the way to

go, as the reward might be just around the corner.

Lesson II: Criticism is invaluable. Investing much time and energy in rounding up a re-

search task does not mean that the end result is impeccable. As a matter of fact, it never is, and

it often has serious shortcomings. Fortunately, there have always been smart people able to

spell them out for me, either in early phases, or later, as part of the reviewing process. However,

it took me some time to learn how to fight my vanity and realize that the loads of criticism are

not there to discourage me and discredit my work, but to help make it better (at least most of

the time).

iii

Acknowledgements

Lesson III: The presentation is as important as the content. I used to naïvely think that

only the strength of the end result is important. The PhD has taught me that results rarely speak

for themselves: Explaining them in a clear and structured way is equally important. It still

strikes me how something that looks obvious to one person can be completely misinterpreted

by another, even if they work on the very same topic. It is even more striking to what extent an

introduction written differently can change people’s perception about a piece of research.

It is not hard to see that all of these lessons pertain not only to research: They are easily

extrapolated to life in general, which is one more reason never to forget them. Once again,

a big thanks to all of you who have been part of this hard, but rewarding journey. There

have been many bumps on the way here, but you were always there to keep me going. It will

certainly feel nice being a doctor, but nothing can beat the feeling of being loved as a father,

husband, son, brother, uncle, grandson, nephew, cousin, coworker, and friend.

Lausanne, February 23, 2015 Darko Petrović

iv

Preface
This doctoral thesis is based on the following publications:

1. [PSRS12b]

D. Petrović, O. Shahmirzadi, T. Ropars, and A. Schiper. High-performance RMA-based

Broadcast on the Intel SCC. In Proceedings of the 24th Annual ACM Symposium on

Parallelism in Algorithms and Architectures, SPAA ’12, Pittsburgh, Pennsylvania, USA,

June 2012. URL: http://doi.acm.org/10.1145/2312005.2312029

2. [PSRS12a]

D. Petrović, O. Shahmirzadi, T. Ropars, and A. Schiper. Asynchronous Broadcast on the

Intel SCC using Interrupts. In The 6th Many-core Applications Research Community

(MARC) Symposium, Toulouse, France, July 2012. URL: https://hal.archives-ouvertes.fr/

hal-00719022

3. [PRS14]

D. Petrović, T. Ropars, and A. Schiper. Leveraging hardware message passing for efficient

thread synchronization. In Proceedings of the 19th ACM SIGPLAN Symposium on Princi-

ples and Practice of Parallel Programming, PPoPP ’14, Orlando, Florida, USA, February

2014. URL: http://doi.acm.org/10.1145/2555243.2555251

4. [PRS15]

D. Petrović, T. Ropars, and A. Schiper. On the performance of delegation over cache-

coherent shared memory. In Proceedings of the 16th International Conference on

Distributed Computing and Networking, ICDCN ’15, Goa, India, January 2015. URL:

http://dx.doi.org/10.1145/2684464.2684476

In addition, an extended version of [PRS14] has been submitted, as an invited paper, to the

ACM Transactions on Parallel Computing (TOPC).

v

http://doi.acm.org/10.1145/2312005.2312029
https://hal.archives-ouvertes.fr/hal-00719022
https://hal.archives-ouvertes.fr/hal-00719022
http://doi.acm.org/10.1145/2555243.2555251
http://dx.doi.org/10.1145/2684464.2684476

Abstract
The increased number of cores integrated on a chip has brought about a number of challenges.

Concerns about the scalability of cache coherence protocols have urged both researchers and

practitioners to explore alternative programming models, where cache coherence is not a

given. Message passing, traditionally used in distributed systems, has surfaced as an appealing

alternative to shared memory, commonly used in multiprocessor systems. In this thesis, we

study how basic communication and synchronization primitives on manycore processors

can be improved, with an accent on taking advantage of message passing. We do this in two

different contexts: (i) message passing is the only means of communication and (ii) it coexists

with traditional cache-coherent shared memory.

In the first part of the thesis, we analytically and experimentally study collective commu-

nication on a message-passing manycore processor. First, we devise broadcast algorithms

for the Intel SCC, an experimental manycore platform without coherent caches. Our ideas

are captured by OC-BCAST (on-chip broadcast), a tree-based broadcast algorithm. Two ver-

sions of OC-BCAST are presented: One for synchronous communication, suitable for use in

high-performance libraries implementing the Message Passing Interface (MPI), and another

for asynchronous communication, for use in distributed algorithms and general-purpose

software. Both OC-BCAST flavors are based on one-sided communication and significantly

outperform (by up to 3x) state-of-the-art two-sided algorithms. Next, we conceive an analyti-

cal communication model for the SCC. By expressing the latency and throughput of different

broadcast algorithms through this model, we reveal that the advantage of OC-BCAST comes

from greatly reducing the number of off-chip memory accesses on the critical path.

The second part of the thesis focuses on lock-based synchronization. We start by introducing

the concept of hybrid mutual exclusion algorithms, which rely both on cache-coherent shared

memory and message passing. The hybrid algorithms we present, HYBLOCK and HYBCOMB,

are shown to significantly outperform (by even 4x) their shared-memory-only counterparts,

when used to implement concurrent counters, stacks and queues on a hybrid Tilera TILE-Gx

processor. The advantage of our hybrid algorithms comes from the fact that their most critical

parts rely on message passing, thereby avoiding the overhead of the cache coherence protocol.

Still, we take advantage of shared memory, as shared state makes the implementation of

certain mechanisms much more straightforward. Next, we try to profit from these insights

even on processors without hardware support for message passing. Taking two classic x86

vii

Preface

processors from Intel and AMD, we come up with cache-aware optimizations that improve

the performance of executing contended critical sections by as much as 6x.

Keywords: multicore, manycore, concurrency, parallelism, HPC, broadcast, mutual exclusion.

viii

Résumé
L’augmentation du nombre de coeurs intégrés sur une puce a amené de nombreux défis. La

difficulté à rendre les protocoles de cohérence de cache scalables a conduit les chercheurs

et les praticiens à explorer des modèles alternatifs de programmation, où la cache n’est pas

forcément cohérente. L’échange de messages, traditionnellement utilisé dans les systèmes

répartis, est apparu comme une alternative attrayante à la mémoire partagée, généralement

utilisée dans le contexte des systèmes multiprocesseurs. Dans cette thèse, nous étudions com-

ment la mise en oeuvre des primitives de base pour la communication et la synchronisation

sur les processeurs multi-coeurs peuvent être améliorés, avec un accent sur l’utilisation de

l’échange de messages. Nous faisons cela dans deux contextes différents : (i) l’échange de

messages est le seul moyen de communication et (ii) l’échange de messages coexiste avec la

mémoire partagée traditionnelle à caches cohérentes.

Dans la première partie de la thèse, nous étudions analytiquement et expérimentalement

la communication collective sur un processeur multi-coeurs à échange de messages. Tout

d’abord, nous proposons des algorithmes de diffusion pour Intel SCC, une plate-forme expé-

rimentale multi-coeurs sans caches cohérentes. Nos idées sont exprimées dans OC-BCAST

(On-Chip Broadcast), un algorithme de diffusion basé sur un arbre. Deux versions de OC-

BCAST sont présentées : l’une pour la communication synchrone, utilisable dans les biblio-

thèques MPI (Message Passing Interface), et l’autre pour la communication asynchrone, pour

utilisation dans les algorithmes répartis et les logiciels à usage général. Les deux versions de

OC-BCAST sont basées sur la communication unilatérale (one-sided communication) et elles

conduisent à des performances considérablement meilleures (jusqu’à trois fois) que celles

des algorithmes classiques bilatéraux (two-sided). Ensuite, nous développons un modèle

analytique des communications pour SCC. En exprimant la latence et le débit des différents

algorithmes de diffusion grâce à ce modèle, nous montrons que le gain de performance pro-

vient d’une réduction considérable du nombre d’accès à la mémoire hors-puce sur le chemin

critique.

La deuxième partie de la thèse est consacrée à la synchronisation à l’aide de verrous. Nous

commençons par introduire le concept d’algorithme hybride pour l’exclusion mutuelle, qui

utilise à la fois la mémoire partagée à caches cohérentes et l’échange de messages. Les algo-

rithmes hybrides que nous présentons, à savoir HYBLOCK et HYBCOMB, ont des performances

bien meilleures (jusqu’à quatre fois) que leurs homologues qui n’utilisent que la mémoire par-

ix

Preface

tagée, lorsqu’ils sont utilisés pour mettre en oeuvre, sur le processeur hybride Tilera TILE-Gx,

compteurs, piles et queues concurrents. L’avantage de nos algorithmes hybrides provient du

fait que les parties les plus critiques utilisent l’échange de messages, ce qui évite les coûts

du protocole de cohérence de cache. En même temps nous pouvons profiter de la mémoire

partagée, vu que l’existence d’un état partagé rend la mise en oeuvre de certains mécanismes

bien plus simple. Nous exploitons également ces idées pour l’échange de messages sur les

processeurs sans support matériel. En utilisant deux processeurs x86 classiques d’Intel et

AMD, nous présentons des optimisations qui améliorent jusqu’à six fois les performances de

l’exécution de sections critiques.

Mots clefs : multi-coeurs, concurrence, parallélisme, HPC, diffusion, exclusion mutuelle.

x

Contents
Acknowledgements iii

Preface v

Abstract (English/Français) vii

Opening Remarks 1

1 Introduction 3

1.1 Thesis Context . 3

1.2 Thesis Overview . 5

I Broadcast on a Message-Passing Processor: Algorithms and a Model 7

2 Background and Preliminaries 9

2.1 Motivation . 9

2.2 One-sided vs. Two-sided Communication . 10

2.3 The Intel SCC . 11

2.4 Contributions . 12

2.5 Related Work . 14

2.5.1 Broadcast in high-performance systems 14

2.5.2 Asynchronous communication on the Intel SCC 15

2.5.3 Modeling on-chip communication . 15

2.6 Outline . 16

3 Broadcast on the Intel SCC: Algorithms and Evaluation 17

3.1 OC-BCAST: a Synchronous Broadcast Algorithm 17

3.1.1 High-level description . 17

3.1.2 Detailed description . 19

3.2 Asynchronous Version of OC-BCAST . 21

3.2.1 Enabling asynchronous communication 22

3.2.2 Managing concurrent broadcast . 22

3.2.3 Modified OC-BCAST . 23

xi

Contents

3.2.4 Implementation . 25

3.3 Experimental Evaluation . 25

3.3.1 Setup . 26

3.3.2 Standard broadcast algorithms: binomial tree and scatter-algather . . . 27

3.3.3 Synchronous broadcast . 27

3.3.4 Asynchronous broadcast . 29

3.4 Summary . 32

4 Communication Model for the Intel SCC 33

4.1 Modeling the put and get Primitives . 33

4.1.1 The model . 33

4.1.2 Model validation . 36

4.1.3 Contention issues . 37

4.2 Modeling Two-sided RCCE Communication . 38

4.3 Modeling Synchronous Broadcast Algorithms . 40

4.3.1 Latency of short messages . 40

4.3.2 Throughput of large messages . 43

4.4 Summary . 46

II Fast Mutual Exclusion on Standard and Emerging Processors 49

5 Background and Preliminaries 51

5.1 Motivation . 51

5.2 System Model . 52

5.3 Critical Section Execution on a Cache-Coherent Processor 53

5.3.1 Classic locks . 53

5.3.2 Delegation . 54

5.4 Contributions . 56

5.5 Related Work . 57

5.5.1 Delegation . 57

5.5.2 Hardware extensions for synchronization 58

5.6 Outline . 59

6 Leveraging Hardware Message Passing for Efficient Critical Section Execution 61

6.1 Improved Mutual Exclusion Algorithms . 61

6.1.1 The classic lock (HYBLOCK) . 61

6.1.2 The server approach (MP-SERVER) . 63

6.1.3 The combiner approach (HYBCOMB) . 64

6.2 Evaluation . 72

6.2.1 Platform . 72

6.2.2 Methodology and setup . 72

6.2.3 Microbenchmarks . 73

6.2.4 Queues and stacks . 78

xii

Contents

6.2.5 Observations . 80

6.3 Additional Considerations . 81

6.4 Summary . 82

7 Optimizing Delegation on Processors without Message Passing 83

7.1 Optimizing Delegation over CC Shared Memory 83

7.1.1 Baseline algorithm . 83

7.1.2 Opportunities for optimization . 84

7.1.3 Proposed optimizations . 85

7.2 Evaluation . 88

7.2.1 Experimental setup . 88

7.2.2 Analysis of the optimization performance 90

7.2.3 Concurrent data structures . 93

7.3 Discussion . 96

7.4 Summary . 97

Concluding Remarks and Bibliography 99

8 Conclusions 101

Bibliography 112

Curriculum Vitae 113

xiii

Opening Remarks

1

1 Introduction

1.1 Thesis Context

A logical way to start a thesis that deals with manycore processors is by describing what those

are and why we need them. This is easy and hard at the same time. It is easy because there are

ample resources on the very same topic, ranging from thoroughly reviewed research articles,

to Internet resources such as blog posts, online magazine articles and discussions between

technology fans. Much of this abundant information can be filtered and copied into this

paragraph verbatim. It is hard for the very same reason: Giving an original perspective, or

at least a personal touch, to a description of the necessity for manycore processors is rather

challenging. Besides, it is not very rewarding either, as manycore programming is slowly

becoming mainstream: Being familiar with its basics is becoming a compulsory part of most

undergraduate curricula. With that in mind, this introduction will just briefly touch upon the

history of manycore and then turn to an overview of challenges this thesis deals with.

We have been witnessing a big shift in the processor industry during the last decade. Due

to physical constraints, it has become infeasible to keep getting more and more efficient

processors simply by increasing their operating frequency. Instead, research and industry

turned toward integrating multiple cores on a single chip [ONH+96], thus moving a big share

of work to software writers, whose responsibility then became to leverage the distributed

computational power in the best way. The terms multicore and manycore were coined. The

former denotes the integration of more than one processor on a chip (usually a small number),

whereas the latter is used to stress that the number of integrated cores is so big that they

become an inexpensive, affordable resource. Soon afterwards, people started talking about the

Manycore Revolution, the name used to describe numerous challenges related to designing

the hardware and software of an efficient, yet easy to exploit, manycore machine.

One of the central questions when talking about manycore processors is the choice of a pro-

gramming model [McC08]. This question can be discussed at different layers of the software

stack, but it is fundamentally dictated by the abstractions that the hardware exposes. Indeed,

it is hard to make use of a processor whose cores cannot communicate with each other in

3

Chapter 1. Introduction

some way. The moment we decide to enable inter-core communication, however, we realize

that there are a number of decisions to be made.

One way to enable such communication is shared memory, where cores of a multicore proces-

sor have access to a region of memory addressable by each and every of them. Shared memory

is an abstraction whose implementation involves a number of aspects, including topology

(placement of memory with respect to cores), addressability (what cores can access what

part of memory), available operations (instructions for accessing memory, their atomicity

and granularity), and data consistency (precisely defining the semantics of shared-memory

operations), to name a few. The most widespread implementation of shared memory on

today’s manycore platforms is cache-coherent shared memory [SHW11]. Besides a large slow

memory that every core can address, each core has one or more levels of small but fast private

caches, where recently used data are stored for faster reuse. A consequence is that the most

recent copy of shared data is not necessarily in the shared part of memory, but might also be in

a core’s private cache. In order to keep the cache hierarchy (nearly) invisible to software, and

make sure no memory operation manipulates stale data, an additional hardware mechanism

is necessary – a cache coherence protocol [SHW11]. For every available memory location, the

cache coherence protocol knows (or can deduce) where its most recent copy is, and manages

simultaneous accesses to it by different cores. Therefore, what the programmer sees is a

shared memory with the expected semantics, whereas software can still profit from the cache

hierarchy.

Cache-coherent shared memory, however, has its downsides. Namely, sharing data introduces

a need for synchronization, in order to maintain program correctness even when threads

running on different cores try to manipulate shared data simultaneously. On a processor with

a cache-coherent shared memory, synchronization is implemented by reading and writing

shared variables. However, the cache coherence protocol has a big impact on its performance.

Even simple synchronization patterns can result in surprisingly complex message traffic

between cores, memory controllers and coherence agents [DGT13]. Optimizing concurrent

code thus requires an in-depth understanding of cache coherence protocols and memory

consistency models. Worse, vendors tend to hide their details, or provide them in informal

or incomplete ways [OSS09], which makes the task of designing efficient synchronization

algorithms notoriously hard. On top of that, some recent studies even question the scalability

of traditional cache-coherent shared memory [HDH+10], although arguments against such

forecasts have also been given [MHS12].

In response to these concerns, message passing has been considered as an alternative. There

are experimental [HDH+10] as well as commercial [Kal14, Ada14] processors with message

passing as the primary way of inter-core communication and synchronization. Message pass-

ing does not suffer from scalability problems and offers explicit control over communication.

Indeed, some types of applications, such as various scientific workloads considered by the

High Performance Computing (HPC) community, are traditionally written using message

passing, albeit usually for large distributed systems. For such applications, message-passing

4

1.2. Thesis Overview

manycores are a very natural fit. But even in the context of traditional software, some studies

call for its complete redesign with message passing in mind, notably in the context of operating

systems [BBD+09, WA09]. On the other hand, message-passing programming is usually hard,

as full control over communication also means that the programmer has to think about data

placement and use explicit messages to send data to the right place at the right time.

Both programming models are well established in practice and are supported by a substantial

number of available frameworks and tools for general-purpose parallel programming. Some

of the most well-known frameworks and libraries for writing parallel programs using shared

memory are OpenMP [DM98], Cilk [BJK+96], and TBB [Rei07]. As far as message passing

is concerned, the Message Passing Interface (MPI) [SOHL+98] is the de-facto standard. It

should be noted that the machine architecture and the high-level programming model do

not necessary match – for example, one can do MPI on a shared-memory machine, or shared-

memory programming on a message-passing machine, provided there are suitable software

abstractions.

Regardless of the concrete framework and machine characteristics, shared memory and

message passing rely on some basic communication and synchronization primitives, used

as building blocks of user programs, as well as operating systems. In the context of message

passing, besides basic point-to-point operations, these typically include primitives for data

dissemination and gathering, known as collective operations. As for shared memory, we most

often talk about primitives for synchronization on shared data. Such basic primitives are the

main topic of this thesis. We study how their performance can be improved and modeled.

1.2 Thesis Overview

The thesis studies communication and synchronization on manycore processors. This in-

cludes both message passing and cache-coherent shared memory, as well as taking advantage

of the hybrid nature of modern hardware, allowing the two programming models to coexist on

the same chip. The contributions are organized in two parts.

Part I deals with communication in the context of a message-passing processor. As shared-

memory support on such a machine is either limited or non-existing, collective operations

are very important, as they enable efficient data exchange that requires the participation of

multiple, or even all cores. We study broadcast, as one of the basic collective operations, on

the experimental Intel SCC message-passing processor. Unlike classic broadcast algorithms,

built on top of send and receive operations, we leverage the existence of lower-level put and get

on-chip communication primitives, which results in a significant performance improvement.

The principal contributions of Part I are:

• OC-BCAST, a broadcast algorithm tailored to take advantage of fast on-chip communi-

cation. One version of OC-BCAST targets synchronous broadcast, provided by libraries

such as those that implement MPI, whereas another version offers fully generic, asyn-

5

Chapter 1. Introduction

chronous operation.

• A performance evaluation on the Intel SCC, which includes both versions of OC-BCAST

and the well-known binomial tree and scatter-allgather broadcast algorithms. The

evaluation reveals that OC-BCAST offers both lower latency and higher throughput than

both alternatives.

• A communication model for the Intel SCC, which enables analytical comparison of the

different broadcast algorithms, thus explaining the advantage of OC-BCAST.

Part II focuses on classic processors with support for cache-coherent shared memory. In this

context, we study mutual exclusion on shared data, as one of the basic problems of shared-

memory programming. We first show how shared-memory algorithms for mutual exclusion

can be significantly improved if they are selectively augmented with message passing, that

is, if we use message passing to optimize their most critical parts. This demonstrates the

usefulness of hybrid processor designs, where shared memory and message passing coexist.

Furthermore, these insights enable us to improve the performance of executing contended

critical sections even on shared-memory-only hardware. The contributions of Part II include:

• HYBLOCK and HYBCOMB, novel algorithms for mutual exclusion. Their novelty lies in

the fact that they use both message passing and cache-coherent shared memory, thus

taking the best of both worlds. MP-SERVER is also presented, as a straightforward, but a

very efficient way to profit from message-passing hardware in this context.

• Optimizations for shared-memory-only processors, whose goal is to mimic the behav-

ior of MP-SERVER and thus improve performance even without hardware support for

exchanging messages.

• Detailed experiments on a hybrid Tilera TILE-Gx processor, as well as as two x86 pro-

cessors from Intel and AMD, which confirm that our algorithms and optimizations

outperform a number of alternatives, including the most efficient known classic locks

and combining algorithms.

6

IBroadcast on a Message-Passing
Processor: Algorithms and a Model

7

2 Background and Preliminaries

2.1 Motivation

As we saw in Chapter 1, one of the manycore research directions is studying loosely-coupled

configurations, where cores cannot communicate in a traditional way, over a cache-coherent

shared memory. Instead, the principal means of communication is direct exchange of mes-

sages. In the context of traditional computer systems, this shift represents a serious challenge,

since most existing software, ranging from operating systems and device drivers, up to high-

level application code, is written with coherent shared memory in mind. Two solutions to

this problem have been proposed: Keeping the well-established shared-memory abstraction

and implementing it in software on top of message passing [Tor09] and re-thinking the whole

software stack with message passing in mind [MVdWF08].

There are, however, applications where the existence of shared memory is not required. Such

is the case of High-Performance Computing (HPC) applications. They are typically written to

run on distributed systems comprising of thousands of machines, connected via fast networks.

Message passing is commonly used for work coordination between different machines, most

often in form of the Message Passing Interface (MPI) [SOHL+98]. Therefore, it comes at no

surprise that such applications lend themselves nicely to message-passing manycores. What

is more, moving from traditional clusters to manycore processors is advantageous in terms of

resource consolidation and energy efficiency [K+08, Tor09].

Although the transition of HPC applications to message-passing manycore systems is much

more straightforward than it is the case with traditional shared-memory software, challenges

still exist. One of them, tackled in this part of the thesis, is providing communication primitives

optimized for the underlying hardware platform. Namely, for a given hardware stack (machines

and interconnect), a set of communication primitives is provided to the programmer, typically

as part of the MPI interface. These primitives include functions that enable point-to-point and

collective communication between computational units. They abstract away hardware details:

The programmer uses them as a black box when writing her application code. Internally,

however, the implementation of collective communication primitives is very dependent on

9

Chapter 2. Background and Preliminaries

the hardware at hand, since the goal is to put the available resources to optimal use. When

transitioning from machine clusters to manycore processors, a question that arises is whether

we can use the existing techniques to optimize communication, or we have to come up with

new ones. In the remainder of this part, contributions are given to answering this question:

We demonstrate how collective communication can be optimized to leverage the resources of

a manycore processor.

The concrete communication problem that we study is broadcast, the primitive that a compu-

tational unit (sender) uses when it needs to disseminate data to all other computational units

(receivers). This primitive is important in HPC applications [Nis09], but the need for efficient

broadcast is ubiquitous and of general interest [Tor09]. Indeed, when message passing is the

only means of communication, one way to provide the data sharing abstraction is through

replicating data across cores [BBD+09]. Consistency is then managed using different proto-

cols [BBD+09, DGY14], in which broadcast typically plays an important role. Although our

work focuses on the broadcast primitive, our insights and results are expected to be useful in

studies that cover other collective operations.

Obviously, the most direct way to study manycore communication is by experimenting with

existing products and prototypes. With this respect, our platform of choice is the Intel

SCC [HDH+10], a manycore prototype developed by Intel Labs. Although not an end-user

product, this processor comprises many features existing in chips commercially available at

the time of writing this report. Indeed, the Parallella processor [Ada14] is very similar to the

SCC in many aspects, including the NoC interconnect and small on-chip buffers for one-sided

communication between cores.

In the rest of this chapter, we briefly describe the concept of one-sided communication, which

is key to the improvements we propose (Section 2.2). Then we present the Intel SCC platform

(Section 2.3), before detailing our contributions (Section 2.4) and related work (Section 2.5).

2.2 One-sided vs. Two-sided Communication

In classic distributed systems, parties usually communicate using send and receive primitives.

The send primitive takes data from a buffer specified by the sender and transfers it to the

receiver. The receive primitive places the data into a buffer specified by the receiver. Note

that these primitives completely abstract away the internal mechanism used to implement

communication: Any kind of network, communication protocol and data representation can

be used behind the scenes. While this is convenient from the perspective of portability and

ease of use, a shortcoming of this approach is the reduced ability to leverage the characteristics

of the underlying hardware. Communication that relies on send and receive is often referred

to as two-sided. The reason is that any complete data transfer from one party to another

necessarily involves actions (i.e. consumes CPU cycles) from both the sender and the receiver.

To remedy this, a paradigm often seen in high-performance environments is one-sided commu-

10

2.3. The Intel SCC

Tile
Core
+ L1

Core
+ L1

L2

L2

Mesh
inter
face

MPB

R

MC

MC MC

MC

Private
off-chip
mem.

L2 L1

C
P

U
 0

 t&

s

Shared off-chip memory

Shared on-chip MPB

Private
off-chip
Mem.

L2 L1

C
P

U
 4

7

 t&
s...

(b)

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

Figure 2.1 – SCC Architecture (MC – memory controller, MPB – message-passing buffer, R -
router)

nication, consisting of put and get, and optionally some additional synchronization operations.

In this paradigm, one communication party can directly access a portion of memory physically

belonging to another, remote party. Both put and get take two buffers as arguments, one local

and one remote. A put transfers data from a local buffer to a remote one, whereas a get does

the opposite. Consequently, data can be transferred between communication parties with

only one of them performing the actual work, since it can directly access both the source and

the destination buffer. Next we describe the experimental Intel SCC processor, which offers an

actual on-chip implementation of one-sided communication.

2.3 The Intel SCC

The Intel SCC is a general-purpose manycore prototype developed by Intel Labs. The cores

and the network-on-a-chip (NoC) of the SCC are depicted in Figure 2.1. There are 48 Pentium

P54C cores, grouped into 24 tiles (2 cores per tile) and connected through a 2D mesh NoC.

Tiles are numbered from (0,0) to (5,3). Each tile is connected to a router. The NoC uses

high-throughput, low-latency links and deterministic virtual cut-through X-Y routing [KK79].

Memory components are divided into (i) message passing buffers (MPB), (ii) L1 and L2 caches,

as well as (iii) off-chip private memories. Each tile has a small (16KB) on-chip MPB equally

divided between the two cores. The MPBs allow on-chip inter-core communication: Each core

is able to read and write in the MPB of all other cores. There is no hardware cache coherence

for the L1 and L2 caches. By default, each core has access to a private off-chip memory through

one of the four memory controllers, denoted by MC in Figure 2.1. The off-chip memory is

physically shared, so it is possible to provide portions of non-coherent shared memory by

changing the default configuration.

Cores can transfer data using the one-sided put and get primitives provided by the RCCE

library [vdWMH11]. Using put, a core (a) reads certain data from its own MPB or its private

off-chip memory and (b) writes it to some MPB. Using get, a core (a) reads a certain amount of

data from some MPB and (b) writes it to its own MPB or its private off-chip memory. The unit

11

Chapter 2. Background and Preliminaries

of data transmission is a 32-byte cache line. If the data are larger than one cache line, they are

sequentially transferred in cache-line-sized packets. During a remote read/write operation,

each packet traverses routers on the way from the source to the destination. The local MPB is

accessed directly or through the local router.1

Using the basic inter-processor interrupt (IPI) mechanism on the SCC, a core can send an

interrupt to another core by writing a special value to the configuration register of that core.

This generates a packet which is sent through the on-chip network to the destination core.

Although this mechanism is simple and straightforward, it lacks some essential features. For

example, the identity of the notifier is unknown and it is possible to send only one interrupt

at a time. Fortunately, the SCC has an off-chip FPGA, which allows for adding new hardware

features. The Global Interrupt Controller (GIC) is an extension to the basic IPI mechanism,

provided by Intel. The GIC comprises a set of registers for managing IPI (request, status, reset

and mask). As a consequence, a core can send an interrupt to up to 32 other cores in just one

instruction, by writing an appropriate bit mask to its request register.2 The work of generating

interrupt packets is completely delegated to the GIC.

2.4 Contributions

Our principal goal is investigating the efficient implementation of the broadcast primitive on

the Intel SCC. We distinguish between two types of broadcast. The first is executed by having

all processes in the application call the broadcast function with matching arguments: the

sender calls it with the message to broadcast, while the receiving processes call it to specify the

reception buffer. Such an interface is traditionally used in writing parallel HPC applications,

where all of the processes typically run the same program, just on different data sets. We will

refer to broadcast with such an interface as synchronous broadcast.

The second type does not require explicit participation of the receiving processes: If there

is an incoming message, the receiving process automatically handles it by executing a pre-

defined routine. Such a primitive can be used when a manycore processor is viewed as a

general-purpose distributed system, with different processes running different programs.

For example, it can be used for ensuring replicated data consistency in a message-passing

operating system [BBD+09]. This version will be referred to as asynchronous broadcast.

The principal contributions of this part of the thesis are as follows:

• OC-BCAST, a novel synchronous broadcast algorithm. To make the best use of on-

chip resources, we devise OC-BCAST (On-Chip Broadcast), a k-ary tree algorithm based

on one-sided communication (put and get). The basic idea of OC-BCAST is simple:

Instead of disseminating data by sequentially copying them to individual message

buffers of each and every core, the broadcast sender only puts them in its own message

1Direct access to the local MPB is discouraged because of a bug in the SCC hardware.
2The upper limit of 32 is merely a consequence of the 32-bit memory word on the P54C

12

2.4. Contributions

passing buffer (MPB): Multiple receivers then fetch the data in parallel, thus improving

performance. The main difficulty lies in the fact that this parallelism is not infinite:

Too many cores simultaneously accessing the same message buffer in parallel cause

contention on the buffer and the interconnect, possibly canceling out the performance

gain, or worse, resulting in a performance loss with respect to the "sequential" version,

where the sender sends the data to the receivers one by one. For that reason, OC-

BCAST forms a k-ary tree, where k can be adapted to the available platform and its

characteristics. As we will show, even on a single chip (the Intel SCC in this context),

different values of k can be optimal, depending on the exact configuration and metric.

Besides the k-ary tree for data dissemination, OC-BCAST relies on separate notification

binary trees. Additionally, we improve the performance of OC-BCAST using pipelining

and double buffering.

• Extending OC-BCAST to support asynchrony. Next, we target asynchronous broadcast.

Using the SCC’s hardware support for inter-core interrupts, we conceive a modified,

asynchronous version of OC-BCAST. From the conceptual perspective, the main chal-

lenge is in avoiding deadlocks, which exist if OC-BCAST is straightforwardly modified to

operate with interrupts. We solve this problem by queuing messages that could cause

a deadlock in the off-chip memory, and then sending them later when appropriate.

From the implementation perspective, there is a need for enabling fast asynchronous

communication between userspace programs running on different cores: Inter-core

interrupts are treated by the kernel and are not propagated to applications. Our solution

consists of a kernel module that converts received inter-core interrupts to UNIX signals,

which can be propagated to the appropriate application.

• Experimental comparision of OC-BCAST and state-of-the art broadcast algorithms.

Our performance evaluation shows that OC-BCAST is much more efficient than existing

approaches to broadcast on the Intel SCC. The comparison of OC-BCAST with the bino-

mial tree and scatter-allgather algorithms based on two-sided communication shows

that: (i) our algorithm has at least 27% lower latency than the binomial tree algorithm;

(ii) it has almost 3 times higher peak throughput than the scatter-allgather algorithm.

Recall that the binomial tree and scatter-allgather are conceived to provide low latency

and high throughput, respectively. These results clearly show that collective operations

for message-passing manycore chips should be based on one-sided communication in

order to fully exploit the hardware resources.

• Analytical model of on-chip communication. Finally, to better understand the ob-

tained performance increase, we present a LogP-based [CKP+93] communication model

for the Intel SCC. We use the model to analytically evaluate OC-BCAST, as well as the

broadcast algorithms based on scatter-allgather and a binomial tree. The result shows

that the main advantage of OC-BCAST is in fewer off-chip memory accesses on the

critical path, which translates to lower latency and higher throughput. Furthermore, the

performance predicted by the model is, for the most part, within 10% of that measured in

13

Chapter 2. Background and Preliminaries

the experiments. We attribute this precision to the way the Intel SCC is architected: The

use of simple cores and interfacing logic, as well as direct communication using message

passing, results in highly predictable and modelable performance. This is a much more

challenging task in systems with more complex cores or cache coherence [RH13].

2.5 Related Work

2.5.1 Broadcast in high-performance systems

A message-passing manycore chip, such as the SCC, is similar to many existing HPC systems

since it includes a large number of processing units connected through a high-performance

network. Broadcast has been extensively studied in such systems. In MPI libraries, bino-

mial trees and scatter-allgather [SVDG00] algorithms are mainly considered [GFB+04, TRG05].

A binomial tree is usually selected to provide better latency for small messages, while the

scatter-allgather algorithm is used to optimize throughput for large messages. These so-

lutions are implemented on top of send/receive point-to-point functions and do not take

topology issues into account. This is not an issue for small to medium scale systems like the

SCC. For large mesh or torus topologies, non-overlapping spanning trees can provide better

performance [AHA+05]. Our algorithms will be directly compared with binomial tree and

scatter-allgather in Section 3.3.

One-sided operations, as described in Section 2.2, have been introduced to take advantage

of the capabilities of high-performance network interconnects such as InfiniBand [TA00].

On the SCC, operations on the MPBs allow the implementation of efficient one-sided com-

munication [MVDW10]. The implementation of collective operations on top of one-sided

communication has been extensively studied. Most high-performance networks provide

Remote Direct Memory Access (RDMA) [AHA+05, TA00], i.e., the one-sided operations are of-

floaded to the network devices. Some work tries to directly take advantage of these RDMA

capabilities to improve collective operations [GBPN03, HSR07, LMP04, SBM+05]. However, it

is hard to reuse these results in the context of the SCC for two main reasons: (i) they leverage

hardware-specific features not available on the SCC, e.g., hardware multicast [HSR07, LMP04],

and (ii) they make use of large RDMA buffers [GBPN03, SBM+05], whereas the on-chip MPBs

have a very limited size (8 KB per core). Note also that accesses to the MPBs are not RDMA

operations since message copying is performed by the core issuing the operation.

Two-sided communication can be implemented on top of one-sided communication [LWK+03].

This way, the well-established algorithms for collective operations based on two-sided com-

munication can be directly used. The SCC communication libraries available at the time of

carrying out our study adopted this solution. The RCCE library [MVDW10] provides efficient

one-sided put/get operations and uses them to implement two-sided send/receive commu-

nication. The RCCE_comm library implements collective operations on top of two-sided

communication [Cha10]: the RCCE_comm broadcast algorithm is based on a binomial tree

14

2.5. Related Work

or on scatter-allgather depending on the message size. The same algorithms are used in the

RCKMPI library [CURK11]. Instead, our work aims to directly leverage one-sided communica-

tion available on the SCC.

Some concurrent and subsequent studies have also addressed optimizing collective commu-

nication on the SCC. Kohler et al. [KRGF12] improve RCCE_comm by applying some general

optimizations. Although they discuss the importance of MPB-aware strategies, they mainly

improve performance by introducing nonblocking communication (provided by the iRCCE

library [CLRB11]) and minimizing software overheads. Matienzo et al. [MJ13] propose the

MPB-aware ModMPB broadcast algorithm, which shares some basic ideas with OC-BCAST.

Unfortunately, there is no direct performance comparison.

2.5.2 Asynchronous communication on the Intel SCC

On the Intel SCC, the only means of asynchronous communication are inter-processor inter-

rupts (IPIs).3 Communication using interrupts is often expensive because of various hardware

and software overheads. The SCC is no exception, as confirmed by several studies. The SCC

port of Barrelfish [PSMR11] uses IPIs to notify cores about message arrivals. The round-trip

message latency reported by the authors was found too high for point-to-point communica-

tion in such a system, despite running it on bare metal with the minimum needed software

overhead. IPIs have also been used in the SCC port of distributed S-NET [VGvT+11], a declara-

tive coordination language. The port is based on an asynchronous message-passing library:

Interrupts are trapped by the Linux kernel and then forwarded to the registered userspace

process in the form of a UNIX signal, which is the idea reused in our study. Using a similar

round-trip experiment as in [PSMR11], the authors confirm the high latency of inter-processor

interrupts. Moreover, the latency they observe is even higher than in [PSMR11], mainly be-

cause of a necessary context switch before delivering a signal to the registered userspace

process. A direct comparison with RCCE, the native SCC message-passing library based on

polling [MVDW10], has shown that IPIs are far less efficient in terms of latency for point to

point communication.

We are unaware of other studies targeting asynchronous collective operations on the SCC,

which is likely due to the aforementioned high cost. Nevertheless, our work demonstrates

that IPIs can be used in this context with acceptable performance, since the high cost can be

compensated by sending parallel interrupts.

2.5.3 Modeling on-chip communication

There are ample resources on modeling computation and communication in different contexts.

In this study, the well-known LogP model [CKP+93] is used to analytically evaluate broadcast

3Strictly speaking, it is possible to communicate asynchronously using a dedicated polling thread on every core,
but this solution is not feasible in practice, as it wastes CPU cycles and energy.

15

Chapter 2. Background and Preliminaries

algorithms on an experimental platform, the Intel SCC. In the context of the SCC, LogP has also

been used to model some basic communication patterns [Rot11]. Ramos and Hoefler [RH13]

model the Xeon Phi processor, the commercial successor of the SCC. This proves to be a hard

task, mostly because the Xeon Phi is a cache-coherent machine.

Many models extend LogP in different ways. Some notable examples are LogGP [AISS95],

in which special consideration is given to big messages, and LogPC [MF98], which takes

network contention into account. LogP and similar models have been used to explore the

design space of tree-based broadcast algorithms and to prove their efficiency under different

assumptions [KSSS93, BMR05, SST09].

2.6 Outline

The rest of this part of the thesis is organized as follows. Chapter 3 presents the two versions of

OC-BCAST, as well as experiments that compare it with broadcast algorithms well-established

in the literature. In Chapter 4, we derive a performance model of the SCC, which enables us to

analytically express the advantage of OC-BCAST over commonly used broadcast algorithms

implemented using two-sided communication.

16

3 Broadcast on the Intel SCC: Algo-
rithms and Evaluation

In this section, we first describe the synchronous version of OC-BCAST, our broadcast algo-

rithm for the SCC built on top of one-sided communication primitives (Section 3.1). Then

we discuss how OC-BCAST can be extended to support asynchrony (Section 3.2). Finally, we

experimentally compare our solution with broadcast algorithms implemented using two-sided

communication (Section 3.3). Section 3.4 discusses the results.

3.1 OC-BCAST: a Synchronous Broadcast Algorithm

3.1.1 High-level description

To simplify the presentation, we first assume that messages to be broadcast fit in the MPB.

This assumption is later removed. The core idea of the algorithm is to take advantage of the

parallelism that can be provided by the one-sided communication operations. When a core c

wants to send message msg to a set of cores cSet , it puts msg in its local MPB, so that all the

cores in cSet can get the data from there. If all gets are issued in parallel, this can dramatically

reduce the latency of the operation compared to a solution where, for instance, the sender

c would put msg sequentially in the MPB of each core in cSet . However, having all cores

in cSet executing get in parallel may lead to contention on the MPBs and on-chip network

(experiments in Section 4.1.3 will confirm this). To avoid contention, we limit the number of

parallel get operations to some number k, and base our broadcast algorithm on a k-ary tree;

the core broadcasting a message is the root of this tree. In the tree, each core is in charge of

providing the data to its k children: the k children get the data in parallel from the MPB of

their parent.

Note that the k children need to be notified that a message is available in their parent’s MPB.

This is done using a flag in the MPB of each of the k children. The flag, called notifyFlag, is

set by the parent using put once the message is available in the parent’s MPB. Setting a flag

involves writing a very small amount of data in remote MPBs, but nevertheless, sequential

notification could impair performance, especially if k is large. Thus, instead of having a parent

17

Chapter 3. Broadcast on the Intel SCC: Algorithms and Evaluation

setting the flag of its k children sequentially, we introduce a binary tree for notification to

increase parallelism. This choice is not arbitrary: It can be shown analytically that a binary

tree provides the lowest notification latency, when compared to trees of higher output degrees.

Figure 3.1 illustrates the k-ary tree used for message propagation, and the binary trees used

for notification. Core c0 is the root of the message propagation tree; the subtree with root c1

is shown. Core c0 notifies its children using the binary notification tree shown at the right of

Figure 3.1. Node c1 notifies its children using the binary notification tree, as depicted at the

bottom of Figure 3.1.

Apart from the notifyFlag used to inform the children about message availability in their

parent’s MPB, another flag is needed to notify the parent that the children have got the message

(in order to free the MPB). For this we use k flags in the parent MPB, called doneF l ag , each

set by one of the k children. To summarize, considering the general case of an intermediate

core c, i.e., the core that is neither the root nor a leaf, c performs the following steps. Once it

has been notified that a new chunk is available in the MPB of its parent cp , core c: (i) notifies

its children, if any, in the notification tree of cp ; (ii) copies the chunk to its own MPB (using a

get); (iii) sets its doneF l ag in the MPB of cp ; (iv) notifies its children in its own notification

tree, if any; (v) gets the chunk from its MPB to its off-chip private memory; (vi) waits until its

children’s doneF l ag -s have been set.

Finding an efficient k-ary tree that takes into account the topology of the NoC is a complex

problem [BMR05] and it is orthogonal to the design of OC-BCAST. On top of that, as Chapter 4

will show, the SCC itself is not an ideal testbed for addressing topology issues: The difference

between the lowest (two adjacent cores) and the highest (two farthermost cores) point-to-point

communication latency is only about 1.3x, whereas the choice of the broadcast algorithm has

a much higher performance impact. With that in mind, henceforth we assume that the tree

is built using a simple algorithm based on the core ids: Assuming that s is the id of the root

and P the total number of processes, the children of core i are the cores with ids ranging from

(s + i k +1)mod P to (s + (i +1)k)mod P . Figure 3.1 shows the tree obtained for s = 0, P = 12

and k = 7.

Broadcasting a message larger than an MPB can easily be handled by decomposing the large

message in chunks of MPB size, and broadcasting these chunks one after the other. Instead of

waiting for each chunk to be completely disseminated before sending the next one, pipelining

can be used along the propagation tree, from the root to the leaves: As soon as children of a

tree node acknowledge chunk reception, a new chunk can be immediately transferred.

We can further improve the efficiency of the algorithm (throughput and latency) by using a

double-buffering technique, similar to the one used for point-to-point communication in the

iRCCE library [CLRB11]. Until now, we have considered messages split into chunks of MPB

size,1 which allows an MPB buffer to store only one message chunk. With double-buffering,

1Of course, some MPB space needs to be allocated to the flags.

18

3.1. OC-BCAST: a Synchronous Broadcast Algorithm

C0

C1 C2 C3 C4 C5 C6 C7

C8 C9 C10 C11

C0

C1 C2

C7

C3 C4 C5 C6

C1

C8 C9

C10 C11

Notification tree

Notification tree

Message propagation
tree

Figure 3.1 – k-ary message propagation tree (k = 7) and binary notification trees.

messages are split into chunks of half the MPB size, which allows an MPB buffer to store two

message chunks. The benefit of double-buffering is easy to understand. Consider message

msg split into chunks ck1 to ckn being copied from the MPB buffer of core c to the MPB buffer

of core c ′. Without double buffering, core c copies cki to its MPB in a step r ; core c ′ gets cki

in step r +1; core c copies to its MPB cki+1 in step r +2; etc. If each of these steps takes δ

time units, the total time to transfer the message is roughly 2nδ. With double buffering, the

message chunks are two times smaller and so, message msg is split into chunks ck1 to ck2n .

In a step r , core c can copy cki+1 to the MPB while core c ′ gets cki . If each of these steps takes

δ/2 time units, the total time is roughly only nδ.

3.1.2 Detailed description

The pseudocode for a process running OC-BCAST on core c is presented in Algorithm 1. To

broadcast a message, all cores invoke the broadcast function (line 20). The input variables

are msg , containing a pointer to the message to broadcast (at the root), or pointing where

the received message should be stored (at any other node), and r oot , the id of the core

broadcasting the message. The message size is an implicit argument (it is needed at line 16 to

determine the number of chunks).

The pseudocode assumes that the total number of processes is P and that the degree of the

data propagation tree used by OC-BCAST is k. We introduce the following notation for put

and g et operations: ’put src −→ dest’ and ’get dest ←− src’. Recall that this version of OC-BCAST

does not handle concurrency – since all of the participating nodes have to call the broadcast

function with matching arguments (as typically seen in HPC applications), it is assumed that

multiple broadcast operations cannot take place in parallel. This limitation will be removed in

Section 3.2.

Each core c has a unique data parent d at aPar entc in the data propagation tree, and a

19

Chapter 3. Broadcast on the Intel SCC: Algorithms and Evaluation

Algorithm 1 OC-BCAST, synchronous version (code for core c)
Global Variables:
1: P {total number of cores}
2: k {data tree output degree}
3: MPB [P] {MPB [i] is the MPB of core i }
4: noti f yF l ag {MPB address of the flag, of the form <bcastID,chunkID>, used to notify data availability}
5: doneF l ag [k] {MPB address of the flags, of the form <bcastID,chunkID>, used to notify broadcast comple-

tion of a chunk}
6: bu f f er [2] {MPB address of the two buffers used for double buffering}

Local Variables:
7: bcast I D ← 0 {current broadcast id}
8: chunkI D {current chunk ID}
9: d at aPar entc {core from which c should get data}

10: d at aC hi l dr enc {set of data children of c}
11: noti f yC hi ldr enc {set of notify children of c}

12: broadcast (msg , r oot)
13: bcast I D ← bcast I D +1
14: chunkI D ← 0
15:

{
d at aPar entc ,d at aC hi l dr enc ,noti f yC hi ldr enc

}← prepareTree(r oot , k, P)
16: for all chunks at offset i of msg do
17: chunkI D ← chunkI D +1
18: broadcast_chunk(msg [i], r oot)
19: wait until ∀chi l d ∈ d at aC hi l dr enc : MPB [c].doneF l ag [chi l d] = (bcast I D,chunkI D)

20: broadcast_chunk (chunk, r oot)
21: if chunkI D > 2 then
22: wait until ∀chi l d ∈ d at aC hi l dr enc : MPB [c].doneF l ag [chi l d] ≥ (bcast I D,chunkI D −2)
23: if c = r oot then
24: put chunk −→ MPB [c].bu f f er [chunkI D mod 2]
25: else
26: wait until MPB [c].noti f yF l ag ≥ (bcast I Dc ,chunkI Dc)
27: for all chi l d such that chi l d ∈ noti f yC hi ldr enc \ d at aC hi l dr enc do
28: put (bcast I D,chunkI D) −→ MPB [chi l d].noti f yF l ag
29: get MPB [c].bu f f er [chunkI D mod 2] ←− MPB [d at aPar entc].bu f f er [chunkI D mod 2]
30: put (bcast I D,chunkI D) −→ MPB [d at aPar entc].doneF l ag [c]
31: for all chi l d such that chi l d ∈ noti f yC hi ldr enc ∩d at aC hi l dr enc do
32: put (bcast I D,chunkI D) −→ MPB [chi l d].noti f yF l ag
33: if c 6= r oot then
34: get chunk ←− MPB [c].bu f f er [chunkI D mod 2]

20

3.2. Asynchronous Version of OC-BCAST

set of children d at aC hi l dr enc . The set noti f yC hi ldr enc includes all of the cores that

core c should notify during one execution of the algorithm. Note that a core c can be part

of several binary trees used for notification. In the example of Figure 3.1, if we consider

core c1: d at aPar entc1 = c0; d at aC hi l dr enc1 = {c8,c9,c10,c11}; noti f yC hi ldr enc1 =
{c3,c4,c8,c9}. These sets are computed at the beginning of the broadcast (line 15, pr epar eTr ee

function). As noted before, a simple algorithm based on ids will be used throughout the study,

but we do not put any strict requirements on the tree structure. We only assume that a

predefined deterministic algorithm is used to compute the broadcast trees.

MPBs are represented by the global variable MPB where MPB [c] is the MPB of core c. A

noti f yF l ag and k instances of doneF l ag (one per child) are allocated in each MPB to

manage synchronizations between cores. The rest of the MPB space is divided into two buffers

to implement double buffering.

The br oadcast_chunk function is used to broadcast a chunk. Each chunk is uniquely iden-

tified using a tuple <bcast I D,chunkI D>. Chunk ids are used for notification. To imple-

ment double buffering, the two buffers in the MPB are used alternatively: for the chunk

<bcast I D ,chunkI D>, buffer ’chunkI D mod 2’ is used. By setting the noti f yF l ag of a core

c to <bcast I D,chunkI D>, core c is informed that the chunk <bcast I D,chunkI D> is avail-

able in the MPB of its d at aPar entc . Notifications are done in two steps. First, if a core is

an intermediate node in a binary notification tree, it forwards the notification in this tree

as soon as it receives it (line 28): in Figure 3.1, core c1 notifies c3 and c4 when it gets the

notification from core c0. Then, after copying the chunk to its own MPB, it can start notifying

the nodes that will get the chunk from its MPB (line 32): in Figure 3.1, core c1 then notifies c8

and c9. When a core finishes getting a chunk, it informs its parent using the corresponding

doneF l ag (line 30). A core can copy a new chunk chunkI D in one of its MPB buffers, when

all its children in the message propagation tree got the previous chunk (chunkI D −2) that

was in the same buffer (line 22). Note that the bcast I D is needed to be able to differentiate

between chunks of two messages that are broadcast consecutively. The broadcast function on

core c returns when c has got the last chunk in its private memory (line 34), and it knows that

the data in its MPB buffers is not needed by any other core (line 19).

3.2 Asynchronous Version of OC-BCAST

Now we describe how OC-BCAST can be extended to support asynchronous broadcast, where

only the sender calls the broadcast function and broadcast operations from multiple sources

can take place in parallel. In this context there are two problems to address: replacing polling

with interrupts (Section 3.2.1) and managing multiple broadcast operations taking place in

parallel (Section 3.2.2). After describing our solutions, the modified version of OC-BCAST is

given (Section 3.2.3), followed by implementation details (Section 3.2.4).

21

Chapter 3. Broadcast on the Intel SCC: Algorithms and Evaluation

3.2.1 Enabling asynchronous communication

As we have seen, OC-BCAST uses MPB polling for notification. Clearly, polling is not an

option if we want message reception to be asynchronous, so the SCC interrupt hardware

presented in Section 2.3 has to be used. This means that the notification mechanism has to be

modified. Recall from Section 2.3 that the SCC’s Global Interrupt Controller (GIC) contains a

register which enables a core to request interrupts to be sent to up to 32 cores using a single

instruction. 2 Instead of using a binary notification tree like in Algorithm 1, a parent can directly

inform all its children that a message is available, by sending them parallel interrupts. On the

other hand, using interrupts to acknowledge message reception to the parent is not necessary,

as there is no asynchrony: The parent knows it should wait for the acknowledgement, and it is

safe to discard the data in the local MPB only after the acknowledgement has arrived. Thus,

the modified algorithm can be summarized as follows:

1. The broadcast sender puts the message from its private memory to its MPB and sends a

parallel interrupt to all of its children. Then it waits until all the children have received

the message.

2. Upon receiving the interrupt, a core c copies the data from the parent’s MPB to its

own MPB and acknowledges the reception of the message to the parent by setting the

corresponding flag in the parent’s MPB.

3. Core c then sends a parallel interrupt to notify its own children (if any) and then copies

the message from the MPB to its private memory. Then it waits until all its children have

copied the message to their buffers.

4. When all of c’s children have acknowledged reception, c can make its MPB available for

other actions (possibly a new message).

3.2.2 Managing concurrent broadcast

Recall that OC-BCAST is designed in the context of HPC applications, where a core explicitly

calls the broadcast function to participate in the collective operation. As a consequence, a

core is involved in only one collective operation at a time. However, using interrupts in OC-

BCAST allows us to move to a more general model where broadcast operations can arbitrarily

interleave at one core. Now we discuss how to efficiently manage this aspect.

The above algorithm has to be modified to allow asynchronous broadcast operations issued

by different cores. Indeed, without modifications the algorithm would be prone to deadlocks.

A simple scenario can be used to illustrate a deadlock situation. Consider two cores c and c ′

that try to broadcast a message concurrently, with c ′ being a child of c in the tree where c is

2Note that the mere fact that interrupts can be requested in parallel does not necessarily mean that they are sent
in parallel. However, the GIC implementation does actually ensure this kind of parallelism, as our evaluation in
Section 3.3 will confirm.

22

3.2. Asynchronous Version of OC-BCAST

the root and the opposite in the tree where c ′ is the root. Core c ′ cannot copy the message

that c is trying to broadcast in its MPB because it is busy with its own message. Core c ′ will be

able to free its MPB when it knows that all its children have copied the message. However c

cannot get the message from c ′ either, because it is in exactly the same situation as c ′. There is

a deadlock.

To deal with this problem, a simple solution would be to use a global shared lock to prevent

multiple broadcast operations from being executed concurrently. In general, in a system

based on message passing, the lock can be implemented using an algorithm for distributed

mutual exclusion [NTA96]. In the specific case of the SCC, there is an alternative solution that

uses on-chip test-and-set registers. Whatever lock implementation we choose, no further

modifications to OC-BCAST are necessary. However, this would limit the level of parallelism

and prevent us from fully using the on-chip resources.

To avoid deadlocks without limiting the parallelism, we adopt the following solution: If the

MPB of some core c is occupied when a notification about a new message arrives, c copies the

message directly to its off-chip private memory, instead of copying it to the MPB. Additionally,

if c has to forward the message, it is added to a local queue of messages that c has to forward

(a queue is used in order to eliminate the possibility of starvation). Eventually, when the MPB

is available again, c removes messages from the queue and forwards them to the children.

3.2.3 Modified OC-BCAST

Algorithm 2 presents the pseudocode for a core c. During initialization, each core is able to

compute the tree that will be used by each source (line 7). As before, an arbitrary algorithm

can be used for tree computation. As with original OC-BCAST, if a message is larger than the

available MPB, it is divided into multiple chunks.

For the sake of simplicity, the pseudocode is not fully detailed. It only illustrates the important

modifications that are made to synchronous OC-BCAST avoid deadlocks. As with synchronous

OC-BCAST, the br oadcast function is called by the sender. However, the reception part is

asynchronous: The function del i ver _chunk is registered to be triggered when an interrupt is

received from another core.

We define three functions that implement basic data movement and notification procedures.

OC Bcast_send_chunk(chunk,Tr ee) initiates the broadcast of the chunk chunk in the tree

Tr ee. It puts chunk in the caller’s MPB, notifies the caller’s children in Tr ee by sending an

interrupt to each of them, and then polls the local MPB until each of the children has fetched

chunk. OC Bcast_ f or w ar d_chunk(chunk,Tr ee) is similar, except for the assumption that

the chunk is already in the MPB of the caller (so it only notifies the children and waits).

OC Bcast_r ecei ve_chunk(chunk,bu f , sr c) gets chunk from the MPB of core sr c into bu f

(bu f being either the MPB of the caller or a memory region in its off-chip private memory), and

then notifies sr c using an MPB flag. It is worth noting that a chunk includes not only payload,

23

Chapter 3. Broadcast on the Intel SCC: Algorithms and Evaluation

Algorithm 2 OC-BCAST, asynchronous version (code for core c)
Local Variables:
1: MPBc {MPB of core c}
2: MPBSt atusc ← available {Status of the MPB}
3: chunkQueuec ←; {Queue of chunks to forward}
4: set of trees Tr ee1,Tr ee2, ...,Tr een {Tr eec is the tree with c as root}

5: initialization:
6: define deliver_chunk() as the IPI handler
7: for cor eI D ∈ 0...n do compute Tr eecor eI D

8: broadcast(msg)
9: for all chunk of msg do

10: broadcast_chunk(chunk)

11: broadcast_chunk(chunk)
12: MPBSt atusc ← busy

13: OCBcast_send_chunk(chunk, Tr eec)
14: MPBSt atusc ← available

15: flush_queue()

16: deliver_chunk(chunk, sour ce)
17: if chunkQueuec is empty ∧ MPBSt atusc = available then
18: MPBSt atusc ← busy

19: OCBcast_receive_chunk(chunk, MPBc , sour ce)
20: if c has children in Tr eechunk.r oot then
21: OCBcast_forward_chunk(chunk, Tr eechunk.r oot)
22: MPBSt atusc ← available

23: flush_queue()
24: else
25: let i tem be the memory allocated to receive the chunk
26: OCBcast_receive_chunk(chunk, i tem, sour ce)
27: if c has children in Tr eechunk.r oot then
28: enqueue i tem in chunkQueuec
29: if msg corresponding to chunk.msg I D is complete then
30: deliver msg to the application

31: flush_queue()
32: while chunkQueuec is not empty do
33: dequeue chunk from chunkQueuec
34: MPBSt atusc ← busy

35: OCBcast_send_chunk(chunk, Tr eechunk.r oot)
36: MPBSt atusc ← available

24

3.3. Experimental Evaluation

but also some metadata, i.e., the id of the core that broadcasts the message (chunk.r oot) and

the id of the message the chunk is part of (chunk.msg I D).

As mentioned before, we allow a core to receive chunks directly in its off-chip private memory

when its MPB is busy with another chunk that is being sent (line 17). Thus, the sender can free

its MPB. The chunks that the core is supposed to forward to other cores, are stored in a queue

(lines 25-28), that is flushed when the MPB becomes available (line 15 and line 23). Note that

to ensure fairness, if the MPB is free at the time the core receives an interrupt but some chunks

are already queued to be forwarded (line 17), the chunk is received in the private memory

and added to the queue. Thus, a chunk cannot overtake another chunk that has been in the

queue already for some time. However, if no chunk is in the queue and the MPB is available,

the chunk is first copied in the MPB to limit the number of data movements between the MPB

and the private memory that could decrease performance.

3.2.4 Implementation

To implement asynchronous OC-BCAST on the SCC, we have developed a userspace library

for interrupt handling, following the idea given in [VGvT+11]. Namely, a userspace process

can register itself with a special kernel module. Every time an interrupt from another core is

received, the kernel module sends a real-time UNIX signal to the registered process, which

triggers a user-provided handler. We have opted for real-time signals because they can be

queued if there is more than one signal pending. This way, we ensure that every interrupt is

converted to a signal and the algorithm can be written entirely in userspace.

A drawback of this approach is a performance loss already observed in [VGvT+11]: To propa-

gate an interrupt to userspace in the form of a UNIX signal, a context switch is necessary, which

significantly increases end-to-end communication latency. Nevertheless, we have adopted this

approach for two reasons. Firstly, such an implementation changes only absolute numbers

and does not prevent us from observing changes in performance resulting from design-level

decisions. The same algorithm could be implemented in the Linux kernel or directly on bare

metal, which completely avoids UNIX signals and context switching. Secondly, our library is

easy to integrate with RCCE and the accompanying tools, which makes it convenient for other

researchers willing to use inter-processor interrupts without significant effort.

3.3 Experimental Evaluation

In this section we evaluate the different variants of OC-BCAST on the Intel SCC. We start by

presenting our experimental setup (Section 3.3.1) and explaining how the other considered

broadcast algorithms are implemented (Section 3.3.2). Next, we compare the latency and

throughput of synchronous OC-BCAST with that of the introduced state-of-the art algorithms

(Section 3.3.3), before quantifying the performance of the asynchronous version of OC-BCAST

(Section 3.3.4).

25

Chapter 3. Broadcast on the Intel SCC: Algorithms and Evaluation

3.3.1 Setup

The experiments were done using the default settings for the SCC: 533 MHz tile frequency, 800

MHz mesh and DRAM frequency and the standard look-up table entries. We use the sccKit

version 1.4.1.3, running a custom version of sccLinux, based on Linux 2.6.32.24-generic. We

fix the chunk size used by OC-BCAST to 96 cache lines, which leaves enough space for flags

(for any choice of k). The presented experiments use core 0 as the source. Selecting another

core as the source gives similar results. A message is broadcast from the private memory of

core 0 to the private memory of all other cores. The results are the average values over 10’000

broadcasts, discarding the first 1’000 results. For time measurement, we use global counters

accessible by all cores on the SCC, which means that the timestamps obtained by different

cores are directly comparable. We define the latency of the broadcast primitive as the time

elapsed between the call of the broadcast function by the source, and the time at which the

message is available at all cores (including the source), i.e., when the last core returns from the

function. To avoid cache effects in repeated broadcasts, we preallocate a large array and in

every broadcast we operate on a different (currently uncached) offset inside the array. The

kernel of every core runs the special kernel module for converting interrupts to UNIX signals,

described in Section 3.2.4. This module is used only in the asynchronous implementation of

OC-BCAST.

Besides our algorithms, we evaluate broadcast algorithms from the RCCE_comm library (their

more detailed description is given below). RCKMPI [CURK11] relies on the same algorithms,

but reuses an implementation that is not optimized for the SCC. Also, our experiments have

confirmed that RCCE_comm currently performs better than RCKMPI. Thus, we have chosen

RCCE_comm for our experiments, as it is the fastest available implementation of collective

operations on the SCC, to the best of our knowledge.

Both OC-BCAST and the RCCE_comm algorithms use flags allocated in the MPBs to implement

synchronization between the cores. The SCC guarantees read/write atomicity on 32B cache

lines, so allocating one cache line per flag is enough to ensure consistency. OC-BCAST requires

k +1 flags per core, and the rest of the MPB can be used for the message payload. For this,

OC-BCAST uses two buffers of Moc = 96 cache lines each. RCCE_comm, which is based on the

RCCE message-passing library, uses a payload buffer of Mr cce = 251 cache lines.

As explained earlier, OC-BCAST has a parameter k, which dictates the degree of the broadcast

tree. In our experiments, we use the values of 2, 7, and 47. While 2 is chosen as a minimum

degree offering some parallelism (with k = 1, the tree degenerates to a list), 47 is chosen as

the value where all the other cores are the sender’s children (the depth of the tree is one).

Additionally, we include results with k = 7, which is the minimum degree where the tree depth

is two. As will be explained, in some situations this can give better performance than a tree of

minimum depth, mostly because of contention on the MPBs.

26

3.3. Experimental Evaluation

3.3.2 Standard broadcast algorithms: binomial tree and scatter-algather

Here we briefly describe the algorithms that will be compared with OC-BCAST. As mentioned

before, the binomial tree is mostly used to broadcast small messages. The algorithm is as

follows. The set of nodes (cores in this case) is divided in two subsets of bP
2 c and dP

2 e nodes.

The root, belonging to one of the subsets, sends the message to one node from the other

subset (for example, the node with the smallest id). Then, there is one node containing the

message in both subsets. The initial step is then recursively repeated on both subsets (each of

them is divided and the message is sent to the new subset) until all of the nodes have received

the message.

If the message to broadcast is large, the scatter-allgather algorithm might have better perfor-

mance. It has two phases. During the scatter phase, the message is divided into P slices, which

are then distributed accross nodes, so that each node has one slice of the original message. A

binomial tree can be used in this phase, similar to the one described in the previous paragraph.

The difference is that only appropraite chunks are transferred, not the whole message. In the

allgather phase, every node should obtain the remaining P −1 slices. In the RCCE_comm

library, this is done using the Bruck algorithm [BHU+97]: The nodes form a logical ring and

first, each node sends its slice to the left neighbour. In subsequent steps, a node sends to its

left neighbour the slice it received from its right neighbour in the previous step. This way, the

full message is available at all of the nodes after P −1 steps.

Although we do not explore that possibility here, it should be noted that the basic ideas of the

presented algorithms can also be used to build one-sided algorithms (on top of put and get).

3.3.3 Synchronous broadcast

Our first goal is to see how OC-BCAST compares to the binomial and the scatter-allgather

broadcast algorithms. We have tested the algorithms with message sizes ranging from 1 cache

line (32 bytes) to 32’768 cache lines (1 MB). To evaluate the algorithms, we first focus on the

latency of short messages, and then analyze the throughput of large messages. Regarding

the binomial tree and scatter-allgather algorithms, our experiments have confirmed that the

former performs better with small messages, whereas the latter is a better fit for large messages.

Therefore, we compare OC-BCAST only with the best one for a given message size.

Latency of small messages

Figure 3.2a shows the latency of messages of size m ≤ 2Moc . Even for messages consisting of

one cache line, OC-BCAST with k = 7 provides 27% improvement compared to the binomial

tree (16.6µs vs. 21.6µs). The difference grows with the message size. This is because a larger

message implies more off-chip memory accesses on the critical path in the RCCE_comm

algorithms. In OC-BCAST, in contrast, the number of off-chip operations remains constant,

because the chunks are propagated through the MPBs, and copying them to the cores’ off-

27

Chapter 3. Broadcast on the Intel SCC: Algorithms and Evaluation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 20 40 60 80 100 120 140 160 180

M
ic

ro
se

co
n

d
s

Message size (cache lines)

k=2
k=7

k=47
binomial

(a) Broadcast latency

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 10 100 1000 10000

M
eg

ab
y

te
s

p
er

 s
ec

o
n

d

Message size (cache lines)

k=2
k=7

k=47
s-ag

(b) Broadcast throughput

Figure 3.2 – Experimental comparison of broadcast algorithms. Legend: k=x, OC-BCAST with
the corresponding value of k; binomial, RCCE_comm binomial; s-ag, RCCE_comm scatter-
allgather.

chip memory is overlapped with this propagation. We will analyze this more thoroughly in

Chapter 4, using a formal performance model. It can also be noticed that increasing k helps

decrease the latency of OC-BCAST by reducing the depth of the tree. For message size between

96 and 192 cache lines, the latency of OC-BCAST with k = 7 is around 25% better than with

k = 2. However, this trend is not so obvious between k = 7 and k = 47. Namely, we can see that

the corresponding curves almost completely overlap in Figure 3.2a, although one could expect

k = 47 to be the optimal choice because of the lowest tree depth. This discrepancy is mostly

due to MPB contention, which will be studied in more detail in Chapter 4.

Throughput of large messages

The results of the throughput evaluation are given in Figure 3.2b (note that the x-axis is

logarithmic). OC-BCAST gives an almost threefold throughput increase compared to the

two-sided scatter-allgather algorithm. The OC-BCAST performance drop for a message of 97

cache lines is due to the chunk size. Recall that the size of a chunk in OC-BCAST is 96 cache

lines. A message of 97 cache lines is divided into a 96 cache lines chunk and 1 cache line chunk.

The second chunk is then limiting the throughput. For large messages, this effect becomes

negligible since there is always at most one non-full chunk.

We can see that OC-BCAST with k = 47 is slightly outperformed by the counterparts with lower

values of k. Again, we attribute this to MPB contention, which becomes significant at higher

levels of parallelism.

28

3.3. Experimental Evaluation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30 35 40 45

L
at

en
cy

 (
co

re
 c

yc
le

s)

Sender core ID

(a) With access to GIC registers

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30 35 40 45

L
at

en
cy

 (
co

re
 c

yc
le

s)

Sender core ID

(b) Without access to GIC registers

Figure 3.3 – Latency of broadcasting an interrupt at the kernel level

3.3.4 Asynchronous broadcast

Here we evaluate the performance of the asynchronous version of OC-BCAST. Before evaluat-

ing the algorithm itself, we start by investigating the Global Interrupt Controller (GIC) on the

SCC, when used to send multiple interrupts in parallel. Performance wise, this mechanism is

the most critical part of the implementation.

Interrupt Hardware Performance

To evaluate how the GIC handles parallel interrupts, we have performed the following exper-

iment: A core sends an interrupt to all cores (including itself), by issuing two instructions

which write a mask of "1"-s to its request register. Then, the core measures the time until it

receives its own interrupt. The results, given in Figure 3.3a, indicate a significant difference

in latency observed by different cores, ranging from about 2000 to almost 6000 CPU cycles.

Further experiments have confirmed that this difference grows as a function of the number of

cores that the interrupt is sent to – it is barely noticeable for less than 20 cores, but then starts

to increase rapidly.

The experiment presented above leads us to the conclusion that parallel notification using

interrupts on the SCC does not scale well. Further investigation, however, explains that this

is not a fundamental problem, but rather a consequence of its suboptimal implementation.

Namely, upon receiving an interrupt, there is a fixed set of steps a core should perform. This

includes reading from the status register, to determine the interrupt source, and resetting

the interrupt by writing to the reset register. Since all of the registers related to interrupt

handling are on the FPGA, access to them is handled sequentially. When an interrupt is sent

to many cores at once, they all try to access their interrupt status register at the same time,

but their requests contend and are handled one after another, which explains the observed

performance loss. We believe that a proper on-chip implementation of interrupt registers

29

Chapter 3. Broadcast on the Intel SCC: Algorithms and Evaluation

would eliminate this problem, since they would be independent and could be accessed in

parallel.

To confirm that the reason for bad scaling of the interrupt mechanism is contention on the

FPGA, we have repeated the same experiment, but this time deliberately avoiding the FPGA

registers, except on the sending core. Note that such a configuration is of little use in practice,

but the goal of the experiment is only to discover the scalability bottleneck. In Figure 3.3b we

see that the latencies measured across the cores are very similar and close to 2000 core cycles.

Slight differences in latency are easy to explain. Namely, the FPGA is connected to the mesh

via the router between tiles (2,0) and (3,0) (cf. Figure 2.1), so the round-trip time to the FPGA is

shorter for cores closer to this router. Next, it takes slightly more time for cores 32 through 47

to receive their interrupt. This is because, as already described, it is possible to send at most

32 interrupts by issuing a single instruction. Therefore, when broadcasting an interrupt, a

core first broadcasts to cores 0 to 31 in the first instruction, and then to the other cores, which

results in slightly higher latency.

Another set of experiments, as well as comparisons with results of other authors [VGvT+11],

confirmed that the latencies presented in Figure 3.3b are practically indistinguishable from

the latency of sending point-to-point interrupts (about 2000 cycles). This implies that the

cost of notification using interrupts is practically constant with respect to the number of

cores notified. However, as we have described, sequential access to the off-chip registers for

interrupt handling slows down the whole process in the current implementation on the SCC.

Still, from Figure 3.3a we can see that even with this effect, broadcasting an interrupt to the 48

cores is only about 3 times more expensive than sending a point-to-point interrupt, making

this mechanism interesting for use in group communication.

Asynchronous Broadcast Performance

Having seen the performance of the interrupt-generating hardware, we now analyze the

performance of asynchronous OC-BCAST. The first experiment measures the latency when

messages of different sizes are broadcast from one core (core 0 in this case), with k = 47.

Table 3.1 compares the obtained latency with that of the synchronous version of OC-BCAST.

The two algorithms have very similar latencies with these settings. This confirms that the

interrupt hardware on the SCC is useful for designing asynchronous collective operations,

even though its latency is high for point-to-point communication, as pointed out in other

studies [PSMR11, VGvT+11]. However, recall that we fix the value of k to 47, which enables

us to obtain the highest level of parallelism when sending the interrupts. Results with lower

values of k are not shown: In that case, the latency of asynchronous OC-BCAST is largely

inferior to that of its synchronous counterpart, because the high price of sending an interrupt

is paid more than once (up to six times, when k = 2).

In the second experiment, we evaluate performance with a varying number of concurrent

broadcasts from different cores. We change the number of sources, that is, the number of cores

30

3.3. Experimental Evaluation

Message Size
(Number of cache lines)

1 32 64 128

OC-BCAST 44.1 µs 75.8 µs 112.7 µs 198.6 µs
Asynchronous broadcast 40.2 µs 75.5 µs 118 µs 196.7 µs

Table 3.1 – Comparing the latency of synchronous broadcast (OC-BCAST) and asynchronous
broadcast for different message sizes (k = 47)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30 35 40 45

A
gg

re
ga

te
T

hr
ou

gh
pu

t (
M

B
/s

)

Value of k

1 source
5 sources

48 sources

Figure 3.4 – Throughput of the asynchronous broadcast algorithm for different values of k and
different number of concurrent sources

broadcasting in parallel. Each source repeatedly broadcasts a 4 KB (128 cache lines) message

from its private memory, without waiting for the other cores to receive the message, thus

creating a message pipeline. This way we observe the aggregate throughput of the system, that

is, the amount of data broadcast in a unit of time. We repeat the experiments with different

values of k. Note that low values of k are of interest in this experiment, since we measure

throughput.

The result of this experiment is given in Figure 3.4. With a single source, the throughput

decreases as k increases. The reason is the cost of polling flags (there are at most k flags to

poll). To wait for an acknowledgment from its children, each parent has to poll k flags in its

MPB and reset them afterwards. The sporadic performance variations can be explained by

the fact that a core does not control when it will be signaled. In fact, when a core is about to

forward a received message to the children, it can get interrupted to receive another message.

If this happens, the children have to wait, which introduces performance drops.

With more than one source, the throughput increases. There are two possible reasons for

this. The first one is that when a single node is broadcasting messages, the other cores are

sometimes idle waiting for the next message to be available. With multiple sources, this idle

time can be used to receive messages from other sources. The second reason is that if a core

receives interrupts in different trees, it can often have more than one interrupt waiting to

be serviced by the kernel. When this happens, all the pending interrupts will be serviced

31

Chapter 3. Broadcast on the Intel SCC: Algorithms and Evaluation

(converted to signals) one after another, and only then will the execution switch back to the

userspace process. This actually means that there will not be one context switch per interrupt,

but significantly fewer, resulting in a performance increase.

We can also see that the difference in throughput when broadcasting from 5 and 48 sources is

not significant. This is because the system gets saturated. Based on measurements and the

model presented in the next chapter, the maximum bandwidth when copying data from a core’s

MPB to the off-chip memory is about 55 MB/s (assuming cache line prefetching implemented

in software as in iRCCE [CLRB11]). Our algorithm achieves 68% of this maximum bandwidth.

When it comes to the choice of k with multiple sources, the trend is opposite to the single-

source case. This is especially visible for smaller values of k, where each increase by 1 obviously

increases the aggregate throughput. To understand this, recall that the resources of every core

are effectively used in this case, in the sense that there is no idle time. However, performing a

broadcast operation consumes more resources on different cores if k is lower since there are

more accesses to the GIC to send interrupts. Thus, the cores manage to do less useful work.

3.4 Summary

We have presented OC-BCAST, a broadcast algorithm that leverages on-chip one-sided com-

munication. The design and implementation of OC-BCAST demonstrate how a high degree of

parallelism can be attained in a broadcast algorithm for the experimental Intel SCC processor.

Breaking the abstraction of two-sided communication and working directly with message

passing buffers enabled a significant performance increase, in terms of both latency and

throughput. The asynchronous version of OC-BCAST shows how the hardware and software

overhead of interrupt-based communication, although high, can be made acceptable in

collective communication if there is hardware support for interrupt multicast.

It is worth noting that there is still some room for further optimization. For example, on

the SCC itself, the presented algorithms do not profit from the fact that an MPB is shared by

two cores on the same tile. Taking this into account would reduce the number of necessary

copy operations (although it would necessitate some extra synchronization between the cores

on the same tile). Still, our goal was not to optimize the algorithm with every processor-

specific feature in mind, but to present general reasoning. We believe OC-BCAST can be used

without much modification on platforms with similar characteristics, such as the Parallella

processor [Ada14].

32

4 Communication Model for the Intel
SCC

Chapter 3 introduced OC-BCAST and experimentally showed its efficiency on the Intel SCC.

In order to better understand the obtained performance gain, in this section we devise a

communication model for the Intel SCC and use it to analytically express the performance of

the different broadcast algorithms. We start by modeling the put and get primitives, the basic

building blocks of all algorithm implementations on the SCC (Section 4.1). The proposed

model assumes contention-free execution, so we also study contention on the SCC, in order

to assess the model’s validity domain. Next, we model two-sided communication (send and

receive), as implemented in the RCCE library on top of put and get (Section 4.2). Finally, we

derive formulas for the latency and throughput of synchronous OC-BCAST, as well as the

two-sided broadcast algorithms, binomial tree and scatter-allgather (Section 4.3). The results

are discussed in Section 4.4.

4.1 Modeling the put and get Primitives

Here we propose a model for the one-sided put and get primitives. It is based on the LogP

model [CKP+93] and the Intel SCC specifications [HDH+10]. After introducing the model, we

experimentally validate it and assess its domain of validity.

4.1.1 The model

The LogP model [CKP+93] characterizes a message-passing parallel system using the number

of processors (P), the time interval or gap between consecutive message transmissions (g),

the maximum communication latency of a single-word-sized message (L), and the overhead

of sending or receiving a message (o). This basic model assumes small messages. To deal

with messages of arbitrary size, it can be extended to express L, o and g as a function of the

message size [CLMY96].

We adapt the LogP model to the SCC communication characteristics. The LogP model assumes

that the latency is the same between all processes. However, the SCC mesh communication

33

Chapter 4. Communication Model for the Intel SCC

Lmpb
w (d) = ompb +d ·Lhop (4.1)

C mpb
w (d) = ompb +2d ·Lhop (4.2)

Lmpb
r (d) =C mpb

r (d) = ompb +2d ·Lhop (4.3)

Lmem
w (d) = omem

w +d ·Lhop (4.4)

C mem
w (d) = omem

w +2d ·Lhop (4.5)

Lmem
r (d) =C mem

r (d) = omem
r +2d ·Lhop (4.6)

C mpb
put (m,d d st) = ompb

put +m ·C mpb
r (1)+m ·C mpb

w (d d st) (4.7)

C mem
put (m,d sr c ,d d st) = omem

put +m ·C mem
r (d sr c)+m ·C mpb

w (d d st)

(4.8)

Lmpb
put (m,d d st) = ompb

put +m ·C mpb
r (1)+

(m −1) ·C mpb
w (d d st)+Lmpb

w (d d st) (4.9)

Lmem
put (m,d sr c ,d d st) = omem

put +m ·C mem
r (d sr c)+

(m −1) ·C mpb
w (d d st)+Lmpb

w (d d st) (4.10)

Lmpb
g et (m,d sr c) =C mpb

g et (m,d sr c) = ompb
g et +m ·C mpb

r (d sr c)+m ·C mpb
w (1) (4.11)

Lmem
g et (m,d sr c ,d d st) =C mem

g et (m,d sr c ,d d st) = omem
g et +m ·C mpb

r (d sr c)+m ·C mem
w (d d st)

(4.12)

Figure 4.1 – Communication Model (L – latency, C – completion time)

latency is a function of the number of routers traversed on the path from the source to the

destination. In our model, the number of routers traversed by one packet is defined by the

parameter d . Communication on the SCC mesh is done at the packet granularity. A packet

can carry one cache line (32 bytes). We use the number of cache lines (CL) as unit for message

size. Note that the SCC cores, network and memory controllers are not required to work at the

same frequency. For that reason, time is chosen as the common unit for all model parameters.

For each operation, we model (i) the completion time, i.e., the time for the operation to return,

and (ii) the latency, i.e., the time for the message to be available at the destination. We start

by read/write on the MPBs and on the off-chip private memory. Then we model put/get

operations based on read/write. A read operation, executed by some core c, brings one cache

line from an MPB, or from the off-chip private memory of core c , to its internal registers1. The

write operation, executed by some core c, copies one cache line from some internal registers

of core c to an MPB, or the off-chip private memory of core c. The formulas representing our

model are given in Figure 4.1, and are described in the following.

1The read operation, as defined here, should not be interpreted as a single instruction. Indeed, it is implemented
as a sequence of instructions, which read an aligned cached line word by word. The first instruction causes a cache
miss, and the corresponding cache line is moved to the L1 cache of the calling core. The subsequent instructions
hit in the L1 cache. Analogous holds for write operations, except that L1 prefetching is implemented in software.

34

4.1. Modeling the put and get Primitives

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8 9

M
ic

ro
se

co
n
d
s

Distance in Hops

MPB to MPB Get Completion Time

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8 9

M
ic

ro
se

co
n
d
s

Distance in Hops

MPB to MPB Put Completion Time

Exp: 1 CL
Exp: 4 CL
Exp: 8 CL

Exp: 16 CL
Model: 1 CL
Model: 4 CL
Model: 8 CL

Model: 16 CL

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4

M
ic

ro
se

co
n
d
s

Distance in Hops

MPB to Memory Get Completion Time

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4

M
ic

ro
se

co
n
d
s

Distance in Hops

Memory to MPB Put Completion Time

Figure 4.2 – get and put performance (CL = Cache Line)

MPB read/write

Any read or write operation of a single cache line includes some core overhead ompb , as well

as some mesh overhead which depends on d (the distance between the core and the MPB).

We define Lhop as the time needed for one packet to traverse one router; it is independent of

the packet size. Therefore, the latency of writing one cache line to an MPB is given by Formula

4.1 in Figure 4.1. The write completes when the acknowledgment from the MPB is received,

which adds d ·Lhop (Formula 4.2).

To read one cache line from an MPB, a request has to be sent to this MPB; the cache line is

received as a response. Therefore the latency and the completion time are equal (Formula

4.3).

Off-chip read/write

By omem
r and omem

w , we represent the constant overhead of reading and writing one cache line

from/to the off-chip memory. Note that in the LogP model, an overhead o is supposed to

represent the time during which the processor is involved in the communication. We choose

to include memory read and write overheads in omem
r and omem

w for the sake of simplicity. The

latency and the completion time of off-chip memory read/write correpond to Formulas 4.4-4.6,

where d represents the distance between the core that executes the read/write operation and

the memory controller.

35

Chapter 4. Communication Model for the Intel SCC

Operation put

To model put (and later get) from MPB to MPB, we introduce ompb
put (respt. ompb

g et) to define the

core overhead of the put (respt. get) function apart from the time spent moving data. The

corresponding omem
put and omem

g et are used for operations involving private off-chip memory. A

put operation executed by core c reads data from some source and writes it to some destina-

tion: the source is either c’s local MPB (Formula 4.7) or private off-chip memory (Formula

4.8), and the destination is an MPB. We denote by d sr c the distance between the data and

core c executing the operation, and by d d st the distance between c and the MPB to which

the data is written. If c moves data from its local MPB then d sr c = 1. Otherwise, d sr c is the

distance between c and the memory controller. Note also that the P54C cores can only execute

one memory transaction at a time: moving a message of m cache lines takes m times the

time needed to move one cache line.2 The latency is a bit lower, since it does not include the

acknowledgment of the last cache line written to the remote MPB (Formulas 4.9 and 4.10).

Operation get

A get operation executed by core c reads data from some source and writes it to some des-

tination: the source is an MPB, and destination is c’s local MPB (Formula 4.11) or private

off-chip memory (Formula 4.12). We denote by d sr c the distance between the data and core c

executing the operation, and by d d st the distance between c and the MPB to which the data

is written. If c moves data to its local MPB, then d d st = 1. Otherwise, d d st is the distance

between c and the memory controller. In the case of a get operation, latency and completion

time are equal.

4.1.2 Model validation

We perform a set of experiments to determine the value of the introduced parameters and to

validate our model. Experimental settings are detailed in Section 3.3.1. Figure 4.2 presents

with dots the completion time of put and get operations, as a function of the distance and the

message size. The parameter values obtained are presented in Table 4.1. The performance

obtained from the model is represented by lines in the same figure. It shows that our model

precisely estimates communication performance. Note that, for a given message size, the

performance difference between the 1-hop distance (which means accessing the MPB of the

other core on the same tile) and the 9-hop distance (maximum distance) is only 30%, since

the local overhead of sending a message dominates the cost of one network hop. This justifies

our decision to ignore topology issues when designing and evaluating the algorithms.

2For this reason, we do not need to use the parameter g of the LogP model.

36

4.1. Modeling the put and get Primitives

parameter Lhop ompb omem
w omem

r ompb
put ompb

g et omem
put omem

g et

value (µs) 0.005 0.126 0.461 0.208 0.069 0.33 0.19 0.095

Table 4.1 – Parameters of our model

4.1.3 Contention issues

As mentioned before, the proposed model assumes contention-free execution. Bearing that in

mind, we study contention on the SCC to assess the validity domain of the model. We identify

two possible sources of contention related to one-sided communication: the NoC mesh and

the MPBs. Generally speaking, concurrent accesses to the off-chip private memory could be

another source of contention. However, in the configuration without shared memory, assumed

throughout this study, each core has one memory rank for itself and there is no measurable

performance degradation even when the 48 cores are accessing their private portions of the

off-chip memory at the same time [vTBV+11].

To understand if the mesh could be subject to contention, we have run an experiment that

highly loads one link. We selected the link between tile (2,2) and tile (3,2). To put a maximum

stress on this link, all cores except the ones located on these two tiles are repeatedly getting

128 cache lines from one core in the third row of the mesh, but on the opposite side of the

mesh compared to their own location. For instance, a core located on tile (5,1) gets data from

tile (0,2). Because of X-Y routing, all data packets go through the link between tile (2,2) and

tile (3,2). The measurement of a MPB-to-MPB get latency between tile (2,2) and tile (3,2)

with the heavily loaded link did not show any performance drop, compared to the load-free

get performance. This shows that, at the current scale, the network cannot be a source of

contention.

Contention could also arise from multiple cores concurrently accessing the same MPB. To

evaluate this, we have run a test where cores are getting data from the MPB of core 0 (on tile

(0,0)), and another test where cores are putting data into the MPB of core 0. For these tests,

we select two representative scenarios of the access patterns in our broadcast algorithms

presented in Chapter 3: parallel gets of 128 cache lines and parallel puts of 1 cache line. Note

that having parallel puts of a large number of cache lines is not a realistic scenario since it

would result in several cores writing to the same location, causing most of the writes to be dead.

Figure 4.3a shows the impact on latency when increasing the number of cores executing get in

parallel. Figure 4.3b shows the same results for parallel put operations. The x axis represents

the number of cores executing get or put at the same time. The results are average values

over millions of iterations. In addition to the average latency, the performance of each core is

displayed to better highlight the impact of contention (small circles in Figure 4.3). When all 48

cores are executing get or put in parallel, contention can be clearly noticed. In this case, the

slowest core is more than two times slower than the fastest one for get, and more than four

times slower for a put operation. Moreover, we have observed non-deterministic overheads

37

Chapter 4. Communication Model for the Intel SCC

 0

 20

 40

 60

 80

 100

 1 2 4 6 8 12 16 24 32 40 48

M
ic

ro
se

co
n

d
s

Number of concurrent accesses

Average Time
Single Core Latency

(a) Concurrent MPB get completion time (128 cache
lines)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 2 4 6 8 12 16 24 32 40 48

M
ic

ro
se

co
n

d
s

Number of concurrent accesses

Average Time
Single Core Latency

(b) Concurrent MPB put completion time (1 cache
line)

Figure 4.3 – MPB contention evaluation

after the contention threshold, by running the same experiment on other cores than core 0. It

can be noticed that contention does not equally affect all cores, which makes it hard to model.

These experiments indicate that MPB contention has to be taken into account in the design of

algorithms for collective operations, which is taken into account by OC-BCAST by introducing

the k parameter. They show that up to 24 cores accessing the same MPB do not create

any measurable contention. With more than 24 cores accessing the same MPB at the same

time, there is visible contention, which degrades put and get performance and diverges from

the established model. Note, however, that this does not necessarily mean that contented

scenarios should be avoided by all means, as we saw in Section 3.3 with the asynchronous

version of OC-BCAST. Namely, even with contention, the maximum degree of the broadcast

tree (k = 47) was still most efficient, as it enabled us to have only one expensive interrupt on

the critical path.

4.2 Modeling Two-sided RCCE Communication

Before modeling the RCCE_comm broadcast algorithms, we need to model the two-sided

send/r ecei ve primitives from the RCCE library.

The RCCE send/receive functions are implemented on top of the one-sided put and get op-

erations [MVDW10]. The RCCE send function puts the message payload from the private

memory to the MPB of the sender. The RCCE recv function gets the message payload from

the MPB of the sender to the private memory of the receiver. Both functions are synchronous:

the send can only terminate when the corresponding recv has finished receiving the data. To

synchronize the sender and the receiver, flags are updated after putting and after getting the

data. Writing or reading a flag is modeled by a single MPB access.

In the synchronous broadcast algorithms we consider, each communication step includes

38

4.2. Modeling Two-sided RCCE Communication

only pairs of nodes. In other words, there is no sequence in which multiple cores send a

message to one core, and that core executes r ecei ve for each of them, or vice versa. Therefore,

we assume that, for each send/r ecei ve pair, send and r ecei ve are called simultaneously

(there is no waiting time). Under that assumption we can directly model the completion time

of a send/r ecei ve pair. First, we express it for one chunk of data:

Csr _chunk (s) =Cput mem(s,d mem ,d mpb)+C mem
g et (s,d mpb ,d mem)

+2 · (Lmpb
w (d mpb)+C mpb

r (1)+C mpb
w (1)

)

The term
(
Lmpb

w (d mpb)+C mpb
r (1)+C mpb

w (1)
)

corresponds to the time needed to synchronize

the sender and the receiver and to reset the corresponding flag.

To transfer a multi-chunk message, the above function is repeatedly called for every chunk,

until completion, so the completion time of a send/r ecei ve pair of operations is:

Csr (s) = b s

Mr cce
c ·Csr _chunk (Mr cce)+Csr _chunk (s mod Mr cce)

However, this model is not precise enough for some practical scenarios. Namely, if a core

receives a short message and sends it further immediately afterwards, the completion time of

the send operation is significantly reduced because the message stays in the on-chip cache

(L1 or L2) after the receive operation. To take this into account, we assume a negligible cost of

reading from on-chip caches and express the completion time as (m is the message size, in

cache lines):

Csr _chunk_cache (m) = omem
put +m ·C mpb

w (1)+C mem
g et (m,d mpb ,d mem)+

+2 · (Lmpb
w (d mpb)+C mpb

r (1)+C mpb
w (1)

)
Csr _cache (m) = b m

Smax_r cce
c ·Csr _chunk_cache (Mr cce)+Csr _chunk_cache (s mod Mr cce)

When modeling the binomial and scatter-allgather algorithms, we assume that the whole

message can fit in the on-chip L2 cache (256 KB per tile, i.e. 128 KB per core). Therefore, the

presented models give the upper performance bound.

39

Chapter 4. Communication Model for the Intel SCC

Lcr i t i cal
OC-BCAST(P,m,k) =C mem

put (m)+O(l ogk P) ·C mpb
g et (m)+C mem

g et (m)

= m ·
(
O(l ogk P) · (C mpb

r +C mpb
w

)+C mem
r +C mem

w

)
(4.13)

Lcr i t i cal
bi nomi al (P,m) =O(log2P) · (m ·C mpb

w +C mem
g et (m))

= m ·
(
O(l og2P) · (C mpb

r +C mpb
w +C mem

w

)+C mem
r

)
(4.14)

BOC-BCAST = Moc

C mpb
g et (Moc)+C mem

g et (Moc)
= 1

2C mpb
r +C mpb

w +C mem
w

(4.15)

Bscat ter _al l g ather =
P ·Moc

P · (C mem
put (Moc)+C mem

g et (Moc))+ (2P −3)(Moc ·C mpb
w +C mem

g et (Moc))

≈ 1

3C mpb
r +3C mpb

w +C mem
r +3C mem

w

(4.16)

Figure 4.4 – Latency and Throughput Model for Broadcast Operations

4.3 Modeling Synchronous Broadcast Algorithms

We analytically compare synchronous OC-BCAST with the binomial tree and scatter-allgather

algorithms. As before, we consider their implementations from the RCCE_comm library

[Cha10]. In the modeling of the algorithms we assume that no time elapses between setting

the flag (by one core) and checking that the flag is set (by the other core). Since topology issues

are not discussed in this study, we simply consider an average distance d mpb = 1 for accessing

remote MPBs, and an average distance d mem = 1 for accessing the off-chip memory. Other

assumptions match the experimental setup presented in Section 3.3. To highlight the most

important properties, we divide the analysis in two parts: latency of small messages (OC-

BCAST vs. binomial tree) and throughput of large messages (OC-BCAST vs. scatter-allgather).

Figure 4.4 summarizes the main formulas that will be derived in this chapter, expressing

the expected latency and throughput of the different broadcast algorithms, as a function of

the number of processors (P), message size (m) and, for OC-BCAST, the degree of the data

propagation tree (k). A quick look at these formulas reveals the main advantage of OC-BCAST:

The impact of off-chip memory accesses (C mem
r and C mem

w , marked in bold) on latency and

throughput is lower than in the other algorithms. In the following, we derive the formulas step

by step, explaining them in more detail.

4.3.1 Latency of short messages

For the sake of simplicity, we ignore notification costs here and concentrate only on the critical

path of data movement in the algorithms.

40

4.3. Modeling Synchronous Broadcast Algorithms

Latency of OC-BCAST

Here we consider messages of size 0 < m ≤ 2Moc . We define the broadcast latency as the time

elapsed between the call of the broadcast procedure by the root and the time when the last

core (including the root) returns from the procedure.

To express the latency of OC-BCAST, we first model the time it takes for the k children of a

core to be aware of the availability of a new chunk in the MPB of their parent. The children are

notified using a binary tree, whose degree as a function of k is dlog2(k)e. Thus, we get:

Lnoti f y_chi l dr en(k) = dlog2(k)e · (C mpb
put (1,d mpb)+Lmpb

put (1,d mpb)+C mpb
r (1))

At each level of the tree, it includes the time for completing the notification of the first child

(C mpb
put (1,d mpb)), the time to write the flag of the second child (Lmpb

put (1,d mpb)), and the time

for the child to read it (C mpb
r (1)).

Similarly, to find out that all of the children have copied the data to their MPBs, a core polls k

flags, so it must read each of them at least once:

Lpol l i ng _chi l dr en(k) = k ·C mpb
r (1)

Next, we express the depth of the tree D, as a function of k and P (number of cores). In a

complete k-ary tree, there are k i nodes at the i -th level. Therefore, the depth of the tree used

by OC-BCAST is the number of levels necessary to "cover" P cores:

1+k +k2 + ...+kd−1 = kd −1

k −1
≥ P (4.17)

Now we can express D , as the minimum natural number satisfying the above inequation:

D = dlogk (P (k −1)+1)e (4.18)

Then we model the latency of the broadcast_chunk() function for one chunk based on Algo-

rithm 1 (Section 3.1). As a first step, we model T , the amount of time that the root of the tree,

an intermediate node, and a leaf adds to the latency of broadcast_chunk(), considering that

the message contains at most two chunks. For the root, Tchunk_r oot includes putting the chunk

in its MPB (C mem
put (m,d mem ,1)), and notifying its k children in the message propagation tree:

Tchunk_r oot (m,k) =C mem
put (m,d mem ,1)+Lnoti f y_chi l dr en(k)

(4.19)

For an intermediate node, it includes the time needed to get the chunk from its parent’s MPB

41

Chapter 4. Communication Model for the Intel SCC

(C mpb
g et (m,d mpb)), to acknowledge receipt (C mpb

put (1,d mpb)), and to notify its children.

Tchunk_i nter medi ate (m,k) =C mpb
g et (m,d mpb)+C mpb

put (1,d mpb)+Lnoti f y_chi l dr en(k)

(4.20)

Finally, for a leaf, it includes the time to get the chunk from its parent’s MPB (C mpb
g et (m,d mpb)),

to notify its parent that it has the chunk, and to copy the leaf to its private memory.

Tchunk_l ea f (m) =C mpb
g et (m,d mpb)+C mpb

put (1,d mpb)+Lmem
g et (m,1,d mem)

Now we can express the latency of transferring one chunk of size m ≤ Moc between P cores,

using a k-ary tree:

Lbcast_chunk (P,m,k) = Tchunk_r oot (m,k)+ (D −2) ·Tchunk_i nter medi ate (m,k)+
+max

(
Tchunk_lea f (m),C mem

g et (m,1,d mem)+
+Lpol l i ng _chi l dr en(k)

)
Depending on the time needed for the last intermediate node to poll the k flags after copying

a chunk to its private memory, it can finish later than the last leaf, as expressed by the last term

of the formula.

Finally, the latency of OC-BCAST for a message of size m ≤ 2Moc depends on size of the second

chunk m′ = max(m −Moc ,0):

LOC-BCAST_shor t (P,m,k) = Lbcast_chunk (P,mi n(m, Moc),k)+
+max

(
Tchunk_l ea f (m′),C mem

g et (m′,1,d mem)+
+Lpol l i ng _chi l dr en(k)

)
(4.21)

Note that Lchunk_lea f (0) = 0 because the function is called only if the second chunk exists.

Formula 4.21 will be used to compute the latency of OC-BCAST. After necessary expansions in

Formula 4.21, we obtain Formula 4.13.

Latency of the two-sided binomial tree

Recall that the binomial broadcast algorithm is based on a recursive tree. The set of nodes

is divided in two subsets of bP
2 c and dP

2 e nodes. The root, belonging to one of the subsets,

sends the message to one node from the other subset. Then, broadcast is recursively called on

both subsets. Obviously, the formed tree has dlog2(P)e levels and in each of them the whole

message is sent between the pairs of nodes, so the total latency, ignoring the cache effects

discussed above, is:

42

4.3. Modeling Synchronous Broadcast Algorithms

Lbi nomi al _nocache (P,m) = dlog2(P)e ·Csr (m)

Note that, after receiving the message, a core just sends it to other cores in the subsequent

recursive invocations. This means that only the first send-receive pair, which involves the

root and another core, should be modeled as Csr , whereas the others are modeled as Csr _cache .

When this is taken into account, the latency of the binomial algorithm becomes:

Lbi nomi al (P, s) =Csr (m)+ (dlog2(P)e−1) ·Csr _cache (m) (4.22)

Formula 4.22 will allow us to compute the latency of the binomial broadcast algorithm. By

expanding Csr and Csr _cache , Formula 4.14 is obtained.

Latency comparison

Now we can directly compare the analytical expressions for the two broadcast algorithms.

Figure 4.5a plots latency as a function of the message size. For OC-BCAST, different values

of k are given (k = 2, k = 7, k = 47). As we can see, OC-BCAST significantly outperforms the

binomial tree algorithm. This is not surprising, given that in Formula 4.13, which represents

the latency of OC-BCAST, there are only two off-chip memory operations (C mem
r /w) on the

critical path for one chunk, regardless of the number of cores P . This is not the case for the

binomial algorithm, represented by Formula 4.14. Moreover, as k increases, the number of on-

chip copy operations on the critical path reduces for OC-BCAST. Further, the data presented

in Figure 4.5 is almost identical to the result obtained by running experiments (Figure 3.2a,

Section 3.3). The small difference can be explained by not taking topology into account.

The advantage of OC-BCAST increases further when increasing the message size because of

double buffering and pipelining. It can be observed in Figure 4.5a that the slope changes

for messages larger than MOC-BCAST (96 cache lines). In Figure 4.5b, we can also notice that

OC-BCAST-47 is slower for very small messages in spite of having only two levels in the data

propagation tree (the root and its 47 children). The reason is that a large value of k increases

the cost of polling (recall that polling is expensive because of a bug that requires us to access

the local MPB through the router). For k = 47, the root has 47 flags to poll before it can free its

MPB.

4.3.2 Throughput of large messages

Now we model throughput achievable with large messages. We compare OC-BCAST with the

RCCE_comm scatter-allgather algorithm. To simplify the modeling, we assume a message of

43

Chapter 4. Communication Model for the Intel SCC

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 20 40 60 80 100 120 140 160 180

M
ic

ro
se

co
n

d
s

Message size (cache lines)

k=2
k=7

k=47
binomial

(a) Modeled broadcast latency

 0

 20

 40

 60

 80

 100

 120

 140

 160

 5 10 15 20 25 30

M
ic

ro
se

co
n

d
s

Message size (cache lines)

k=2
k=7

k=47
binomial

(b) Modeled broadcast latency (zoom-in)

Figure 4.5 – Analytical latency comparison. OC-BCAST (k = 2,7,47) vs. two-sided binomial
tree

size P ·Moc . With OC-BCAST, such a message is transferred in P chunks of size Moc . Scatter-

allgather transfers the same message by dividing it into P slices of size Moc .

Throughput of OC-BCAST

Messages are now large enough to fill the pipeline used by OC-BCAST. For such messages,

every node executes a loop, where one chunk is processed in each iteration. We compute the

completion time of the broadcast_chunk() function for such an iteration considering the root,

an intermediate node and a leaf.

Cchunk_r oot (k) = Lpol l i ng _chi l dr en(k)+C mem
put (Moc ,d mem ,1)+2 ·C mpb

put (1,d mpb)

Cchunk_i nter medi ate (k) = Lpol l i ng _chi l dr en(k)+C mpb
r (1,1)+C mpb

g et (Moc ,d mpb)

+3 ·C mpb
put (1,d mpb)+C mem

g et (Moc ,1,d mem)

Cchunk_l ea f =C mpb
r (1,1)+C mpb

g et (Moc ,d mpb)

+C mpb
put (1,d mpb)+C mem

g et (Moc ,1,d mem)

The time to fully process a chunk is determined by the slowest node. Therefore, based on the

slowest completion time, the throughput is easily expressed as:

B(k) = Moc

max(Cchunk_r oot (k),Cchunk_i nter medi ate (k),Cchunk_lea f)
(4.23)

44

4.3. Modeling Synchronous Broadcast Algorithms

This is how Formula 4.15 is obtained. Note that no matter what the values of the parameters

are, the leaf is always faster than the intermediate node. However, we keep Cchunk_lea f in the

above formula, because there is a special case with no intermediate nodes, for the maximum

value of k (47 for the SCC).

Throughput of two-sided scatter-allgether

The scatter-allgather broadcast algorithm has two phases, as discussed in Section 3.3.2. During

the scatter phase, the message is divided into P equal slices3 of size ms = m/P . Each core then

receives one slice of the original message. The second phase of the algorithm is allgather,

during which a node should obtain the remaining P −1 slices of the message.

Scatter The scatter phase is done using a recursive tree, similar to the one used by the

binomial tree algorithm. However, in this case we do not transfer the whole message in each

step, but only a part of it. Thus, expressed recursively, the completion time of the scatter part

is:

Cscat (P,ms) =Csr (bP

2
c ·ms)+Cscat (dP

2
e,ms), for P > 2

Cscat (2,ms) =Csr (ms)

Cscat (1,ms) = 0

Overall, the scatter phase does not benefit from temporal locality, which can be easily noticed

by observing the actions of the root. Namely, the root sends different parts of the message in

every recursive call (first, a half of the original message, then, a half of the non-cached half of

the original message etc). Although other nodes might reuse data, the performance is dictated

by the slowest node, which is the root. Therefore, the given formula holds even in the presence

of caches.

Allgather As already mentioned, the allgather phase implemented in RCCE_comm uses the

Bruck algorithm [BHU+97]: At each step, core i sends to core i −1 the slices it received in the

previous step. In each iteration of the allgather algorithm, a core i sends one slice to core i −1

and receives one slice from core i +1. Therefore, the completion time of this phase, without

considering the caches, is:

Cal l g ath_nocache (P,ms) = 2 · (P −1) ·Csr (ms)

3For simplicity, we assume that P |m.

45

Chapter 4. Communication Model for the Intel SCC

Note that in each of P−1 iterations, except in the first one, a core sends the slice of the message

received in the previous iteration. In the first iteration, all cores have the corresponding slice

of the message ready in the cache (thanks to the scatter phase), except the root, which has

never accessed its slice of the scattered message before. Therefore, in the cache-aware model,

each but one occurrence of Csr should be replaced by Csr _cache :

Cal l g ath(P,ms) =Csr (ms)+ (2P −3) ·Csr _cache (ms)

Scatter-allgather Finally, the completion time of the scatter-allgather algorithm run on P

processes with a message of size m is:

Cscat−al l g ath(P,m) =Cscat (P,
m

P
)+Cal l g ath(P,

m

P
) (4.24)

There is no pipelining in this algorithm, so the throughput can be easily expressed by dividing

the message size by the derived completion time. Thus we obtain Formula 4.16.

Throughput comparison

Table 4.2 gives throughput estimations, calculated from the above formulas and the parame-

ters given in Table 4.1. As with latency, the numbers are very close to those experimentally

obtained in Section 3.3 (Figure 3.2b). Regardless of the choice of k, the throughput is almost

three times better than that provided by two-sided scatter-allgather. The additional terms in

Formula 4.16 compared to Formula 4.15 explain the performance difference in Table 4.2: The

number of write accesses to the MPBs and to the off-chip memory (C mpb
w and C mem

w) with

OC-BCAST is three times lower than that of the scatter-allgather algorithm based on two-sided

communication. The number of read accesses is also reduced.

Looking back at experimental results from Figure 3.2b, it can be noticed that the only signif-

icant difference with respect to the analytical predictions is for OC-BCAST with k = 47 (the

throughput is about 16% lower than predicted). It is now clear that MPB contention is one

of the sources of the observed performance degradation. Thus, large values of k might turn

out to be inappropriate at large scale, since the gain in parallelism could be paid by a more

significant loss related to contention.

4.4 Summary

This chapter has introduced an analytical model for the Intel SCC, which is used to derive

formulas for the latency and throughput of the synchronous OC-BCAST, binomial tree and

46

4.4. Summary

Algorithm OC-BCAST OC-BCAST OC-BCAST scatter-allgather
k=2 k=7 k=47

Throughput (MB/s) 35.22 34.30 35.88 13.38

Table 4.2 – Broadcast algorithms: analytical throughput comparison

scatter-allgather broadcast algorithms. The presented analysis confirms that our broadcast

implementation based on one-sided operations brings considerable performance benefits, in

terms of both latency and throughput. The main reason is the reduced number of off-chip

memory accesses on the critical path, with respect to the two-sided algorithms. Comparing the

analytical results with those from the experimental study presented in Section 3.3 reveals that

the derived model enables us to estimate latency and throughput very precisely in contention-

free execution. The instantiation of the presented model assumes that access to a local

MPB requires passing through the local router, because of a hardware bug on the SCC. In a

configuration where the MPB local to a core is directly accessed, the advantage of OC-BCAST

over the alternatives would be even higher.

It would be interesting to extend the presented model to capture the existence of contention.

This would enable us to look at the choice of a tree degree (k), which involves a parallelism-

contention tradeoff, from a purely analytical perspective. Contention models have been

studied before for shared-memory algorithms [DHW97, BWKMZ12].

47

IIFast Mutual Exclusion on Standard
and Emerging Processors

49

5 Background and Preliminaries

5.1 Motivation

A vast majority of today’s software is written for shared-memory computers, as mentioned

in Chapter 1. When multiple threads share data and can access it concurrently, ensuring

mutual exclusion is one of the key challenges. The most common approach to solving this

problem is by using locks: A thread acquires a lock before entering its critical section, and

releases it afterwards. More complex synchronization primitives, such as reader-writer locks

and monitors typically use simple locks as the basic building block.

Locks, however, may cause scalability issues. Ideally, when running a program on a manycore

machine, we aim for linear speedup: If the program is run on n cores, we would like it to

execute n times faster than on a single core. However, in reality, there are fundamental laws of

parallelism that dictate how well a parallel program can scale. If only one thread at a time can

execute a portion of code, which is the case when a lock is used to access shared data, that part

of code is inherently sequential, i.e., it is not parallelizable. If a program contains a fraction

of sequential code, no matter how small, an implication of Amdahl’s law [Amd67, Gus88] is

that the achievable speedup is limited. In other words, after some point, additional cores will

not increase program execution speed. The larger the sequential part, the fewer cores the

program can benefit from. It is important to point out that sequentiality is not only a problem

of locks: It also exists when other synchronization means are used, such as nonblocking data

structures [Her91] or transactional memory [HM93].

Therefore, to leverage the increasing number of cores per chip, it is necessary to make the

sequential portion of a program as short as possible. How this is done largely depends on

the problem we want to solve. Some problems are known to have embarrasingly parallel

solutions, which scale perfectly with the number of cores [HB09]. Others, however, are not

easily parallelizable, and require substantial effort to make them faster on a manycore pro-

cessor [LDT+12]. While there are countless problem-specific techniques and optimizations,

we will focus on improving the performance of mutual exclusion on a critical section, as a

problem-independent way of addressing one source of sequential bottlenecks, thus enabling

51

Chapter 5. Background and Preliminaries

concurrent software to scale better. More precisely, our goal in this part of the thesis is to

minimize overheads of executing critical sections, using off-the-shelf hardware. At the same

time, we strive to keep the programming interface as simple as possible, enabling non-experts

to easily write efficient implementations of arbitrary concurrent objects.

Our study reveals that the most efficient known algorithms for critical section execution are,

once implemented on a commodity processor, limited by the performance of the cache coher-

ence protocol. We propose two ways to overcome this problem, thus improving performance.

The first is leveraging hardware support for message passing, existing in some emerging pro-

cessors. The second is relying on special instructions and characteristics of commonplace

processors, with the goal of mimicking hardware support for message passing. Before detailing

our contributions (Section 5.4), we present the assumed system model (Section 5.2) and give

some background on mechanisms for efficient critical section execution. An overview of

related work is given in Section 5.5.

5.2 System Model

We assume a set of T sequential threads that can communicate both by issuing operations to

coherent shared memory and by directly exchanging messages. It is assumed that the system

is fault-free: threads do not crash and every thread eventually makes progress.

Cache coherence. In the cache-coherent (CC) shared-memory model, threads operate on

cached copies of shared variables. We assume a model adapted from the one by Sorin et

al [SHW11]. A processor chip is composed of single-threaded cores. Each core has its local,

private data cache. All cores have access to a globally shared memory through an intercon-

nection network. The cache coherence protocol maintains the single-writer-multiple-reader

invariant: At any given time, either a single core has read-write access to a cached variable, or

some cores have read-only access [SHW11]. Remote Memory References (RMRs) are accesses to

shared variables that involve communication on the interconnection network. In this model

and assuming write-back caches, reading a shared variable generates an RMR if the core does

not hold a copy of the variable in either mode. Writing a shared variable generates an RMR if

the core does not hold a copy of the variable in read-write mode.

Shared-memory operations. The memory is an array of 64-bit locations. Similarly to most

related studies, we assume that the memory is sequentially consistent. Supported operations

on a memory location a are the standard read(a), write(a, v) operations as well as some

atomic read-modify-write operations, namely FAA(a, v) (fetch-and-add), SWAP(a, v) and

CAS(a, vol d , vnew) (compare-and-set1), with their standard definitions.

1The variant of compare-and-swap that returns a boolean.

52

5.3. Critical Section Execution on a Cache-Coherent Processor

Message-passing operations. Each thread has an incoming FIFO message queue that stores

64-bit values (message queue hereafter). Supported message-passing operations are send ,

r ecei ve and i s_msg _queue_empt y . The operation send(i , M) puts message M , which

is a set of values v1, v2, ..., vn , in the message queue of thread ti . The send operation is

asynchronous, i.e., it may return before M is placed in the destination message queue. Message

transmission time is bounded but unknown, i.e., the time between a call to send and the

moment when the message is placed in the corresponding queue is arbitrarily, but finitely long.

If |M | > 1, values are placed in the destination message queue in the order v1, v2, ..., vn . The

operation r ecei ve(k) returns k values from the head of the local message queue. If there are

fewer than k values in the queue, the operation blocks until k values are available. Operation

i s_msg _queue_empt y() returns true if the local message queue is empty.

5.3 Critical Section Execution on a Cache-Coherent Processor

This section details existing techniques for the efficient execution of critical sections on

cache-coherent processors. It explains how their performance is influenced by the underlying

CC protocol. We address two common ways to ensure mutual exclusion: classic locks and

delegation.

5.3.1 Classic locks

Critical sections are usually implemented using locks. In this context, the basic technique to

improve scalability is to introduce local spinning [MCS91]: Each thread polls on a different

variable which stays in its local cache. As a result, the number of RMRs per lock acquisition

is constant, i.e., it does not depend on the number of threads competing for the lock. This

ensures that the performance of the lock does not deteriorate with increased contention,

which is a problem faced by simple locks without local spinning, such as test-and-set [HS08].

In a lock implementation, local spinning is most often ensured by maintaining an explicit

or imlicit queue of threads that wait to acquire the lock. When the thread t holding the lock

releases it, t lets the next thread t ′ in the queue acquire it, by writing to a shared variable t ′ is

spinning on. Because of this, such locks are often referred to as queue locks. Irrespective of the

implementation, a queue lock handover on a cache-coherent system has at least two RMRs

on the critical path: One from the thread that releases the lock, to write that the next thread

can proceed, and one from that next thread, to read the written information. This is depicted

in Figure 5.1, where thread a is handing over a lock to thread b, by setting f l ag _b. Since b is

spinning on f l ag _b, an RMR is triggered when a tries to write to f l ag _b, in order to bring

f l ag _b in read-write mode in the cache of the core where a is running, and invalidate the

cached copy b has. Subsequently, reads from b do not hit in the local cache anymore, which

triggers another RMR, to bring a read-only copy of f l ag _b in the cache of the core executing b.

Note that the two RMRs can partially overlap, since the second one can be triggered as soon as

f l ag _b is invalidated in the cache of b. Nevertheless, each of them typically involves several

53

Chapter 5. Background and Preliminaries

Figure 5.1 – Classic lock handover – shared-memory implementation; R(i), W (i) – reading
from (resp. writing to) the flag of thread i ; C S(i) – corresponding critical section; dark grey –
stalls (due to RMRs)

message exchanges between cores, cache controllers, or other implementation-dependant

agents, which significantly contributes to the lock handover time.

Apart from these synchronization RMRs, each critical section execution likely implies addi-

tional overheads, inherent to locks. Namely, there are RMRs inside the critical section itself:

The data protected by the lock keep bouncing between caches, as every thread accessing

them brings it to its local cache, possibly invalidating the other copies. Also, on architectures

with weak memory consistency models, every lock handover necessitates expensive memory

fences, to make sure that the new lock holder has the most recent copy of the data protected

by the lock.

5.3.2 Delegation

Delegation is a way to avoid the data bouncing problem inherent to classic locks. The key

idea is that, instead of moving the data associated with a CS to the core that wants to execute

the CS, the CS is executed on the core where the data are located. We can identify two

approaches that exploit this idea: the server approach [LDT+12, CCPG13], and the combiner

approach [FK12, HIST10, OTY99, FK11, KSW14].

Remote Core Locking (RCL) [LDT+12] is an efficient implementation of the server approach. A

non-application thread (the server) is in charge of executing CSes. Application threads (clients)

send requests to the server to execute a critical section on their behalf. Assuming that data

accessed inside the CSes are never accessed by application threads outside the CSes, these data

remain in the cache of the server, ensuring that the number of RMRs during CS execution is

minimized. Ideally, the only RMRs that remain on the critical path of the CS execution are the

ones related to synchronization between the clients and the server. Figure 5.2 illustrates the

execution of an RCL server. For client-server communication in RCL, each client thread has a

dedicated cache line, which it uses as a bi-directional channel. When client i wants to execute

54

5.3. Critical Section Execution on a Cache-Coherent Processor

channel i

R(i)

CS(i)

channel i

W(i)

channel i+1

R(i+1)

CS(i+1)

channel i+1

W(i+1)

Figure 5.2 – Mutual exclusion server – shared-memory implementation; R(i), W (i) – resp.
reading from, writing to the channel of client i ; C S(i) – corresponding critical section; dark
grey – server stalls (due to RMRs)

a CS, it writes its request to the cache line channeli , and then spins on that cache line until it

receives a reply from the server. The server first reads the request from channeli . Since the

last access to channeli was from client i writing the request, this read triggers an RMR (server

stalls are represented in dark grey). Then, the server executes the critical section. Finally, it

writes to channeli to inform the client that the request has been processed. This write triggers

another RMR to invalidate the client’s copy of the cache line. The figure assumes high load,

i.e., the server is never idle, and shows that in this case there are two RMRs at the RCL server

per CS. Note that Figure 5.2 is somewhat simplified, since it assumes the instructions are not

at all overlapped. On a real processor, the different RMRs might partially overlap, depending

on the memory consistency model and other features of the processor at hand, resulting in

fewer CPU stalls. Nevertheless, these RMRs remain an important source of overhead even on

a processor with weak memory consistency (see Section 6.2).

While keeping similar performance benefits, the combiner approach does not require dedi-

cated servers [HIST10]. When a thread gets a lock associated with a CS, it becomes a combiner

and executes operations of other threads that are waiting to access this CS, in addition to its

own. To prevent the combiner from starving if the number of operations of other threads

to execute is high, the combiner role is handed over to another thread when the current

combiner has served a predefined number of requests. CC-SYNCH [FK12] is, to our knowledge,

the most efficient combiner-based approach. Since the combiner changes over time, the

synchronization mechanism is more complex than in RCL. Nevertheless, with a thread acting

as a combiner, CC-SYNCH is similar to RCL with respect to RMRs: It generates one RMR to

read a request from another thread, and then generates another RMR to inform that thread

that the operation has been performed.

The server-based approach has the advantage of being simple and very efficient in cases

where a small number of clearly identified CSes are highly contended [LDT+12]. On the other

hand, combining is more flexible, which comes at the expense of requiring more complex

synchronization between threads. Indeed, combining automatically adapts to the load: If a CS

is highly contended, all the CPU cycles of one core will be temporarily allocated to it, but if no

thread tries to execute a CS, no resources are consumed.

Both with RCL and CC-SYNCH, only two RMRs related to thread synchronization remain on

the critical path as far as the server is concerned. These two RMRs, however, can have a big

55

Chapter 5. Background and Preliminaries

impact on throughput if the code to execute in the CS itself contains few or no RMRs.

It should be noted that, although delegation is efficient when contention is high, it has some

disadvantages compared to classic locks. First, it imposes some usability constraints. In

particular, since the thread executing the CS is usually not the one requesting it, access to

thread-specific state (thread-local and stack variables) and performing any thread-specific

work within a CS is harder. Second, when it comes to performance, simple classic locks might

be more efficient if contention is low [DGT13]. We will briefly compare the performance of

classic locks and delegation in Section 6.2.3.

5.4 Contributions

A way to circumvent the limitations of cache coherence in thread synchronization is direct,

explicit exchange of messages between threads. Indeed, hardware support for message passing

coexists with coherent shared memory in some modern hybrid processors. With such hybrid

architectures comes a big design space for synchronization primitives, as solutions that rely

both on shared memory and message passing can be devised. We come up with such solutions,

implement them on the Tilera TILE-Gx hybrid processor, and then use the lessons learned to

improve synchronization performance even on shared-memory-only architectures. In more

detail, our contributions are the following:

• A hybrid lock. We propose HYBLOCK, a lock that takes advantage of the hybrid na-

ture of emerging processors: The lock state is kept in shared memory, but the lock is

handed over between contending threads using message passing. In this way, HYBLOCK

retains the classic lock interface, but promises superior performance with respect to scal-

able shared-memory-only queue locks. Moreover, spinning on variables is completely

replaced by blocking on a local message queue, which enables energy saving.

• A hybrid combining algorithm. Our findings indicate that even state-of-the-art del-

egation algorithms, such as RCL [LDT+12] and CC-SYNCH [FK12], waste much time

in CPU stalls resulting from activities related to cache coherence. To overcome this

problem, we take advantage of hardware message passing and devise HYBCOMB, a

universal construction based on the combining technique. Similarly to HYBLOCK, HY-

BCOMB is a hybrid algorithm that relies both on cache-coherent shared memory and

message passing for synchronization: Message passing is used to exchange requests

and responses between the combiner and other threads, while shared memory is used

to manage combiner identity (which would be complex and inefficient to do using

message passing). Besides HYBCOMB, we also present MP-SERVER, a straightforward,

but very efficient and insightful adaptation of server-based delegation to systems with

hardware message passing.

• Delegation optimizations for shared-memory-only processors. Although hardware

support for message passing is very useful for improving synchronization performance,

56

5.5. Related Work

many contemporary processors, including the dominant x86 architecture, still do not

provide it. As a result, synchronization needs to be implemented entirely over shared

memory, even when the concept being implemented lends itself more naturally to

message passing, which is the case with server-based delegation. Using insights from

the study with hardware message passing, we explore how the performance of dele-

gation over cache-coherent shared memory can be improved by taking into account

the subtleties of the underlying cache coherence protocol. We show that a significant

throughput increase is achievable by employing simple, but inobvious and even coun-

terintuitive optimizations. In a nutshell, we emulate hardware message passing (i)

by avoiding collisions of hardware prefetchers and spinning threads and (ii) by using

non-temporal store instructions.

• Detailed performance evaluation. All the aforementioned algorithms and optimiza-

tions have been implemented and evaluated side by side with their most efficient

known alternatives. In particular, we have implemented HYBLOCK, MP-SERVER and

HYBCOMB on the Tilera TILE-Gx, comparing them with classic locks (MCS [MCS91],

CLH [Cra93, MLH94]) and delegation (CC-SYNCH [FK12], RCL [LDT+12]). We have

carried out a similar comparison on two x86 processors from Intel and AMD, this time

implementing our optimized delegation over shared memory. The evaluation on all

of the platforms includes implementations of concurrent counters, queues and stacks,

and demonstrates that a significant performance improvement is achievable with our

strategies.

5.5 Related Work

In Section 5.3 we focused on the bottlenecks of locks and delegation over cache-coherent

shared memory. Here we revisit delegation in a more global context. In addition, we provide a

brief overview of work studying message passing and other hardware extensions as a means to

implement more efficient synchronization.

5.5.1 Delegation

As already mentioned, the simplest way to implement delegation is using a dedicated server.

Besides RCL [LDT+12], detailed in Section 5.3, Cleary et al [CCPG13] also exploit the server

approach, but apply it to asymmetric synchronization, where one thread executes the CS

much more often then the others. Dedicated server threads have also been demonstrated

useful in the design of different concurrent objects [MZK12, CGH13]. Note also that the server

approach is not used only in the context of mutual exclusion: It has also been proposed as a

way to design scalable message-passing operating systems [BBD+09, WA09].

When it comes to combining, the different algorithms [FK12, HIST10, KSW14, OTY99] mainly

differ in the way pending requests are managed. However, none of them considers the use

57

Chapter 5. Background and Preliminaries

of message passing. Additionally, the combining algorithm by Klaftenegger et al [KSW14]

enables a client thread to return without waiting for the combiner to execute its request (if

the request has no return value). In such cases, one RMR can be removed from the critical

path of the server compared to other combining approaches. The optimizations we propose

in Chapter 7 are complementary to their contribution and also work when clients need to

wait for the result of their operations. It has also been demonstrated that shared-memory

combining can be efficiently implemented in a multiprogramming environment by batching

requests from co-located threads [FK14].

Experimental comparisons of delegation and locking techniques over CC shared memory have

been conducted [CGH13, DGT13]. Results show that for data structures where fine-grained

locking can be efficiently applied (e.g., hash tables with large number of buckets), state-of-the-

art locking solutions remain most efficient under high contention. In other cases, delegation

is shown to perform better. The algorithms and optimizations we propose further increase the

performance of both classic locks and delegation.

5.5.2 Hardware extensions for synchronization

Many studies propose special hardware for improving synchronization performance. Sule-

man et al [SMQP10] explore server-based delegation over dedicated hardware and evaluate

how much chip real estate should be used for the server core. Token-based messaging over

a dedicated network has also been considered as a way to improve critical section execu-

tion performance [AFA11]. Before software-only queue locks were devised, special queu-

ing hardware was proposed to cope with the scalability problems of simple locks such as

TAS [GVW89]. Different flavors of hardware for producer-initiated communication have been

proposed [PYK+13, ASHAA97], with the idea of hiding communication latency by proactively

pushing data to the consumer, instead of waiting for the consumer to fetch them. In MP-SERVER

and HYBCOMB, we accomplish the same by using hardware message passing: The server/com-

biner thread reads requests from a local queue, instead of fetching them from remote caches.

The DeNovo project [CKS+11, SKA13, SA15] aims to holistically rethink coherence in order to

eliminate common scalability issues and reduce complexity.

As for message passing in particular, Sanchez et al. [SYK10] propose a hardware extension for

core-to-core message exchange, Asynchronous Direct Messages (ADM), and show how it can

be used to build efficient schedulers for fine-grained parallelism. ADM is very similar to the

implementation of message passing on the TILE-Gx processor used in our study. In the 90’s,

Herlihy et al. showed, by simulating MIT’s Alewife processor, that message-passing imple-

mentations of counting networks and combining trees are more efficient than their shared-

memory counterparts [HLS95]. The message-passing features of the Intel SCC [HDH+10]

and Tilera [Til14] processors have been used in the implementation of transactional mem-

ory [GGT12] and key-value stores [BFPS11].

58

5.6. Outline

5.6 Outline

Our contributions are presented in the next two chapters. Chapter 6 details and evaluates

HYBLOCK, HYBCOMB and MP-SERVER, our algorithms that rely on the existence of hardware

message passing side by side with cache-coherent shared memory. Chapter 7 is on improving

the performance of delegation without hardware support for message passing.

59

6 Leveraging Hardware Message Passing
for Efficient Critical Section Execution

In this chapter we present our new approaches to locking and delegation (Section 6.1) and

evaluate them on a hybrid processor (Section 6.2). Some additional remarks are given in

Section 6.3, and Section 6.4 summarizes the chapter.

6.1 Improved Mutual Exclusion Algorithms

We discuss three ways to leverage hardware support for message passing to execute critical

sections efficiently. We start by presenting a hybrid lock that uses both shared memory and

hardware message passing for thread synchronization. Then we move to delegation: In this

context, we first explain how hardware messaging can be beneficial by addressing the client-

server approach. Second, we present a novel hybrid combining algorithm that takes advantage

of the given insights.

6.1.1 The classic lock (HYBLOCK)

We saw in Section 5.3 that even the most efficient classic locks require at least two RMRs during

lock handover, since the next thread to take the lock is signalled using a flag in shared memory.

If the hardware allows direct exchange of messages, it is natural to think of an algorithm

that would use a message to hand over the lock to the next thread: Instead of writing to and

spinning on a flag, the current lock holder should signal the next one by sending a message,

as shown in Figure 6.1. In this way, the overhead of cache coherence is removed from the

lock handover (although one full message latency remains on the critical path). Still, shared

memory remains a convenient means to implement synchronization. Indeed, to implement

mutual exclusion over message passing only, one can use a distributed mutual exclusion

algorithm, but they are typically expensive in terms of number of messages. For example, even

the well-known NTA algorithm [NTA96] necessitates at least O(logn) messages over a long

run in a system with n processes, whereas O(1) is easily achievable if a shared memory is also

present, as we will now demonstrate.

61

Chapter 6. Leveraging Hardware Message Passing for Efficient Critical Section Execution

Figure 6.1 – Classic lock handover – message-passing implementation; r () – receive message;
s(t) – send message to thread t

HYBLOCK is designed to take advantage of both message passing and cache coherent shared

memory. When the lock is not contended, threads simply acquire and release it by modifying a

shared-memory variable. In the event of contention, the lock is handed over between threads

using message passing, avoiding synchronization RMRs and thus improving throughput. More

precisely, threads form a logical queue. Upon finishing its critical section, every thread directly

transfers the lock to the next one in the queue just by sending a message, without modifying

the shared state.

The pseudocode of HYBLOCK is given in Algorithm 3. The lock state is represented by an

integer. A special value, UNLOCKED, denotes that the lock is free. Otherwise, this variable

contains the id of the last thread requesting the lock. Besides, every thread has a private

(thread-local) variable next , used in some execution scenarios to store the id of the next

thread the lock will be handed over to.

To acquire the lock, a thread t first executes a SWAP operation on the lock state, writing its id

and returning the previous value (line 8). If that value is UNLOCKED, thread t takes the lock

and no message passing is needed. Otherwise, t is queued after pr ev , which was the previous

thread to request the lock, i.e., execute the SWAP at line 8. Thread t then sends a message

with its id to pr ev , thus letting pr ev know it should eventually reply with ALLOW to hand

over the lock. Thread t then waits at line 11 for that to happen. When ALLOW comes in, t

has successfully acquired the lock. Note, however, that the incoming message might not be

ALLOW : As soon as t has executed the SWAP at line 8, another thread may request the lock, in

which case it will line up directly after t , sending t a message at line 10. In this case, t stores

the id of its successor in next , for use when it releases the lock.

When t decides to release the lock, it first checks if next contains a valid thread id, in which

case the appropriate thread is contacted and next is reset. If the identity of the next thread is

not known, this means that either (i) no thread has lined up to take the lock after t , or (ii) its

message is yet to be received. Next, if the message queue is empty, there is a chance that (i)

is satisfied, so t can try to unlock using a CAS on the lock state (line 21). If the CAS succeeds,

there were no contending threads and the lock is successfully released. On the other hand,

if the message queue is not empty, or the CAS fails, we can conclude that the message from

62

6.1. Improved Mutual Exclusion Algorithms

the successor has either arrived, or will eventually arive. Therefore, t blocks, waiting for the

message from its successor, before finally informing the successor that it can acquire the lock.

Properties HYBLOCK achieves a number of properties desirable in theory and practice,

outlined as follows:

• Fast contention-free execution. HYBLOCK is very lightweight in absence of contention,

and one operation on shared data is sufficient to both take and free the lock. With this

respect, HYBLOCK behaves similarly to MCS [MCS91]: Lock acquisition consists of a

single SWAP, whereas release is a (successful) CAS.

• Fast contended execution. Unlike shared-memory only locks, based on spinning, HY-

BLOCK is able to remove RMRs from the critical path of lock handover. Indeed, when

multiple threads are waiting for the same lock, the handover is done without any opera-

tions on shared data, i.e., the CAS at line 21 is never executed, only message-passing

operations.1

• Fairness. Obviously, threads are served in the order of arrival (see line 8), as with queue

locks based only on shared memory.

• Energy-friendliness. The use of synchronous message passing instead of spinning

on shared-memory variables enables avoiding wasted CPU cycles, thereby potentially

improving energy efficiency.

When it comes to limitations of HYBLOCK, it is clear that nested locking is not supported out of

the box, since messages from different lock instances can arbitrarily interleave. If desired, this

limitation can be removed by associating special tags with messages, as well as by replacing

the local next variable with a local stack, which would keep one next value for every level of

nesting. This, however is likely to decrease performance.

It should also be noted that lock handover performance, although improved, is still limited by

the latency of the message from the current to the next lock owner. We will shortly see that

with delegation even this message latency can be removed from the critical path.

6.1.2 The server approach (MP-SERVER)

A client-server approach, such as RCL, is a natural fit for message passing. Indeed, RCL’s

client-server communication layer can be seen as an implementation of message passing over

shared memory. Instead, we simply leverage hardware message passing support to implement

client-server communication. We refer to this solution as MP-SERVER. Based on the model

1Note that the throughput bottleneck is not necessarily lock handover. It can also be the execution of SWAP
(line 8), depending on how atomic operations are implemented.

63

Chapter 6. Leveraging Hardware Message Passing for Efficient Critical Section Execution

Algorithm 3 HYBLOCK locking algorithm – code for thread i d
1: const U N LOC K ED {* lock is not taken *}
2: const ALLOW {* next thread can take lock *}
3: type Lock int

Local Variables:
4: next : int ←⊥

5: lock_init(l ock : Lock)
6: lock ←U N LOC K ED

7: lock_acquire(l ock : Lock)
8: pr ev ← SW AP (lock, i d)
9: if pr ev 6=U N LOC K ED then

10: send(pr ev, i d)
11: tmp ← r ecei ve(1)
12: if tmp 6= ALLOW then
13: next ← tmp
14: r ecei ve(1)

15: lock_release(l ock : Lock)
16: if next 6= ⊥ then
17: send(next , ALLOW)
18: next ←⊥
19: return
20: if i s_msg _queue_empt y() then
21: if C AS(lock, i d ,U N LOC K ED) then
22: return
23: tmp ← r ecei ve(1)
24: send(tmp, ALLOW)

introduced in Section 5.2, Figure 6.2 explains why MP-SERVER may have better performance

than its shared-memory counterpart. Compared to Figure 5.2, stalls can be avoided for two

reasons. First, the server reads requests from the local message queue, without any remote

actions that would cause it to stall. Second, the server does not wait for the actual message

transmission to take place when it sends a response. When and how the messages are actually

sent to their destinations is the responsibility of the underlying hardware message passing

implementation. Therefore, if hardware message passing is used, we expect to be able to

completely remove stalls related to synchronization from the critical execution path.

6.1.3 The combiner approach (HYBCOMB)

We now detail HYBCOMB, our combining algorithm tailored to take advantage of message

passing. We start by describing the main principles of combining techniques over shared

memory, to identify how message passing can be used to improve performance.

Main principles In combining algorithms, threads interact for two purposes: (i) electing a

combiner; (ii) exchanging information between the combiner and threads that have operations

64

6.1. Improved Mutual Exclusion Algorithms

client 5 client 4

client 0 client 5 client 2

CS(0)

r() s(0)

CS(5)

r() s(5)

CS(2)

r() s(2)

MESSAGE BUFFER

client 2

Figure 6.2 – Mutual exclusion server – message-passing implementation; r () – receive message;
s(t) – send message to thread t ; request from client 0 is already available in the server’s message
queue

to be executed in mutual exclusion. In shared-memory combining algorithms [OTY99, HIST10,

FK12], these two tasks are handled by a single shared object: a list of requests. To execute an

operation, a thread adds a request to the list. The current combiner traverses the list to fetch

and execute requests. When the current combiner wants to return, it hands over the combiner

role to the thread owning the next request in the list (if there are no requests to be executed,

the next thread that inserts a request will become the combiner).

HYBCOMB uses hardware message passing for synchronization between the combiner and

the other threads. As long as the combiner does not change, synchronization works as with

MP-SERVER (Figure 6.2). Still, we use shared memory for managing combiner identity. In

a nutshell, HYBCOMB works as follows: When a thread t wants to execute a request, it first

checks the identity of the combiner through a shared variable. If a combiner is available and

ready to handle the request, t sends a message to that combiner. If not, t tries to promote

itself to a combiner, by executing CAS on the variable that keeps the combiner identity.

Managing combiner identity using message passing would be complex and probably ineffi-

cient. The main problem is that a thread acting as a combiner has to stop combining at some

point, which must be synchronized with actions of other threads. To get its operation executed

by a combiner, a thread has to get the identity of the combiner thread and send a request to

it. If the combiner identity changes in the meantime, the operation will never get executed.

Dealing with this problem using message-passing would require either a delegated thread

(which is exactly what the combiner approach is trying to avoid), or intensive communication

between threads (e.g., broadcast).

Detailed description Algorithm 4 describes HYBCOMB. The interface is the same as that of

CC-SYNCH: When a thread wants to execute a critical section, it calls the appl y_op method,

providing the corresponding HYBCOMB instance, a pointer to the function to execute and

its arguments. Note, however, that HYBCOMB is not just a simple adaptation of existing

combining algorithms, where message passing is used instead of a shared list to make the

combiner thread aware of the requests to execute. As already mentioned, using message

passing requires us to be able to identify the combiner thread to which requests should be

65

Chapter 6. Leveraging Hardware Message Passing for Efficient Critical Section Execution

sent. This should be carefully handled, especially at the time the combiner changes. This

problem does not exist in combining techniques fully based on shared memory since it is the

combiner thread that fetches requests from a shared data structure.

The code executed by the active combiner are lines 26-46. Algorithm 4 ensures that these

lines are executed in mutual exclusion, i.e., that there is a single active combiner at a time.

To manage combiner identity, a data structure called Node is used. Each thread owns a

reference to a different node (my_node). The i d of the thread owning a node is saved in

the field Node.thr ead_i d . Managing combiner identity is done using the shared pointer

l ast_r eg i ster ed_combi ner . To become a combiner (lines 20-24), a thread t tries to execute

a CAS operation on l ast_r eg i ster ed_combi ner to make it point to its node. If the CAS suc-

ceeds, t keeps a pointer to the node corresponding to the previous l ast_r eg i ster ed_combi ner

in its local variable l ast_r eg . This mechanism can be seen as building a logical queue where

the head of the queue is the current active combiner and the tail is l ast_r eg i ster ed_combi ner ,

each thread in the queue having a reference to the predecessor in its l ast_r eg variable. The

Node.combi ni ng _done flag is used to synchronize the threads in the queue. Before starting

executing as a combiner, a thread spins on the combi ni ng _done flag of its predecessor (line

22), which is set by the predecessor when it finishes combining (line 45).

Upon calling appl y_op, a thread t first tries to register its request with the last combiner

(l ast_r eg i ster ed_combi ner), by performing a fetch-and-increment on the Node.n_ops

field of the corresponding node (line 14). This field guarantees that one combiner will receive

and execute at most M AX _OPS requests of other threads. If the threshold M AX _OPS is not

reached, t sends its request to the combiner using message passing (line 16), and waits for a

response (line 17). If the last registered combiner cannot accept any new request, t tries to

register itself as a combiner as already explained.

Once t becomes the active combiner, it first executes its own request (line 26). Then it reads

messages from its message queue, processes requests and sends responses. When its message

queue is empty, t decides to stop combining and announces it by writing M AX _OPS to

its n_ops field (line 33). Since it does so using SWAP, it retains the old value of n_ops (in

tot al_ops), which is the total number of requests it has to serve as a combiner. It then finishes

its combining round by serving the remaining requests, if any (lines 37-40).

Before returning, t must get the node it will use next time it calls appl y_op (we want to

avoid allocating a new node for every appl y_op call). Obviously, t cannot use the same node

because that requires the combi ni ng _done field to be reset, but t cannot know when the

next combiner will have read this field. As a solution, only one additional node is allocated

for all n threads, and t gets the node that was used by the previous combiner (pointed by

depar ted_combi ner) (lines 42-45)2: t knows that the combi ni ng _done field of this node

can be reset since t was the thread spinning on this node. Finally, note that t must not reset the

2The use of a SWAP operation at line 42 to exchange the two nodes is only for brevity. An atomic operation is
not needed since these lines are executed in mutual exclusion anyway.

66

6.1. Improved Mutual Exclusion Algorithms

Algorithm 4 HYBCOMB combining algorithm – code for thread i d

1: const M AX _OPS {* max. operations per combiner *}
2: type Node{thr ead_i d : int,n_ops : int,combi ni ng _done : bool}
3: type H ybcombLock{l ast_r eg i ster ed_combi ner : Node ptr,depar ted_combi ner : Node ptr}

Local Variables:
4: my_node : Node ptr ← {i d , M AX _OPS, false}

5: init(lock : H ybcombLock)
6: new_node ← {⊥, M AX _OPS,true}
7: lock.depar ted_combi ner ← new_node
8: lock.l ast_r eg i ster ed_combi ner ← new_node

9: apply_op (lock : H ybcombLock, f unc_ptr, ar g s)
10: ops_compl eted ← 0
11: loop
12: l ast_r eg ← lock.l ast_r eg i ster ed_combi ner
13: {* try to register with last registered combiner *}
14: if F A A(l ast_r eg .n_ops,1) < M AX _OPS then
15: {* success. send message to combiner and wait *}
16: send(l ast_r eg .thr ead_i d , {i d , f unc_ptr, ar g s})
17: return r ecei ve(1)
18: else
19: {* failure: try to register as combiner *}
20: if C AS(lock.l ast_r eg i ster ed_combi ner, l ast_r eg ,my_node) then
21: my_node.n_ops ← 0
22: while ¬l ast_r eg .combi ni ng _done do
23: nop
24: break

25: {* became combiner. do your own op first *}
26: r et val ← f unc_ptr (ar g s)

27: {* as long as message queue is not empty, handle requests *}
28: while ¬i s_msg _queue_empt y() do
29: {sender _i d , f ptr, f ar g s} ← r ecei ve(3)
30: send(sender _i d , f ptr (f ar g s))
31: ops_compl eted ← ops_compl eted +1

32: {* close combining for new requests *}
33: tot al_ops ← SW AP (my_node.n_ops, M AX _OPS)
34: if tot al_ops > M AX _OPS then
35: tot al_ops ← M AX _OPS

36: {* serve remaining requests *}
37: while ops_compl eted < tot al_ops do
38: {sender _i d , f ptr, f ar g s} ← r ecei ve(3)
39: send(sender _i d , f ptr (f ar g s))
40: ops_compl eted ← ops_compl eted +1

41: {* exchange your node, inform next combiner and return *}
42: my_node ← SW AP (lock.depar ted_combi ner,my_node)
43: my_node.combi ni ng _done ← false
44: my_node.thr ead_i d ← i d
45: lock.depar ted_combi ner.combi ni ng _done ← true
46: return r et val

67

Chapter 6. Leveraging Hardware Message Passing for Efficient Critical Section Execution

Figure 6.3 – An execution of HYBCOMB (M AX _OPS = 3). The current combiner is t6, the next
one is t2, polling on t6’s node. The requests of t1, t3, t4, and t5 will be combined by t6 and t2.

n_ops field of its new node at this point because other threads might still have an old reference

to this node in their l ast_r eg variable (lines 12-14): if n_ops were reset, these threads could

send requests to t while it is not a combiner. Thus, t will reset n_ops only once it registers as a

combiner again (line 21).

Figure 6.3 illustrates an execution of HYBCOMB, assuming M AX _OPS = 3, where threads t1

- t6 are simultaneously calling appl y_op to execute their critical sections. Thread t6 is the

current combiner. It executes its own request, and will subsequently execute the requests

of t3, t4, and t1, which are waiting in its message queue. Since at most three requests can

be executed by a thread on top of its own, the request from t2 could not be served by t6.

Consequently, t2 has executed CAS (line 20 of Algorithm 4) and registered as a new combiner:

It is now spinning on nt6.combi ni ng _done, waiting for t6 to hand over the combiner role.

Thread t5 will have its request executed by t1, once the latter starts combining. Note that the

nodes of the current and future combiners (t6 and t2 in Figure 6.3) form an implicit queue: The

head of the queue is the dummy node (pointed to by lock.depar ted_combi ner), whereas

the tail is the last registered combiner (pointed to by lock.l ast_r eg i ster ed_combi ner).

Additional comments Before sketching the proof of correctness, we make a few remarks

on the way HYBCOMB works. First, we can note that registering as a combiner (line 20) and

resetting the n_ops counter (line 21) are not atomic. This does not affect the correctness of

the algorithm. In the very unfortunate event where a thread t ′ executes the FAA at line 14

while t is between those two lines, t ′ will simply not manage to register its request with t , and

so, will try to become the next combiner. This could merely result in a performance penalty as

t would only have its own request to execute as a combiner. Results presented in Section 6.2

show that this rarely occurs in practice.

Note also that the first while loop in the request execution part (lines 28 to 31) is not necessary

for correctness: The thread can decide to stop combining as soon as it has executed its own

68

6.1. Improved Mutual Exclusion Algorithms

request. Still, this loop is beneficial for performance, as postponing the SWAP at line 33

increases the combining potential.

HYBCOMB uses a CAS operation like some other combining algorithms [OTY99, HIST10], but

unlike CC-SYNCH [FK12]. It is well known that CAS can impair performance (because it can

repeatedly fail, causing contention) as well as fairness (a thread can starve if it executes CAS

in a loop and persistently fails). We still choose to use CAS and not SWAP at line 20 for the

following two reasons: i) if SWAP is used and several threads try to register as combiners, they

all succeed but some of them only have their own request to execute as a combiner, whereas

with CAS only one thread manages to register as a combiner, and potentially execute all other

requests; ii) the CAS is not expected to be a hot spot in HYBCOMB as it is only executed when

a thread wants to register as a combiner. Experiments presented in Section 6.2 confirm the

second point. If desired, a middle ground would be to use SWAP only if CAS fails several times.

Correctness proof (sketch). The key idea is to show that Algorithm 4 maintains a queue

of Nodes, denoted by C Squeue (queue for entering the CS corresponding to lines 26 to 46),

where each node represents a thread (except for the head). As discussed above and shown in

Figure 6.3, the head of the queue is the node pointed to by lock.depar ted_combi ner .

Other nodes in the queue, if any, correspond to current and future combiners, i.e., threads

that want to enter the CS. The operation i nser t into C Squeue corresponds to a successful

execution of CAS at line 20. The operation r emove from C Squeue corresponds to the execution

of lines 42 to 46. The queue C Squeue is represented as follows: The tail of C Squeue is the node

pointed to by the field lock.l ast_r eg i ster ed_combi ner (line 8). The predecessor of node

nt (representing thread t) is the node pointed to by l ast_r eg t (line 12). The head of C Squeue

is node nt such that l ast_r eg t .combi ni ng _done = tr ue.

In addition to nodes representing threads, C Squeue includes one dummy node, initially

new_node (line 6). The dummy node is the only node in C Squeue where combining is marked

complete (combi ni ng _done = tr ue). An empty queue contains only the dummy node and

lock.l ast_r eg i ster ed_combi ner points to the dummy node.

Note that the field l ock.depar ted_combi ner plays no role with respect to C Squeue . It points

to the dummy node: whenever some thread t leaves the CS, the node nt becomes the new

dummy node, and the previous dummy node becomes nt . The reason for this has been

explained at the end of the paragraph Detailed description above.

Lemma 1. Algorithm 4 maintains the queue structure just described.

Proof. The queue structure is modified by a successful execution of C AS (line 20). We prove

by induction that the queue structure always holds.

Base step: The empty queue structure holds initially by lines 6, 8.

69

Chapter 6. Leveraging Hardware Message Passing for Efficient Critical Section Execution

Induction step: By lines 12 and 20 (C AS), if the queue structure holds before executing C AS,

then it is easy to see that the queue structure also holds after successfully executing C AS.

We also show that pointer l ock.depar ted_combi ner always points to the dummy node.

Initially by line 7 lock.depar ted_combi ner correctly points to the dummy node. Moreover,

lock.depar ted_combi ner is updated at line 42, pointing to node nt representing thread t

that just left the CS. By line 45 (setting combi ni ng _done to tr ue), the node becomes the new

dummy node.

Proposition 1. Lines 26 to 46 are executed in mutual exclusion (one combiner at a time).

Proof. A thread t can execute lines 26 to 46 only after a successful execution of C AS (line 20).

By Lemma 1, t is correctly introduced in C Squeue . By the same lemma, only node nt ′ at the

head of C Squeue is such that l ast_r eg t ′ .combi ni ng _done = tr ue. Thus, by line 22, only one

thread can enter the CS.

It follows from Proposition 1 that Algorithm 4 is safe: Because CS is executed in mutual

exclusion, thread operations (pointed to by the f unc_ptr argument) are also executed in

mutual exclusion. It can be shown that linearizability follows (since an operation of thread t

can only be executed between the moments of t entering and leaving appl y_op). We now

show that liveness also holds, i.e., that Algorithm 4 is deadlock-free (if there are threads calling

appl y_op, some thread eventually executes its operation and returns from appl y_op).

Lemma 2. For all nodes nt with nt .n_ops < M AX _OPS, we have nt in C Squeue .

Proof. We show that the converse holds. Assume that node nt is not in C Squeue . When nt is

in its initial state, we trivially have nt .n_ops ≥ M AX _OPS. Consider now t entering the CS

and later leaving the CS. To reset nt .n_ops, a thread executes line 21. This can happen only if

the CAS at line 20 succeeds, which means that the thread enters C Squeue . Before leaving the

CS, by line 33, we trivially have nt .n_ops ≥ M AX _OPS, which terminates the proof.

Lemma 3. At lines 29 and 38, only requests (operations to execute) can be received (not re-

sponses).

Proof. For a contradiction, assume r to be the first response received at line 29 or 38, by some

thread t . Response r must have been sent by some thread t ′ at lines 16, 30 or 39. Response r

cannot have been sent at line 16, because only requests are sent at line 16.

So assume that r is sent by some thread t ′ at line 30 or 39. However, thread t ′ can only have

received a request at line 29 or 38 (since t is the first to have received a response at those lines).

Therefore t ′ has sent a response at line 30 or 39: a contradiction.

Lemma 4. If the message queue of thread t contains a request, then nt is in C Squeue .

70

6.1. Improved Mutual Exclusion Algorithms

Proof. Assume that thread t ′ sends a request to thread t . By lines 12 and 16, the message is

sent to t = l ast_r eg t ′ .thr ead_i d . We have to show that nt is in C Squeue when t receives the

request from t ′. Clearly, nt is at the tail of C Squeue when t ′ executes line 12. If t ′ sends its

request to t at line 16, then line 14 was successfully executed by t ′, i.e., nt .n_ops < M AX _OPS

before t ′ executes line 14. By Lemma 2 nt is in C Squeue at this time. By Lemma 3, and since

every thread must execute line 14 before sending a request to t , thread t cannot leave the CS

before the request from t ′ is received. Therefore, nt is still in C Squeue when the request from

t ′ arrives in the message queue of t .

Lemma 5. At line 17, thread t cannot receive a request (i.e., t can only receive the response to

the request sent at line 16).

Proof. Assume t receives a request at line 17, while nt is not in C Squeue . Therefore the message

queue of t contains a request. By Lemma 4, node nt is in C Squeue : A contradiction.

Lemma 6. If t sends request r at line 16, it eventually receives a response at line 17.

Proof. By Lemma 4, t ’s request is received by some thread t ′ that is in C Squeue , i.e., is or will

become the combiner. By line 14, t ′.n_ops is larger or equal to the number of requests sent to

t ′ (can be larger since line 14 is executed before line 16). The local variable ops_compl etedt ′

counts the number of requests executed by t ′. By lines 33-35, and because only requests are

received at lines 29 or 38 (Lemma 3), tot al_opst ′ is equal to the number of requests sent to t ′.
By lines 37 and 40, t ′ leaves the while loop only when all requests sent to t ′ have been executed.

Therefore t ′ eventually executes request r and sends the response to t . By Lemma 5, t will not

receive a request at line 17. Therefore t receives at line 17 the response sent by t .

Finally:

Proposition 2 (liveness). Algorithm 4 ensures deadlock freedom.

Proof. If thread t wants to execute some operation op, then either t eventually gets the

response (Lemma 6), or t tries to enter C Squeue (line 20). In the latter case, if t succeeds

(executes the CAS successfully), then t eventually executes op (line 26) and leaves C Squeue

(Lemma 5). If t does not succeed the CAS, l ock.l ast_r eg i ster ed_combi ner has changed in

the meantime, which means that some other thread has successfully executed the CAS and

will thus eventually execute its operation.

Recall that starvation freedom is not guaranteed in Algorithm 4 because of the CAS, but it can

be easily ensured if a SWAP is introduced (as discussed in the paragraph Additional comments

above).

71

Chapter 6. Leveraging Hardware Message Passing for Efficient Critical Section Execution

6.2 Evaluation

In this section we implement and thoroughly evaluate the algorithms presented in Sections 5.3

and 6.1. We begin by introducing the used hybrid processor and our experimental setup. Next,

we present experiments that evaluate different implementations of a concurrent counter. The

analysis is then extended to more complex concurrent objects, namely queues and stacks.

Finally, we discuss the generality of our results and their applicability to other platforms.

6.2.1 Platform

We use the Tilera TILE-Gx8036, which integrates 36 cores, works at 1.2 GHz and features

complete hardware support for both coherent shared memory and message passing [Til14].

The software part comprises GCC 4.4.6 and version 2.6.40.38-MDE-4.1.0.148119 of Tilera’s

custom Linux kernel. The memory consistency model is relaxed compared to x86, so a careful

use of memory fences is necessary to avoid inconsistency. Each core has a dedicated hardware

message buffer, capable of storing up to 118 64-bit words. The message buffer of each core is

4-way multiplexed, which means that every per-core buffer can host up to four independent

hardware FIFO queues, containing incoming messages. The User Dynamic Network (UDN)

allows applications to exchange messages directly through the mesh interconnect, without OS

intervention. While exchanging messages, a thread must be pinned to a core and registered

to use the UDN (but it can unregister and freely migrate afterwards). When a message is

sent from core A to core B , it is stored in the specified hardware queue of core B . The send

operation is asynchronous and does not block, except in the following case: Since messages

are never dropped, if a hardware queue is full, subsequent incoming messages back up into

the network and may cause the sender to block. It is the programmer’s responsibility to avoid

deadlocks that can occur in such situations. When a thread executes receive on one of the

four local queues, the first message from the queue is returned. If there are no messages, the

thread blocks. Messages consist of one or multiple words.

6.2.2 Methodology and setup

We have implemented HYBLOCK, MP-SERVER and HYBCOMB on the TILE-Gx, as well as several

algorithms purely based on shared memory: the MCS [MCS91] and CLH [Cra93, MLH94]

queue locks, a test-and-set (TAS) lock, the CC-SYNCH combining algorithm [FK12] and

SHM-SERVER, a server-based approach. SHM-SERVER can be seen as a simplified version

of RCL [LDT+12], since it implements the same core mechanism (an array of cache lines, one

for each client), but lacks support for some advanced features, such as nested critical sections

(note that this simplification does not decrease performance). The implementations have

been carefully optimized and compiled with the O3 flag. Because of the relaxed memory

model of the TILE-Gx, we have inserted memory fences where necessary to ensure correctness.

In particular, with classic locks, a fence is always necessary before releasing the lock, in order

for the next lock owner to read the most recent data. In the delegation implementations,

72

6.2. Evaluation

fences are not necessary after every CS execution, but only on combiner switching. This is

because we assume that shared data is accessed only inside CSes, which holds for the con-

current objects we evaluate. A more conservative use of memory fences would be necessary

when this is not the case [CCPG13]. To obtain the best possible performance, we augment

all of the delegation implementations with a simple interface that allows a thread to send a

unique opcode of the CS to the servicing thread, rather than a function pointer. This allows

the compiler to inline the function calls that the servicing thread makes for every CS, which

results in a visible performance increase in most cases [CCPG13]. It is worth noting that the

results are qualitatively the same without this optimization.

We use the methodology commonly found in related studies [FK12, HIST10, MS96, MA13]: In

each experiment, a specified number of application threads repeatedly execute operations on

a concurrent object. After every operation, a thread executes a random number of empty loop

iterations (at most 50). This simulates local work and prevents long runs, in which a thread

would execute bursts of operations on a concurrent object in its local cache. To minimize

interference caused by context switching, we assume a uniprogrammed environment, where

each thread runs on a separate core (multiprogramming is discussed in Section 6.3). We

pin threads to cores in ascending order, i.e., thread i is pinned to core i . With server-based

approaches (SHM-SERVER and MP-SERVER), the server code is executed by thread 0, and other

threads execute application code (the server position has a negligible performance impact).

In case of classic locks and combining, all threads run the same code. Unless otherwise stated,

the maximum number of requests a thread can combine in HYBCOMB and CC-SYNCH is set

to 200 (we analyze this choice later in this section). Every value reported in the graphs is an

average over ten one-second runs.

6.2.3 Microbenchmarks

For the sake of clarity, we evaluate classic locks and delegation separately. After discussing

the key results related to each of the techniques, we compare them directly to complete the

analysis.

Classic Locks

We first use each of the locks to implement a simple concurrent object, a counter. Figure 6.4a

gives the counter throughput. HYBLOCK is the best performer, reaching 1.35x higher through-

put than the MCS and CHL locks in high concurrency levels. Even in lower degrees of con-

currency, HYBLOCK still performs visibly better than the other queue locks. We attribute

this improvement to the optimized way of handing over the lock: HYBLOCK uses a message,

whereas MCS and CLH use spinning. As expected, TAS scales poorly.

Figure 6.4b shows average operation latencies observed by the threads in the same benchmark.

Even with one thread (no concurrency at all), HYBLOCK is more efficient than most alternatives,

73

Chapter 6. Leveraging Hardware Message Passing for Efficient Critical Section Execution

 0

 2

 4

 6

 8

 10

 5 10 15 20 25 30 35

T
h

ro
u

g
h

p
u

t
(M

o
p

s/
se

c)

Number of application threads

HybLock
MCS

CLH
TAS

(a) Counter throughput

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 2 3 4 5 6 7 8 9 10

L
at

en
cy

 (
cy

cl
es

)

Number of application threads

(b) Counter latency

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14

T
h
ro

u
g
h
p
u
t

(M
o
p
s/

se
c)

CS length (increments)

(c) Varying CS length (36 threads)

Figure 6.4 – Performance of classic locks

except for TAS. Although message passing is not used in this case, HYBLOCK has the advantage

that it does not need any node housekeeping, necessary with MCS and CLH. We can also see

that MCS and CLH deliver nearly indistinguishable performance, except with 2-4 threads,

where CLH is more robust. We believe this is architecture and implementation-dependent.

In any case, the general trend we can observe with all of the classic locks is that the average

latency increases rapidly as concurrency grows, even with HYBLOCK as the most efficient

option.

We now examine what happens when the CS body is longer. We implement a CS in which

the elements of an integer array are incremented. We vary the number of increments in

the CS and observe the maximum throughput (with 36 threads) in Figure 6.4c. When the

critical section contains no shared-memory accesses (zero increments), we are left with the

pure synchronization overhead of the lock/unlock pair. This overhead is about 2x lower

with HYBLOCK than with the shared-memory queue locks. As soon as we add shared data

manipulation in the critical section, even only one increment, there is a sharp performance

decrease, mostly because the shared data bounces between cores, as described in Section 5.3.

As the number of increments increases past one, the performance decreases more slowly. This

is because one cache miss brings over eight array elements, so only one in eight increments

is particularly expensive because of a cache miss. Also, it should be noted that prefetching

can hide some of the latency of the subsequent cache misses. Hence, with 25 increments the

advantage of HYBLOCK over MCS and CLH is still about 1.18x.

In conclusion, HYBLOCK is visibly more efficient than MCS and CLH, both in low and high

concurrency levels. What limits further performance improvement, however, are overheads

inherent to classic locks. Those are in the first line cache misses inside the critical section,

but the memory fences associated with every critical section play an important role on this

platform as well. Next, we will see that more significant performance gains are possible with

delegation, since the mentioned inherent overheads do not exist.

74

6.2. Evaluation

 0

 20

 40

 60

 80

 100

 120

 5 10 15 20 25 30 35

T
h

ro
u

g
h

p
u

t
(M

o
p

s/
se

c)

Number of application threads

mp-server
HybComb

shm-server
CC-Synch

(a) Counter throughput

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 5 10 15 20 25 30 35

L
at

en
cy

 (
cy

cl
es

)

Number of application threads

(b) Counter latency

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14

T
h
ro

u
g
h
p
u
t

(M
o
p
s/

se
c)

CS length (increments)

(c) Varying CS length (36 threads)

Figure 6.5 – Performance of delegation (M AX _OPS = 200 with CC-SYNCH and HYBCOMB)

Delegation

Again, we start by implementing a concurrent counter. Figure 6.5a shows the throughput of

the counter implementations. The approaches that use hardware message passing are clearly

faster: MP-SERVER is most efficient in all concurrency levels. It reaches 4.3x higher throughput

than SHM-SERVER, indicating that message passing supported natively is much more efficient

than emulation over shared memory. When it comes to combining, HYBCOMB consistently

outperforms CC-SYNCH. This is especially pronounced in higher concurrency levels, where

HYBCOMB reaches about 2.5x higher throughput. CC-SYNCH and SHM-SERVER have very

similar performance, indicating that CC-SYNCH manages to avoid dedicating cores at virtually

no performance cost. On the other hand, the difference between MP-SERVER and HYBCOMB is

much more visible. We will shortly identify the source of this difference, and explain how it

can be minimized. We can also see a big improvement compared to the throughput of classic

locks (Figure 6.4a), which confirms that delegation is more resilient to contention.

Figure 6.5b shows the average request latency observed by application threads. Again, MP-

SERVER has by far the lowest latency even in low concurrency levels, indicating that hardware

message passing is useful even latency-wise. HYBCOMB has lower latency than CC-SYNCH,

which becomes especially visible as concurrency increases. The only noteworthy exception is

single-threaded performance, where CC-SYNCH is better than HYBCOMB. We believe this is

mainly because an isolated thread running CC-SYNCH executes only one atomic instruction

per operation, whereas HYBCOMB executes three. Since atomic instructions on the TILE-Gx

are not executed in the local L1 cache, but in the L2 cache of the core that is home to the

corresponding memory word (most likely a distant core), this results in a higher latency. As

concurrency increases, the latency of both CC-SYNCH and HYBCOMB dips at one point before

continuing to grow (between 14 and 17, resp. 14 and 24 application threads). This is due to

more intensive combining, as we will confirm shortly.

As with classic locks, we continue by replacing one counter by an array of 64 counters, in-

cremented in a loop with a varying number of iterations. Figure 6.5c presents the results:

MP-SERVER and HYBCOMB can lead to better performance mainly when CSes are short. This is

75

Chapter 6. Leveraging Hardware Message Passing for Efficient Critical Section Execution

mainly because synchronization is very cheap with delegation, so the time to execute a slightly

longer CS body already dominates synchronization overheads. At 15 loop iterations, the differ-

ence between the best (MP-SERVER) and the worst (SHM-SERVER) performer drops to about

10%, since the time to execute the CS body (which is the same with all of the implementations,

if we ignore combiner switching) dominates the entry/exit overhead.

One might question the choice of the maximum allowed combining rate (M AX _OPS). If

M AX _OPS is too low, less combining is possible, which negatively affects throughput. On

the other hand, increasing it above a certain limit does not increase throughput further, as

the cost of combiner switching becomes negligible, but can result in higher latency observed

by the combining thread. The optimal value heavily depends on the application needs and

anticipated concurrency level. In Figure 6.6a, we examine how the maximum achievable

counter throughput changes with M AX _OPS. Very high M AX _OPS values provide little

benefit in terms of throughput of CC-SYNCH. On the other hand, as we increase M AX _OPS

up to 1,000, the throughput of HYBCOMB continues to grow, barely showing signs of saturation.

Combining is so fast with HYBCOMB, that the impact of combiner switching is visible even

when M AX _OPS is high. This explains the difference between MP-SERVER and HYBCOMB

observed in Figure 6.5a (recall that M AX _OPS is set to 200 there). The throughput of HY-

BCOMB levels off at about 88 Mops/sec, with M AX _OPS set to 5’000. Therefore, one can

achieve nearly as high throughput with HYBCOMB as with MP-SERVER, if willing to trade the

throughput increase for sporadic latency "hiccups" for some requests (when the requesting

thread becomes a combiner). We have chosen a moderate value of 200 for our experiments,

since it already provides the highest possible throughput with CC-SYNCH and decent results

with HYBCOMB.

Now we more precisely identify the reason for the observed performance improvement with

HYBCOMB and MP-SERVER in the counter benchmark. Figure 6.6b shows the average number

of CPU stalls per operation on the servicing thread under maximum load, as well as the total

number of cycles per operation.3 The advantage of HYBCOMB and MP-SERVER becomes clearer:

The servicing thread is virtually never stalled, whereas CPU stalls account for more than 50% of

the cycles of the servicing thread in CC-SYNCH and SHM-SERVER. There are no event counters

that would provide more fine-grained information on the source of stalls, but we believe they

mostly originate from the load-store unit, which has to wait for the cache coherence protocol

to fetch data. This confirms the reasoning from Section 5.3: Cache-coherence related stalls are

an important source of overhead, and hardware message passing is helpful in avoiding them.

Figure 6.6c shows the average combining rate with HYBCOMB and CC-SYNCH. Ideally, we

expect it to reach M AX _OPS under high load. At the beginning, the actual combining rate

steadily grows, and is approximately equal to the number of threads minus one. This is because

a combiner manages to combine one request for all of the other threads. At that point, no

thread has started the subsequent operation yet, so the combiner returns. As concurrency

3To be able to use per-core event counters, only in this experiment we modified HYBCOMB and CC-SYNCH to
have a fixed combiner for the whole run, which is equivalent to setting M AX _OPS =∞.

76

6.2. Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 10 100 1000

T
h

ro
u

g
h

p
u

t
(M

o
p

s/
se

c)

Maximum combining rate

HybComb
CC-Synch

(a) Impact of the combining rate

 0

 10

 20

 30

 40

 50

 60

mp-serv HybComb shm-serv CC-synch

C
y

cl
es

 p
er

 o
p

er
at

io
n

Approach

stalled
total

(b) CPU Stalls

 0

 50

 100

 150

 200

 5 10 15 20 25 30 35

A
ct

u
al

 c
o

m
b

in
in

g
 r

at
e

Number of application threads

(c) Combining rate

Figure 6.6 – Analyzing the performance of the different synchronization techniques

grows, more requests arrive at the combiner concurrently. As it takes more time to service

them, there is more time for other requests to arrive before the combiner returns, and so forth.

This circular effect leads to a sudden sharp increase in the combining rate, which explains the

latency dip we observed in Figure 6.5b. As we can see in Figure 6.6c, in high concurrency levels

CC-SYNCH reaches the desired combining rate, whereas HYBCOMB is slightly below it. This is

because registering as a combiner and resetting the n_ops field are not atomic. As explained

in Section 6.1.3, an unfortunate thread interleaving could leave one combiner with no work to

do because a new thread would register as a combiner before any request is associated with

the current one. However, we can see that this has only a marginal effect on the combining

rate in practice: In spite of somewhat lower combining rate, HYBCOMB still has much better

performance than CC-SYNCH (Figure 6.5).

Finally, recall that HYBCOMB uses CAS, but the presented graphs indicate that this does not

cause visible performance degradation. This is because, when concurrency is high, threads

rarely execute CAS: They mostly send their requests to an active combiner. Indeed, we have

measured as few as 0.1 executed CAS per operation (call to appl y_op) in high concurrency

levels. This number is a bit higher when concurrency is not high enough to trigger high com-

bining rates, but even then, there are not more than 0.7 CAS per operation in multithreaded

executions. Regarding fairness, we have measured the ratio between the highest and lowest

number of operations executed by some thread (so 1 denotes ideal fairness). Across the whole

concurrency spectrum, the highest value of this ratio with HYBCOMB is 1.2 and the average

is 1.16. Even MP-SERVER, in which all requests are read from a hardware FIFO queue, has a ratio

of nearly 1.1, only because some cores are nearer to the server, so they execute slightly more

operations. Hence, the use of CAS in HYBCOMB does not impair fairness on this platform.

Locking vs. Delegation

In Section 5.3, we pointed out key differences between classic locks and delegation. Recall

that, from a pure performance perspective, delegation is more resilient to contention, whereas

classic locks are expected to achieve better low-concurrency performance, which we now verify.

77

Chapter 6. Leveraging Hardware Message Passing for Efficient Critical Section Execution

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 2 3 4 5

L
at

en
cy

 (
cy

cl
es

)

Number of application threads

MCS
CLH
TAS

HybLock

CC-Synch
HybComb

shm-server
mp-server

Figure 6.7 – Classic locks vs. delegation: latency comparison

Figure 6.7 gives the latency of a concurrent counter implemented using the different locks and

delegation approaches: It is a subset of latency data from Figures 6.4b and 6.5b, represented

as a bar chart. The results confirm that delegation is more resilient to contention: With five

threads, all delegation implementations outperform the locks. But even in lower concurrency,

the locks turn out not to be superior in all cases. In particular, perhaps surprisingly, MP-SERVER

is by far the best performer, even with a single application thread (i.e., no contention at all): It

even outperforms a simple TAS lock in this case. This might look surprising, as MP-SERVER

includes communication with the server, which is avoided in classic locks and combining.

Recall, however, that even a TAS lock requires an atomic operation (which is executed in a

remote L2 cache on the TILE-Gx), and memory fences (to make sure that the next lock owner’s

view of protected data stays consistent). This turns out to be more costly than contacting the

server using hardware message passing.

According to the presented data, hardware support for message passing might justify server-

based CS execution even for uncontended locks. This, however, depends on the particular

scenario, because of the already discussed downsides of this approach (server dedication, false

serialization, the need to appropriately encapsulate critical sections, etc.). Note that a detailed

comparison of classic locks and delegation is out of the scope of this study: The purpose of

this subsection is merely to present global trends and to point out that hardware message

passing support changes the landscape of synchronization performance.

6.2.4 Queues and stacks

Because of their ubiquity, concurrent linearizable queues and stacks are typically used to

evaluate the performance of universal synchronization constructions [HIST10, FK12, FK11].

Following this observation, we implement some well-established queues and stacks from the

literature and analyze their performance. With these experiments, we study an important use

case where CSes are usually short. The implementations store 64-bit values, and are evaluated

under balanced load. For brevity, we focus only on throughput analysis. The latencies show

trends similar to those presented in Section 6.2.3. As delegation is able to achieve much higher

78

6.2. Evaluation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5 10 15 20 25 30 35

T
h
ro

u
g
h
p
u
t

(M
o
p
s/

se
c)

Number of clients

mp-server-1
HybComb-1

shm-server-1
CC-Synch-1

LCRQ
mp-server-2
HybLock-2

(a) Queue. X -1 – one-lock MS-Queue implemented
using approach X ; X -2 – two-lock MS-Queue, im-
plemented using approach X ; LCRQ – nonblocking
queue (see text)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5 10 15 20 25 30 35

T
h
ro

u
g
h
p
u
t

(M
o
p
s/

se
c)

Number of clients

mp-server
HybComb

shm-server
CC-Synch

Treiber
HybLock

(b) Stack. X – coarse-lock stack implemented using
approach X ; Treiber – nonblocking stack (see text)

Figure 6.8 – Performance of concurrent queues and stacks under balanced load

throughput than classic locks, we leave the latter out from the plots to avoid clutter, except for

HYBLOCK, as the best performer in that category.

Queues One of the best-known blocking queues is the fine-grained Michael and Scott queue

(MS-Queue) [MS96]. It is based on a linked list accessed using two CSes, so enqueues and

dequeues can take place in parallel. Its performance mostly depends on the way CSes are

implemented. We implement MS-Queue using HYBCOMB, CC-SYNCH, the two server-based

approaches (which requires two dedicated servers per queue instance), and HYBLOCK. Besides

the two-lock version, we implement the same queue using a single lock. We also test LCRQ

[MA13], a nonblocking queue that takes advantage of the wide spectrum of atomic operations

supported by x86 processors. The TILE-Gx supports most of the necessary instructions, so

adapting the LCRQ code written in C for x86 was relatively easy.4

The queue performance is shown in Figure 6.8a. The single-lock MS-Queues ("-1" suffix in the

legend) perform best. Among them, MP-SERVER and HYBCOMB are most efficient: They obtain

respectively up to 2x and 1.5x higher throughput than the third best implementation. LCRQ,

as well as the two-lock versions of MS-Queue5, level off sooner than the rest, which we now

explain in more detail.

One might expect fine-grained locking to always outperform a coarse lock. However, fine-

grained locking involves a tradeoff, since the additional synchronization it includes might

outweigh the gain that comes from increasing parallelism [HIST10]. Given Tilera’s relaxed

memory model, the enqueue and dequeue methods of the two-lock queue must be carefully

coded if they can run in parallel – memory fences are necessary to ensure queue consistency.

4We made the following modifications: the lacking bitwise test-and-set (BTAS) was replaced with a simple CAS
loop; for lack of the 128-bit CAS (CAS2), we modified LCRQ to store 32-bit values, and used a 64-bit CAS.

5To avoid clutter, we omit HYBCOMB-2, SHM-SERVER-2, and CC-SYNCH-2 from the graph, as they are outper-
formed by MP-SERVER-2.

79

Chapter 6. Leveraging Hardware Message Passing for Efficient Critical Section Execution

When delegation is used, it turns out that the necessity of inserting fences far outweighs the

benefit from fine-grained access. Therefore, a simple sequential queue implemented using MP-

SERVER or HYBCOMB yields best results. On the other hand, fine-grained synchronization pays

off when classic locks are used, as HYBLOCK-2 yields an almost twofold performance increase

over HYBLOCK-1 (not shown). This is because synchronization is much more expensive in this

case, and halving its cost by moving to two locks is not canceled out by the additional fences.

In spite of its excellent performance on x86 [MA13], LCRQ is less efficient on the TILE-Gx, and

achieves performance similar to that of the HYBLOCK queue. We speculate this is primarily

because of the way atomic instructions work on this processor. Namely, L2 caches are in

charge of executing them. This means that two atomic instructions might collide on an L2

cache even if they have independent data sets, leading to frequent false serialization. A better

performance might be achievable by optimizing LCRQ with the cache hierarchy of the TILE-Gx

in mind, but this falls outside the scope of this study.

Stacks The stack is known to be hard to parallelize, since both push and pop operations

access its top. One way to obviate its seemingly inherent sequential nature is to use the

elimination technique [ST95, CGH13]: if a push and pop operation are executed concurrently,

they can be eliminated to avoid accessing the stack. Still, if an operation cannot be eliminated,

it has to access the top of the stack. As elimination is orthogonal to the content presented here,

we evaluate the performance of a non-elimination concurrent stack (which, of course, can be

used to back up an elimination-based stack).

We evaluate six implementations: a sequential linked-list based stack, turned concurrent

using MP-SERVER, HYBCOMB, CC-SYNCH, SHM-SERVER, and HYBLOCK, as well as well-known

Treiber’s nonblocking stack [Tre86]. Their performance is given in Figure 6.8b. MP-SERVER and

HYBCOMB stacks are again the best performers – and the numbers nearly match those given in

Figure 6.8a for the single-lock MS queue. This is not surprising, as both concurrent objects are

represented as linked lists protected by a coarse lock. Treiber stack performance is inferior to

that of the other implementations, because the head of the stack is accessed using CAS. This

causes growing contention as concurrency increases, as most CAS operations repeatedly fail.

6.2.5 Observations

One might wonder to what extent our results are processor-specific. To answer this question,

we have measured the throughput of a concurrent counter implemented using MCS, CC-

SYNCH and SHM-SERVER on two single-socket x86 processors: a 10-core Intel Xeon E7-L8867

(without and with Hyperthreading enabled), and a 6-core AMD Opteron 6176. In virtually all

of the cases, peak throughput is significantly lower on x86: Most of the results are presented

in Chapter 7. For delegation, we have also measured the number of stalls per operation of

the servicing thread (as in Figure 6.6b) and got proportionally larger numbers than on the

TILE-Gx. Therefore, we believe HYBLOCK, MP-SERVER and HYBCOMB would outperform their

80

6.3. Additional Considerations

shared-memory-only counterparts also on x86 hardware, if it provided native message passing

support. Moreover, since there are more stalls on x86, the potential performance improvement

is higher.

Still, it is noteworthy that we did observe some platform-specific effects. Since the imple-

mentation of atomic instructions differs on the TILE-Gx and the x86, algorithms that use

them intensively (typically nonblocking ones) may behave differently. This is visible on the

example of LCRQ, which has substantially higher throughput on the x86 processors than on

the TILE-Gx. Also, because of the different memory consistency model, two-lock MS-Queue

outperforms its one-lock counterpart on the Xeon and Opteron (cf. Figure 6.8a), in contrast

to what we have observed on the TILE-Gx. Note, however, that these differences are specific

to implementations of a certain concurrent object, a queue in this case. In other words, Fig-

ure 6.8a (showing queue performance) would look different on an x86, but the qualitative

advantage of HYBLOCK, MP-SERVER and HYBCOMB over the shared-memory constructions for

mutual exclusion, which is central to this study, would in all likelihood remain the same.

Finally, the advantage provided by MP-SERVER and HYBCOMB is due to the way hardware

message passing is implemented, and more specifically, to the fact that receive operations

read from a local buffer, and that send operations are asynchronous. These features are not

too specific, and so, we believe they can be easily provided by future implementations of

hardware message passing. Note also that HYBCOMB depends a lot on the performance of

the fetch-and-add instruction, since every client must execute it on the same variable before

sending a request to the current combiner. Fetch-and-add on x86 processors is typically

fast, as it is guaranteed to succeed [MA13]. It should be noted, however, that x86 currently

implements fetch-and-add (and other atomic instructions) in the L1 cache, so the latency

of moving the cache line from one core to another would contribute to the critical path of

HYBCOMB in a hypothetical x86 implementation.

6.3 Additional Considerations

This section discusses some practical issues that arise when message passing is used.

Oversubscribing and thread migration The results presented in Section 6.2 assume a unipro-

grammed environment, with at most one thread pinned to a core. This is not an inherent

limitation of the hardware message passing approaches.

Indeed, on the TILE-Gx, oversubscribing is easily achieved thanks to the possibility to multiplex

the hardware queue of each core (cf. Section 6.2.1), which means that up to four threads can

share a core and still have their exclusive message queue. With HYBLOCK, MP-SERVER, and

HYBCOMB, application threads can freely migrate to another core in between requests, as long

as they are able to reserve a hardware queue on that core. Upon making a request, a thread t is

only expected to have a valid identifier, corresponding to its current core and hardware queue.

81

Chapter 6. Leveraging Hardware Message Passing for Efficient Critical Section Execution

As long as t remains pinned to the current core while its request is pending, other threads will

be able to reach it using that identifier.

More generally speaking, any constraints related to thread migration and oversubscribing

can be easily solved with relatively straightforward support at the hardware and OS level. For

instance, the Asynchronous Direct Messages (ADM) mechanism [SYK10] resembles Tilera’s

message-passing hardware in many ways, but in addition includes a small associative memory

that caches (thread ID, core) pairs. This enables threads to migrate freely, while the OS keeps

track of thread-to-core mappings.

Deadlocks Bearing in mind the limited capacity of the hardware message queues, another

practical issue with message passing is the possibility of deadlocks, if messages back up in

the network and block the sender. Obviously, there are no such problems with HYBLOCK, as a

core’s message queue contains at most two messages at any point during algorithm execution.

Also, the message queues of MP-SERVER clients or HYBCOMB non-combiner threads cannot

overflow since they contain at most one message. Therefore, the servicing thread never blocks

when sending a response to a request.

In our experiments, the message queue of a servicing thread cannot overflow, as it contains

at most 35 3-word requests at any time, which fits in the message queue. More generally,

overflows can happen if the hardware queue is not big enough to keep one request per

application thread. In this case, some clients could be blocked when sending a request, but

this is not an issue since every such send is anyway immediately followed by a blocking receive.

6.4 Summary

In this chapter we studied how hardware message passing can be used for efficient critical

section execution. We proposed three generic constructions tailored to take advantage of

hardware message passing: HYBLOCK, a hybrid lock, MP-SERVER, a server-based approach, and

HYBCOMB, a hybrid combining algorithm. Experiments on Tilera’s TILE-Gx processor show

that HYBLOCK, MP-SERVER, and HYBCOMB largely outperform their shared-memory-only

counterparts, when used to implement ubiquitous linearizable concurrent objects (counters,

queues, stacks).

Our results show that hardware message passing can provide more efficient thread synchro-

nization, and thus, improve the scalability of concurrent code. The hybrid design of HYBLOCK

and HYBCOMB demonstrates that processors providing both CC shared memory and message

passing are appealing, as they allow us to take the best of both worlds. However, it also illus-

trates that significant algorithmic effort can be necessary in order to exploit the resources of a

hybrid machine.

82

7 Optimizing Delegation on Processors
without Message Passing

Here we study how to optimize delegation performance on prevalent x86 processors, which

currently do not feature message-passing hardware. Optimizations are proposed in Section 7.1

and evaluated in Section 7.2. The results are discussed in Section 7.3, before a summary in

Section 7.4.

7.1 Optimizing Delegation over CC Shared Memory

In this section, we first describe the server-based delegation algorithm that is used as a

starting point for our work. Then, we explain its main bottleneck and detail how it can be

optimized for execution over CC shared memory by taking into account characteristics of

modern processors.

7.1.1 Baseline algorithm

In the description of the baseline algorithm, we make the following assumptions: (a) Partic-

ipating threads are known in advance; (b) Data exchanged between clients and servers can

fit into one cache line. Assumption (a) allows us to pre-allocate per-client buffers and thus

eliminate the cost of synchronization on a shared buffer1. Since work to delegate is usually

encapsulated inside a function, considering the typical case of 64-byte cache lines, one cache

line can store a function pointer, a flag, and several arguments, which justifies assumption (b).

The code is given in Algorithm 5. It uses an array of cache-line-sized slots, one per client

thread. Every slot contains a flag with two possible values, REQU EST and RESPON SE . To

make a request, a client writes the function pointer and arguments in the corresponding

slot, and then sets the flag. The server repeatedly scans the client slots, and if there is a

request, it is immediately executed, and a response is sent to the client by writing it in the

slot and appropriately setting the flag. Algorithm 5 is essentially a stripped-down version

1If participating threads are not known in advance, one solution is to assign communication buffers to cores,
and to use a simple locking algorithm to arbitrate between threads that would execute on the same core.

83

Chapter 7. Optimizing Delegation on Processors without Message Passing

Algorithm 5 Baseline delegation algorithm

1: CacheLine channel [0..n −1] {channel [i]: communication channel between client i
and the server}

2: channel [0..n −1]. f l ag ← RESPON SE
3: channel [0..n −1].msg ← NU LL

{Server code}
4: function run_server()
5: cl i ent_i d ← 0
6: while true do
7: if channel [cl i ent_i d]. f l ag = REQU EST then
8: { f unc, ar g s} ← channel [cl i ent_i d].msg
9: channel [cl i ent_i d].msg ← f unc(ar g s)

10: channel [cl i ent_i d]. f l ag ← RESPON SE
11: cl i ent_i d ← (cl i ent_i d +1) mod n

{Code of client i }
12: function delegate(f unc_ptr , ar g s)
13: channel [i].msg ← { f unc_ptr, ar g s}
14: channel [i]. f l ag ← REQU EST
15: while channel [i]. f l ag 6= RESPON SE do
16: nop
17: return channel [i].msg

of RCL [LDT+12]. RCL is more complex because it provides additional features that are not

central to this work such as support for nested critical sections or the possibility to have one

server managing CSes on several shared objects.

7.1.2 Opportunities for optimization

The server in Algorithm 5 experiences at least two RMRs for each client request. This is

illustrated in Figure 7.1, which is essentially a more detailed representation of Figure 5.2. To

recapitulate, accesses to shared cache line channel is shown, during the communication

between a client and the server for the execution of one CS. Figure 7.1 also shows the cache

line status during the execution: state M (modifed) corresponds to read-write mode; state S
(shared) corresponds to read-only mode. When the client wants to execute a CS, it writes the

request channel, and then keeps spinning. The server reads the request, which results in an

RMR, since the last access to channel was from the client. The CS is then executed by the

server. Afterwards, the server writes to channel to respond to the client, triggering another

RMR, since the client’s copy of channel needs to be invalidated.

84

7.1. Optimizing Delegation over CC Shared Memory

server

client

cache

cache M
w

r

get

S

S

cs
w

inv.

M

r r r r r r r r

S

S
get

writing
request

local spinning reading
answer

handling client request

RMR RMR

Figure 7.1 – Communication between the server and a client – Baseline algorithm (2 RMRs on
the server per request).

7.1.3 Proposed optimizations

By carefully analyzing hardware-level details of executing the presented algorithm on a typical

multisocket multicore processor, we identified two optimizations that can considerably im-

prove its performance: backoff in local-spin loops and streaming (non-temporal) stores. We

now discuss each of them in more detail.

Backoff with local spinning

Contemporary processors usually have automatic prefetchers, which detect regular data

access patterns and proactively bring data closer to the processor core before it is referenced,

thus hiding access latency. In Algorithm 5, the server repeatedly iterates over consecutive

cache lines, which results in a very regular cache line access pattern, likely to trigger the

prefetcher. In our case, prefetching a cache line in read-only mode could hide the latency of

reading the client’s request, but an RMR would still be generated to upgrade the cache line to

read-write mode, at the time the server writes to the channel. Prefetchers are actually able

to detect write-access patterns and bring the cache line to the server cache directly in read-

write mode. However, the cache line will get downgraded to read-only mode immediately

as illustrated by Figure 7.2, since the client is spinning on that cache line, waiting for a

response. Therefore, even local spinning, usually considered to be the first condition for

a concurrent algorithm’s scalability [MCS91], can be detrimental to performance, since it

hinders the automatic prefetcher. We will refer to this problem as the spinning-prefetching

collision.

A way to avoid this collision is to introduce a well-tuned backoff in the client’s spin loop.

Instead of constantly checking the flag in a loop, the client introduces a fixed waiting time

between consecutive checks. Ideally, the backoff should be such that there is only one check,

right after the server has written the response, as shown in Figure 7.3. If the waiting time

is too short, the spinning might conflict with the prefetcher; If it is too long, the client will

unnecessarily keep waiting even though the response is already available. The right value

85

Chapter 7. Optimizing Delegation on Processors without Message Passing

server

client

cache

cache M
w

inv.

M

r r

get

S

S

r
cs

w

inv.

M

r r r r

get

S

S

writing
request

local spinning reading
answer

prefetching handling client request

RMR

Figure 7.2 – Communication between the server and a client – Spinning-prefetching collision
(one RMR on the server per request).

server

client

cache

cache M
w

inv.

M
r

cs
w

r

get

S

S

writing
request

backoff reading
answer

prefetching handling client request

Figure 7.3 – Communication between the server and a client – Backoff with local spinning (no
RMRs on the server).

depends on many factors, such as the current load, the way prefetching works etc. Here we

tune the backoff manually, i.e., we measure performance with different fixed backoff values,

but it would be interesting to study how the waiting time can be re-calculated and updated at

runtime.

It is important to stress that, although backoff is a well-known technique in concurrent

programming, it is most often used to deal with a completely different problem. Namely

backoff is usually used to reduce contention on a shared variable that is concurently accessed

by an arbitrary number of threads [Her93, MCS91]. In our case shared variables are not

contended since only one client and the server can access the same cache line concurently, but

introducing backoff in the spin loop of the client allows avoiding interference with prefetching

on the server side.

Another way to prevent the spinning-prefetching collision from happening would be to use

the MONITOR/MWAIT instructions, supported by x86 processors. With these instructions,

a thread can switch to a low-power state and get notified when a memory location changes,

instead of spinning on it. Although this is conceived as an energy-saving feature, it might

also have visible performance benefits in our case, since spinning is avoided. However, the

86

7.1. Optimizing Delegation over CC Shared Memory

server

client

cache

cache M
w

get

S

S

r
cs

w

r r r r r r r r

get
(from mem.)

S

writing
request

local spinning reading
answer

prefetching handling client request streaming store flushed

(CL invalidation)

Figure 7.4 – Communication between the server and a client – Streaming stores (no RMRs on
the server, streaming stores in green).

MONITOR/MWAIT instuction pair is available only in kernel mode on the processors we could

get access to. This is not a problem per se, because MONITOR/MWAIT can be exposed to

userspace applications via a special piece of kernel code – a loadable kernel module in case

of Linux. Even though we have written such a kernel module, as a simple character device, it

turned out to be of little use, because the kernel itself becomes the bottleneck in contended

scenarios. This is so even if a separate kernel module is used for every core, and we used a very

recent kernel (Ubuntu’s Linux 3.2.0-64-generic from June 2014). We speculate that this is due

to concurrent access to the kernel data structures for managing character devices. Still, the

possibility of introducing userspace access to MONITOR/MWAIT is left open [Int14], which

would make it an interesting alternative to study.

Streaming stores

To make the implementation of Algorithm 5 more efficient, we explore an alternative store

instruction, a streaming store, also referred to as non-temporal store. Streaming stores differ

from ordinary stores in two aspects: (a) They are weakly ordered and (b) they do not bring

the data to the core’s cache for writing, but write directly to memory instead. Algorithm

execution using streaming stores is illustrated in Figure 7.4. Hence, (a) allows a server store

operation to be asynchronously completed and to be overlapped with subsequent requests’

handling. Note also that (b) implies that the spinning-prefetching collision described in the

previous subsection is not a concern in this case as the prefetcher will try to fetch cache lines

in read-only mode (since the server does not issue read-write access requests anymore).

The server’s stores still cannot become visible to other cores in a fully arbitrary order: Program

order needs to be preserved between stores belonging to the same operation (i.e., the flag

must not be written before the actual data). An obvious way to ensure this is to put a memory

fence between writing the data and the flag, but such a fence at the server side would force the

write buffers to be flushed, incurring overhead that defeats the purpose of using streaming

stores. To avoid this, one can take advantage of the fact that the server only sends a function’s

return value (if there is one) back to the client, so the data and the one-bit flag can fit a variable

87

Chapter 7. Optimizing Delegation on Processors without Message Passing

that can be atomically read and written, thus ensuring that the flag is never updated before

the data. There might be other platform-specific ways to ensure this.

In spite of potential performance benefits, it should be noted that streaming stores cannot be

applied in all cases because of their weak ordering semantics. Namely, a server implemented

with streaming stores can only be used if the data accessed by the server is never accessed by

any other thread. This is the case when the server is used to replace a coarse-grained lock on a

concurrent object (since threads do not access the object outside the lock). Also, the constraint

is satisfied by algorithms based on fine-grained locking, as long as the different locks protect

disjoint data sets (e.g., hash tables). However, if data sets are not disjoint, the streaming store

that acknowledges request handling can become visible to other cores before the stores that

changed the object. An example is the Michael and Scott blocking queue algorithm [MS96]

that we adapt in Section 7.2 to use delegation. The original algorithm uses two locks, one for

enqueue the other for dequeue operations, that we replace by two servers. Streaming stores

cannot be used in this case since data enqueued by one server are eventually dequeued by

the second one, breaking the above constraint. Of course, falling back to one lock ensures

correctness.

7.2 Evaluation

The goal of this section is twofold: to examine the effectiveness of the proposed optimizations

when delegation is implemented on real-world processors (Section 7.2.2) and to compare

the performance of optimized delegation with that of most relevant related approaches (Sec-

tion 7.2.3). Before presenting experimental results, we describe our setup.

7.2.1 Experimental setup

We use two x86 machines throughout this section: a Supermicro SuperServer 5086B-TRF

consisting of eight 10-core Intel Xeon Westmere E7-L8867 (2.13 GHz) chips with 2-way SMT

(Hyperthreading), i.e. 160 hardware threads in total, and an IBM x3755-M3 with four 12-

core AMD Opteron Magny-Cours 6176 (2.3 GHz) packages without SMT, for a total of 48

hardware threads. The Xeon runs Red Hat Enterprise Linux Server 6.4 with Linux 2.6.32-

358.6.2.el6.x86_64, and the Opteron runs SUSE Linux Enterprise Server 11 with Linux 2.6.32.46-

0.3-default. All of the implementations are written in C, carefully optimized and compiled

with the O3 flag (maximum optimization level) using GCC 4.4.7 (resp. 4.7.2) on the Xeon (resp.

Opteron).

Besides the optimized server-based solutions that implement Algorithm 5, we also evaluate

CC-Synch [FK12], as a representative of combining approaches, as well as H-Synch, its NUMA-

aware version. H-Synch follows the general idea of grouping operations originating from

the same node and executing them together in batches, thus incurring fewer cross-socket

cache line transfers and significantly increasing throughput. Even though the Opteron is

88

7.2. Evaluation

a multisocket NUMA platform, we do not present H-Synch results on it, since its internal

characteristics incur cross-socket communication even if only cores from one socket are

involved, thus making typical NUMA-aware strategies unsuccessful [DGT13]. Our experiments

have confirmed this. Note also that H-Synch was not evaluated in Chapter 6 because the

TILE-Gx is not a NUMA machine.

To evaluate the performance of an algorithm, we use it to implement a concurrent object and

stress-test it using a varying number of threads, as we did in Chapter 6. Each thread repeatedly

executes operations on the concurrent object, with a short pause of random duration (up to

1000 CPU cycles) between two consecutive requests. We increase the number of clients and

measure aggregate throughput, i.e. the total number of executed operations by all threads in a

unit of time. Every point in the graphs is an average over 10 one-second runs. To avoid OS

scheduler interference, we explicitly pin threads to respective cores and run at most one thread

on each core. When increasing the number of clients, we pin them to cores from different

sockets in a round robin fashion, in order to uniformly distribute threads across the sockets2.

In server-based implementations, the server is pinned to hardware thread 0. If two servers

are used, the second server is pinned to thread 1. On the Xeon, whenever a server thread is

used, we do not pin any thread to the other hardware thread that belongs to the same physical

core as the thread running the server. This is to avoid undesirable interference with the server,

which can impact performance and thus render result analysis significantly more difficult.

Note that this is unnecessary on the Opteron since it does not have SMT support.

Unless otherwise stated, the client-server communication slots in implementations of Al-

gorithm 5 on the Opteron are allocated as a contiguous array of cache lines, to maximize

automatic prefetching. The slots are homed at the server’s socket. On the Xeon, instead of

using consecutive cache lines, every second cache line is used. We do so because of the adja-

cent line prefetcher, which on every cache miss prefetches the first neighbouring cache line,

thus making cache lines always move in pairs [Int14]. This turned out to result in unfavorable

interference in our experiments, which we avoid by skipping every second cache line when

allocating client slots. In experiments where memory management is needed (stacks and

queues), cache-aligned memory chunks are allocated and deallocated using per-thread pools

(we use the implementation provided by the authors of CC-Synch [FK12]).

In all delegation implementations, clients pass pointers to functions that the servicing thread

should execute. An alternative, used in Chapter 6, is to pass an opcode (usually an integer) the

server can use to decide what to execute, thus avoiding function pointers [CCPG13]. However,

we do not use that optimization here because it did not show performance benefits on the x86

processors: Synchronization overheads dominate the overhead of a function call. Moreover,

we have observed that the function call is mostly "absorbed" by the surrounding code, i.e. it is

executed in cycles that would otherwise remain idle.

2We have also done single-socket experiments on the Xeon, but our optimizations are not a good fit for that
case, because intra-socket cache coherence has very different characteristics, such as relying on the inclusive L3
cache, and very short communication latencies. The Opteron has only 6 cores per socket, which is not enough
parallelism to make strong conclusions in this case.

89

Chapter 7. Optimizing Delegation on Processors without Message Passing

 0

 5

 10

 15

 20

 20 40 60 80 100 120 140 160

T
h
ro

u
g
h
p
u
t

(M
o
p
s/

se
c)

Number of application threads

srv-B2500
srv-B5000
srv-B7500

srv-B10000
srv-B15000

srv-base

srv-base-shuf
srv-B7500-shuf

(a) Xeon E7-L8867

 0

 5

 10

 15

 20

 5 10 15 20 25 30 35 40 45

T
h
ro

u
g
h
p
u
t

(M
o
p
s/

se
c)

Number of application threads

srv-B500
srv-B1000
srv-B1500
srv-B2000

srv-base
srv-base-shuf

srv-B2000-shuf

(b) Opteron 6176

Figure 7.5 – Impact of local backoff on delegation throughput. srv-base is the implementation
of Algorithm 5 before our optimizations. Suffix Bx corresponds to an implementation with
a backoff of x CPU cycles. Suffix shuf denotes cache line shuffling (cache lines are not
sequentially, but randomly read by the server).

7.2.2 Analysis of the optimization performance

We present the performance of Algorithm 5 with and without the optimizations proposed in

Section 7.1. To do so, we implement a concurrent counter, which supports only one operation,

f etch_and_add (atomically increment the counter and returns its previous value).

First we evaluate the impact of local backoff in Figure 7.5. We can see that it significantly

improves throughput in most concurrency levels on both processors. The performance

increase is up to 6x (2x) on the Xeon (Opteron). Increasing the backoff duration above a certain

value does not increase the throughput further, most likely because the backoff is sufficient

to fully avoid collision with the prefetcher. To confirm that the performance increase comes

from minimizing the spinning-prefetching collision, we include an implementation where

the server does not access client slots sequentially, but randomly. This results in an irregular

access pattern at the server, which is harder to track by the prefetcher. As can be seen in the

figure, such shuffling of client slots greatly reduces performance when backoff is used, which

is due to less prefetching. On the other hand, shuffling has little or no effect when backoff is

not employed (see srv-base vs srv-base-shuf): Due to the spinning-prefetching collision, every

response written by the server still causes a cache miss, so the bottleneck stays the same as

without prefetching.

Figure 7.6 shows the impact of using streaming instead of ordinary stores. There is a visible

throughput increase of 3.5x (1.7x) on the Xeon (Opteron) with respect to the baseline perfor-

mance, which confirms that streaming stores are a good choice for throughput optimization.

Further, we examine local backoff effectiveness in this case. The results are different on the

two tested processors. On the Opteron, backoff on top of streaming stores does not result

in a further performance increase, meaning that applying either backoff or streaming stores

90

7.2. Evaluation

 0

 5

 10

 15

 20

 20 40 60 80 100 120 140 160

T
h
ro

u
g
h
p
u
t

(M
o
p
s/

se
c)

Number of application threads

srv-SS
srv-B1000-SS
srv-B3000-SS

srv-B10000-SS
srv-base

(a) Xeon E7-L8867

 0

 5

 10

 15

 20

 5 10 15 20 25 30 35 40 45

T
h
ro

u
g
h
p
u
t

(M
o
p
s/

se
c)

Number of application threads

srv-SS
srv-B1500-SS

srv-base

(b) Opteron 6176

Figure 7.6 – Impact of streaming stores on delegation throughput (SS denotes that streaming
stores are used). srv-base is the implementation of Algorithm 5 before our optimizations. Local
backoff is also evaluated: suffix Bx corresponds to an implementation with a backoff of x CPU
cycles.

in isolation is already enough for attaining the highest throughput. This is not a surprise,

since the spinning-prefetching collision is not expected when streaming stores are used (cf.

Section 7.1). However, the result on the Xeon does not follow this logic – adding local backoff

helps even on top of streaming stores. Because the implementation of streaming stores is not

documented in detail, we have done additional experiments to get a better understanding of

this behavior. These experiments indicate that there is a conflict: If there is an outstanding

streaming store to a cache line from core A, its performance is significantly impaired by core B

spinning on the same cache line. The pending streaming store invalidates the copy on core B,

which immediately issues another read request, since it is spinning. This newly generated

read request apparently obstructs the streaming store, causing it to take about 3x more time to

complete. This obstruction is avoided by adding backoff. Higher backoff values help because

such conflicts become less probable. This is a strong hint that the spinning-prefetching colli-

sion is not the only reason why local spinning can hamper performance: Other characteristics

of the machine at hand may incur it as well. The conflict was irreproducible with both normal

and streaming stores on the Opteron, and with normal stores on the Xeon.

In the above experiments, we can see that there is a tradeoff involved in choosing the best

backoff duration. Increasing it improves throughput (to some extent), but at the expense of

worsening low-concurrency performance. Choosing the right value depents on the targeted

application. In the rest of this section, we have chosen values that attain high throughput

without unreasonably increasing latency in low concurrency levels (srv-B5000 and srv-B3000-

SS on the Xeon, srv-B1500 and srv-SS on the Opteron).

We quantify more precisely the impact of local backoff and streaming stores in cases of little

or no concurrency, by observing average request latency in Figure 7.7. Not surprisingly, the

baseline implementation performs best in the lowest concurrency levels. The latency of

91

Chapter 7. Optimizing Delegation on Processors without Message Passing

 0

 2000

 4000

 6000

 8000

 10000

 5 10 15 20 25

L
at

en
cy

 (
cy

cl
es

)

Number of application threads

srv-B5000
srv-B3000-SS

srv-base

(a) Xeon E7-L8867

 0

 2000

 4000

 6000

 8000

 10000

 5 10 15 20 25

L
at

en
cy

 (
cy

cl
es

)

Number of application threads

srv-B1500
srv-SS

srv-base

(b) Opteron 6176

Figure 7.7 – Latency evaluation with local backoff and streaming stores. Suffix SS – streaming
stores are used; suffix Bx – backoff of x CPU cycles is used.

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140 160 180 200

T
h
ro

u
g
h
p
u
t

(M
o
p
s/

se
c)

Loop iterations inside CS

srv-B5000
srv-B3000-SS

srv-base

(a) Xeon E7-L8867

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140 160 180 200

T
h
ro

u
g
h
p
u
t

(M
o
p
s/

se
c)

Loop iterations inside CS

srv-B1500
srv-SS

srv-base

(b) Opteron 6176

Figure 7.8 – Maximum throughput with long critical sections. Inside the CS, elements of an
array of 64 integers are incremented in a loop, one increment per loop iteration. Suffix SS –
streaming stores are used; Suffix Bx – backoff of x CPU cycles is used.

backoff-based implementations is mostly dependant on the chosen backoff duration, which

only adds overhead in case of few active threads. However, even the backoff values in the

figure, chosen for high throughput, do not lead to excessively high latency. With the exception

of srv-B5000, they are within 1.6x of the latency of srv-base even with only one client thread.

Note that the small diference is partly due to the test configuration, which stresses the general

case of cross-socket communication: Delegation within a socket, when possible, would exhibit

lower latencies. Overall, backoff and streaming stores are not the best fit for low-concurrency

cases, but as the level of concurrency increases, they become a more and more appealing

alternative. This is expected, because both optimizations deliberately trade low-concurrency

for high-concurrency performance.

Now we measure performance with a longer critical section. Instead of one counter increment

92

7.2. Evaluation

 0

 5

 10

 15

 20

 20 40 60 80 100 120 140 160

T
h
ro

u
g
h
p
u
t

(M
o
p
s/

se
c)

Number of application threads

srv-B5000
srv-B3000-SS

srv-base
CC-Synch

H-Synch
FetchAdd

(a) Xeon E7-L8867

 0

 5

 10

 15

 20

 5 10 15 20 25 30 35 40 45

T
h
ro

u
g
h
p
u
t

(M
o
p
s/

se
c)

Number of application threads

srv-B1500
srv-SS

srv-base

CC-Synch
FetchAdd

(b) Opteron 6176

Figure 7.9 – Performance of concurrent counters. srv-* – server-based implementations; CC-
Synch, H-Synch – combining implementations [FK12]; FetchAdd – hardware fetch-and-add
instruction

as in previous experiments, we allocate an array of 64 integers and the critical section consists

of incrementing each integer sequentially (modulo 64) in a loop. The number of loop iterations

varies. We stress the server with the maximum number of clients (158 on the Xeon and 47

on the Opteron) executing this CS, and we plot the result in Figure 7.8. As the critical section

size increases, it starts dominating the synchronization overhead and optimizations become

less and less relevant. However, even at 200 loop iterations there are still visible benefits: the

version optimized using streaming stores outperforms the baseline implementation by 1.84x

(1.19x) on the Xeon (Opteron). Still, it should be noted that this experiment serves only as a

rough estimate of what happens with longer critical sections, as it does not simulate many

things that a real-life critical section might do, such as cache and TLB misses, floating-point

operations, etc. Thus, actual performance impact should be evaluated on a case-by-case basis,

which we do next, by evaluating concurrent objects that should benefit the most from the

proposed optimizations.

7.2.3 Concurrent data structures

Here we use delegation to come up with efficient implementations of some ubiquitous con-

current objects, counters, stacks and queues, and we compare them with well-known existing

implementations.

Figure 7.9 gives the performance of different concurrent counters. Besides the server-based

implementations, CC-Synch, and H-Synch, we also include a concurrent counter trivially

implemented using the atomic fetch-and-add instruction. In high concurrency levels, our

optimized srv implementations consistently outperform all other counters. CC-Synch achieves

performance similar to that of srv-base, which is not surprising, given that the servicing

threads in both implementations have a similar communication pattern – two cache misses

93

Chapter 7. Optimizing Delegation on Processors without Message Passing

 0

 5

 10

 15

 20

 20 40 60 80 100 120 140 160

T
h
ro

u
g
h
p
u
t

(M
o
p
s/

se
c)

Number of application threads

srv-B5000
srv-B3000-SS

srv-base
CC-Synch

H-Synch
treiber

(a) Xeon E7-L8867

 0

 5

 10

 15

 20

 5 10 15 20 25 30 35 40 45

T
h
ro

u
g
h
p
u
t

(M
o
p
s/

se
c)

Number of application threads

srv-B1500
srv-SS

srv-base

CC-Synch
treiber

(b) Opteron 6176

Figure 7.10 – Performance of concurrent stacks (initially empty) under balanced load (every
thread alternates between push and pop). srv-* – server-based implementations; CC-Synch,
H-Synch – combining implementations [FK12]; treiber – Treiber’s nonblocking stack [Tre86]

at the server (combiner) per operation and no further optimizations. On the Xeon, H-Synch

gives a significant performance improvement over CC-Synch because of its NUMA-awareness,

indicating a striking difference in inter- and intra-socket communication costs. Still, optimized

srv performs even better in most concurrency levels, although it does not take into account

the processor’s NUMA characteristics. This shows that cross-socket communication does not

necessarily need to be eliminated to achieve high throughput: Identifying important latencies

and removing them from the critical path, as we do here, can yield even better results. Perhaps

surprisingly, even the fetch-and-add counter reaches far lower throughput than sr v . This is

mostly because every core has to bring the counter to the local cache in order to increment it,

so the cache line containing the counter bounces between operations, which often includes

a cross-socket transfer. On the Xeon, we can also see that fetch-and-add performance, after

a period of stability, suddenly grows again with more than 80 threads. This is because each

newly added thread is co-located with an existing thread on the same physical core (because

of Hyperthreading). When the counter’s cache line is brough to a core’s cache, increments of

both threads sharing that core are often executed together, which avoids cache misses and

thus improves performance.

Now we examine implementations of concurrent stacks (Figure 7.10). They are implemented

straightforwardly from the sequential specification of a stack, by putting the code of push and

pop operations inside a critical section. As in Chapter 6, we do not include an elimination layer

in our implementations, as it is orthogonal to the main topic of this work. Stacks based on a

server, CC-Synch, H-Synch, as well as the nonblocking Treiber stack [Tre86] are presented. The

results with CC-Synch, H-Synch, and a server are very similar to those in Figure 7.9 (counter),

which is not a surprise because both counters and stacks are implemented with only one

server. There is only a small difference in the peak throughput: Since the stack’s push and

pop operations include more work than incrementing a counter (data allocation/deallocation

and a short linked list manipulation), critical sections are longer and the server can execute

94

7.2. Evaluation

 0

 5

 10

 15

 20

 20 40 60 80 100 120 140 160

T
h

ro
u

g
h

p
u

t
(M

o
p

s/
se

c)

Number of application threads

srv-B5000-1
srv-B5000-2

srv-B3000-SS-1
srv-base-1
srv-base-2

CC-Synch-2
H-Synch-2

LCRQ
LCRQ+H

(a) Xeon E7-L8867

 0

 5

 10

 15

 20

 5 10 15 20 25 30 35 40 45

T
h

ro
u

g
h

p
u

t
(M

o
p

s/
se

c)

Number of application threads

srv-B1500-1
srv-B1500-2

srv-SS-1
srv-base-1

srv-base-2
CC-Synch-2

LCRQ

(b) Opteron 6176

Figure 7.11 – Performance of concurrent queues (initially empty) under balanced load (every
thread alternates between enqueue and dequeue). srv-* – server-based implementations of
blocking MS-Queue [MS96]; CC-Synch, H-Synch – combining implementations [FK12] of
blocking MS-Queue [MS96]; LCRQ, LCRQ+H – nonblocking queues for x86 [MA13]; suffix -x is
the number of locks used in MS-Queue implementations

fewer operations in a unit of time. The performance drop is more visible on the Opteron: a

possible reason is that the Xeon’s more complex prefetching logic is able to hide the latency of

the cache miss that happens when a new stack element is allocated.

Finally, we compare concurrent FIFO queue implementations. In contrast to the implemented

counters and stacks, where the object is coarsely locked, queues allow a certain degree of

fine-grained locking. For instance, as mentioned in Chapter 6, the Michael and Scott blocking

queue (MS-Queue), uses two separate locks, operating at opposite ends of the queue (one

for enqueue, and the other for dequeue operations) [MS96]. We implement MS-Queue using

two servers, as well as using two CC-Synch/H-Synch combiners. Again, besides two-lock

implementations, we also evaluate one-lock ones, for two reasons. First, that enables us to

directly quantify the benefit from introducing fine-grained locking. Second, the streaming-

store optimization is not applicable to fine-grained MS-Queue, as explained in Section 7.1. In

addition to these different implementations of MS-Queue, nonblocking LCRQ [MA13], as well

as its hierarchical version, LCRQ+H, are included (with the ring size of 217, and for LCRQ+H,

timeout set to 400 Kcycles). LCRQ is specifically designed with x86 processors in mind and is

therefore expected to perform well.

The results are shown in Figure 7.11. First we discuss the MS-Queue implementations. Fine-

grained locking significantly improves the performance of the srv-base, CC-Synch and H-

Synch queues implemented using a single lock (CC-Synch-1 and H-Synch-1 not shown to avoid

clutter), but has a much less pronounced impact on the optimized server implementations,

especially on the Opteron, where it does not give any tangible benefits over the coarse-grained

version. We believe one reason is the hardware prefetcher, which has a more complex task

in this case. When there is a coarse lock on an object, there is only one server executing all

95

Chapter 7. Optimizing Delegation on Processors without Message Passing

critical sections, so cache misses mostly originate from client-server communication, since

the data structure itself, once allocated, stays in the server’s cache. In case of fine-grained

locking, however, data locality is suboptimal because the queue is directly accessed by two

server threads and the data needs to move – typically, when a dequeuing server dequeues

an item, it incurs a cache miss, since the item is in the enqueuing server’s cache. With more

cache misses coming from data accesses, the pattern observed by the prefetcher becomes less

regular and the performance drops.

Nevertheless, our optimized implementations still provide competitive performance (even

those without fine-grained locking): In high concurrency levels, they reach the highest through-

put on the Opteron, and are only outperformed by LCRQ+H on the Xeon. However, it should

be noted that the NUMA-awareness strategy used by LCRQ+H trades performance for fairness.

In the presented experiment, the fairness ratio of LCRQ+H, i.e., the ratio between the highest

and the lowest number of operations executed by some thread during a time interval, was

typically 1.4x. At the same time, the server and combiner-based implementations exhibit

almost perfect fairness (every thread executed nearly the same number of operations). In more

detail, with LCRQ+H, at every point there is one active NUMA socket – any operations from

other sockets are paused for a certain amount of time, and then they try to make their socket

active [MA13]. The duration of this pause is a tradeoff – higher values give a better NUMA

locality and thus higher throughput, but some nodes are increasingly likely to starve. The

result shown in Figure 7.11 is for the pause of 400 Kcycles. With a 1 Mcycle pause, maximum

throughput grows over 30 Mops/sec, significantly outperforming the other queues, but with

lower fairness – a typical fairness ratio in high concurrency was 4.

7.3 Discussion

The above experiments show that local backoff and streaming stores can dramatically improve

delegation performance in many cases. It turns out that simple hardware-aware optimizations

play a key role in optimizing concurrent code, which corroborates recent results, stating that

synchronization performance is mainly a hardware property [DGT13].

It is also noteworthy that there is a number of other details at the level of cache coherence

protocols that can affect delegation performance. For example, we have experimented with dif-

ferent placements of client communication slots across sockets (recall that they are allocated

at the server’s socket in Section 7.2). This turned out to have a surprisingly big performance

impact, most likely because of different work distributions between coherence agents. How-

ever, exploring this in more details is hard without knowing the inner workings of the cache

coherence protocol.

Even with the proposed optimizations, there is still ample space for further improvement. In

terms of throughput, we can see that the best result is about 20 Mops/sec on both processors

for a concurrent counter, which means that the server takes about 100 CPU cycles to process

every request. Since the critical section itself is very short in this case (only a couple of cycles

96

7.4. Summary

to access a variable in the L1 cache), we can conclude that the rest is pure synchronization

overhead. Indeed, hardware event counters indicate that the server core is stalled most of the

time, even after applying our optimizations. We believe this is mostly due to unsuccessful or

partial prefetching, as well as to the cost of flushing the streaming-store buffer.

In Chapter 6, we showed that on a processor provided with hardware message-passing sup-

port, such stalls on the server can be fully avoided. Reaching the same result exclusively over

cache-coherent shared-memory would probably require being able to specify the cache of a

remote core where data should be placed, as proposed in [PYK+13]. Such a solution would

allow a client to specify that its request should be moved to the server cache, avoiding the need

to rely on hardware prefetchers to transfer cache lines in time to avoid stalls. Our experiments

also show that the solutions that optimize throughput are detrimental to latency in low con-

currency. On the contrary, hardware message-passing or cache-aware instructions [PYK+13]

allow achieving both high throughput and low latency. Considering the relatively low perfor-

mance our optimized technique achieves compared to a solution based on hardware message

passing, and the huge number of experiments we had to conduct to understand how these

optimizations interact with the cache coherence system, we argue that the easiest and most

efficient approach to thread synchronization at large scale is to provide hardware features

such as those previously mentioned.

7.4 Summary

The chapter presents two optimizations for delegation over cache-coherent shared memory:

(i) backoff in local-spin loops to minimize collision with hardware prefetchers and (ii) weakly-

ordered streaming stores to avoid memory-model limitations. Although simple, these two

optimizations subtly interact with the cache-coherency protocol and the hardware prefetchers

of modern x86 processors to achieve unprecedented throughput for the execution of critical

sections. Hence, concurrent counters, stacks, and queues implemented with our optimized

delegation solution outperform the most efficient NUMA-oblivious and NUMA-aware, both

blocking and nonblocking alternatives in most cases, especially under heavy contention.

Nevertheless, the performance results are visibly inferior to those obtained with the help of

hardware message passing (Chapter 6). This confirms that hardware features that enable better

control over inter-core communication are very desirable for making thread synchronization

faster.

97

Concluding Remarks and
Bibliography

99

8 Conclusions

We have presented novel algorithms, models, and optimizations for manycore machines. For

emerging message-passing processors, the thesis introduces two flavors of OC-BCAST, a novel

tree-based broadcast algorithm based on one-sided communication. OC-BCAST leverages

parallelism offered by on-chip one-sided operations to significantly decrease latency and

increase throughput with respect to well-known alternatives, built on top of the traditional

two-sided interface. The advantages of OC-BCAST have been confirmed (i) experimentally,

on the Intel SCC processor, and (ii) analytically, using a performance model that captures all

communication costs on the critical path of the different broadcast algorithms.

For traditional shared-memory processors, we have demonstrated how hardware extensions

for message passing can be leveraged to obtain hybrid mutual exclusion algorithms. Indeed,

HYBLOCK and HYBCOMB are the first of their kind: They use both message passing and cache-

coherent shared memory. This enables unprecedented performance, thanks to message

passing; Still, the algorithms remain reasonable in terms of complexity, thanks to shared

memory. Our algorithms have been shown to outperform their state-of-the-art counterparts

in many scenarios, including implementations of concurrent counters, queues and stacks on

the Tilera TILE-Gx processor.

Besides the direct algorithmic contributions, the thesis gives insights into pros and cons

of message passing and shared memory. Our study confirms that message passing, with

appropriate hardware support, is a very powerful tool for designing fast communication

and synchronization algorithms with modelable performance. This stems from the fact

that nothing is abstracted away from the programmer, as data exchange between cores is

explicit and direct. That being said, the convenience and ease of use that coherent shared

memory provides should by no means be neglected, as it removes the burden of having to

think about each and every data exchange, even when these are not crucially important from

the performance point of view. Thus, hardware support for both programming models is

useful and lets the programmer choose where each of them is a better fit. Indeed, our hybrid

algorithms demonstrate how coexistence of both on the same chip can be put to good use.

101

Chapter 8. Conclusions

We believe that many of the presented insights can be used in the design of communication

and synchronization patterns not covered by this thesis. Some ideas for future work are the

following:

• Extending the broadcast study to other collective operations. The one-sided interface

of the Intel SCC and similar processors can be used to provide efficient implementations

of other collectives. In particular, other one-to-all operations should be easily amenable

to the ideas used in OC-BCAST.

• Using hardware message passing in other contexts. Besides mutual exclusion, we

believe that hardware support for message passing can be employed in other kinds

of algorithms. For example, the RCU synchronization technique [GMTW08] lends

itself nicely to it, since some of its efficient implementations involve exchange of OS-

level signals, which can be replaced by hardware messages. Next, the use of private

queues and message passing has been discussed as a way to implement fence-free work

stealing in parallel frameworks [ACR13]: Hardware messaging could possibly improve

the performance of this technique.

• Studying energy efficiency. This thesis mainly deals with performance aspects of many-

core communication and synchronization. In Section 6.1, however, we point out that

replacing local spinning with waiting for a message could have a positive impact on en-

ergy efficiency. Quantifying this potential with different synchronization algorithms and

benchmarks, as well as developing energy-aware algorithms, is an interesting direction

for future work.

• Applying delegation to existing concurrent software with minimal effort. One of the

problems of delegation is its interface, which requires critical sections to be encapsu-

lated as functions. Because of this, applying it to software that uses traditional locks

requires either significant manual effort or special tools [GMTW08, KSW14]. Still, adapt-

ing delegation algorithms to the standard lock/unlock interface can be done, using

a low-level technique that involves context transfer (program counter and registers)

between application threads. It would be interesting to investigate the overhead of this

technique, and more precisely, whether it cancels out the potential performance gain

that delegation provides.

102

Bibliography

[ACR13] U. Acar, A. Chargueraud, and M. Rainey. Scheduling parallel programs by

work stealing with private deques. In Proceedings of the 18th ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming, PPoPP

’13, 2013. URL: http://doi.acm.org/10.1145/2442516.2442538, doi:10.1145/
2442516.2442538.

[Ada14] Adapteva. Parallella manycore processor. http://www.parallella.com, 2014.

Accessed: 09-12-2014.

[AFA11] J. L. Abellán, J. Fernández, and M. E. Acacio. GLocks: Efficient Support for

Highly-Contended Locks in Many-Core CMPs. In Proceedings of the 2011 IEEE

International Parallel & Distributed Processing Symposium, 2011. URL: http:

//dx.doi.org/10.1109/IPDPS.2011.87, doi:10.1109/IPDPS.2011.87.

[AHA+05] G. Almási, P. Heidelberger, C.J. Archer, X. Martorell, C.C. Erway, J.E. Moreira,

B. Steinmacher-Burow, and Y. Zheng. Optimization of MPI collective communi-

cation on BlueGene/L systems. In Proceedings of the 19th annual international

conference on Supercomputing. ACM, 2005.

[AISS95] A. Alexandrov, M. Ionescu, K. Schauser, and C. Scheiman. LogGP: Incorporating

long messages into the LogP model - one step closer towards a realistic model

for parallel computation. In Proceedings of the Seventh Annual ACM Symposium

on Parallel Algorithms and Architectures, SPAA ’95, 1995. URL: http://doi.acm.

org/10.1145/215399.215427, doi:10.1145/215399.215427.

[Amd67] G. Amdahl. Validity of the single processor approach to achieving large scale

computing capabilities. In Proceedings of the April 18-20, 1967, spring joint

computer conference, AFIPS ’67 (Spring), 1967. URL: http://doi.acm.org/10.

1145/1465482.1465560, doi:10.1145/1465482.1465560.

[ASHAA97] H. Abdel-Shafi, J. Hall, S. Adve, and V. Adve. An evaluation of fine-grain

producer-initiated communication in cache-coherent multiprocessors. In High-

Performance Computer Architecture, 1997., Third International Symposium on,

1997. doi:10.1109/HPCA.1997.569661.

103

http://doi.acm.org/10.1145/2442516.2442538
http://dx.doi.org/10.1145/2442516.2442538
http://dx.doi.org/10.1145/2442516.2442538
http://www.parallella.com
http://dx.doi.org/10.1109/IPDPS.2011.87
http://dx.doi.org/10.1109/IPDPS.2011.87
http://dx.doi.org/10.1109/IPDPS.2011.87
http://doi.acm.org/10.1145/215399.215427
http://doi.acm.org/10.1145/215399.215427
http://dx.doi.org/10.1145/215399.215427
http://doi.acm.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1109/HPCA.1997.569661

Bibliography

[BBD+09] A. Baumann, P. Barham, P-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,

A. Schüpbach, and A. Singhania. The multikernel: a new OS architecture for

scalable multicore systems. In Proc. of the ACM SIGOPS 22nd symposium on

Operating systems principles, 2009. URL: http://doi.acm.org/10.1145/1629575.

1629579, doi:10.1145/1629575.1629579.

[BFPS11] M. Berezecki, E. Frachtenberg, M. Paleczny, and K. Steele. Many-core key-value

store. In Proceedings of the 2011 International Green Computing Conference

and Workshops, 2011. URL: http://dx.doi.org/10.1109/IGCC.2011.6008565, doi:
10.1109/IGCC.2011.6008565.

[BHU+97] J. Bruck, C-T. Ho, E. Upfal, S. Kipnis, and D. Weathersby. Efficient Algorithms

for All-to-All Communications in Multiport Message-Passing Systems. IEEE

Transactions on Parallel and Distributed Systems, 8:1143–1156, November 1997.

doi:10.1109/71.642949.

[BJK+96] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y. Zhou.

Cilk: An efficient multithreaded runtime system. Journal of Parallel and Dis-

tributed Computing, 37(1):55 – 69, 1996. URL: http://www.sciencedirect.com/

science/article/pii/S0743731596901070, doi:http://dx.doi.org/10.1006/
jpdc.1996.0107.

[BMR05] O. Beaumont, L. Marchal, and Y. Robert. Broadcast trees for heterogeneous

platforms. In Parallel and Distributed Processing Symposium, 2005. Proceedings.

19th IEEE International, 2005.

[BWKMZ12] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich. Non-scalable

locks are dangerous. In Proceedings of the Linux Symposium, 2012.

[CCPG13] J. Cleary, O. Callanan, M. Purcell, and D. Gregg. Fast asymmetric thread synchro-

nization. ACM Transactions on Architecture and Code Optimization, 9(4):27:1–

27:22, January 2013. URL: http://doi.acm.org/10.1145/2400682.2400686, doi:
10.1145/2400682.2400686.

[CGH13] I. Calciu, J. Gottschlich, and M. Herlihy. Using elimination and delegation to

implement a scalable numa-friendly stack. In 5th USENIX Workshop on Hot

Topics in Parallelism, 2013.

[Cha10] E. Chan. RCCE comm: A Collective Communication Library for the Intel Single-

chip Cloud Computer. 2010.

[CKP+93] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subramonian,

and T. von Eicken. LogP: Towards a Realistic Model of Parallel Computation. In

Proceedings of the fourth ACM SIGPLAN symposium on Principles and practice

of parallel programming, PPoPP ’93, 1993. URL: http://doi.acm.org/10.1145/

155332.155333, doi:http://doi.acm.org/10.1145/155332.155333.

104

http://doi.acm.org/10.1145/1629575.1629579
http://doi.acm.org/10.1145/1629575.1629579
http://dx.doi.org/10.1145/1629575.1629579
http://dx.doi.org/10.1109/IGCC.2011.6008565
http://dx.doi.org/10.1109/IGCC.2011.6008565
http://dx.doi.org/10.1109/IGCC.2011.6008565
http://dx.doi.org/10.1109/71.642949
http://www.sciencedirect.com/science/article/pii/S0743731596901070
http://www.sciencedirect.com/science/article/pii/S0743731596901070
http://dx.doi.org/http://dx.doi.org/10.1006/jpdc.1996.0107
http://dx.doi.org/http://dx.doi.org/10.1006/jpdc.1996.0107
http://doi.acm.org/10.1145/2400682.2400686
http://dx.doi.org/10.1145/2400682.2400686
http://dx.doi.org/10.1145/2400682.2400686
http://doi.acm.org/10.1145/155332.155333
http://doi.acm.org/10.1145/155332.155333
http://dx.doi.org/http://doi.acm.org/10.1145/155332.155333

Bibliography

[CKS+11] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. Adve, V. Adve,

N. Carter, and C-T. Chou. DeNovo: Rethinking the memory hierarchy for

disciplined parallelism. In Proceedings of the 2011 International Conference

on Parallel Architectures and Compilation Techniques, PACT ’11, 2011. URL:

http://dx.doi.org/10.1109/PACT.2011.21, doi:10.1109/PACT.2011.21.

[CLMY96] D. Culler, L. T. Liu, R. Martin, and C. Yoshikawa. LogP Performance Assessment

of Fast Network Interfaces. In IEEE Micro, February 1996.

[CLRB11] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl. Evaluation and improvements

of programming models for the Intel SCC many-core processor. In High Perfor-

mance Computing and Simulation (HPCS), 2011 International Conference on,

july 2011. doi:10.1109/HPCSim.2011.5999870.

[Cra93] T. Craig. Building FIFO and priority-queuing spin locks from atomic swap.

Technical Report 93-02-02, University of Washington, February 1993.

[CURK11] I. Compres Urena, M. Riepen, and M. Konow. RCKMPI–Lightweight MPI Imple-

mentation for Intel’s Single-chip Cloud Computer (SCC). Recent Advances in the

Message Passing Interface, 2011.

[DGT13] T. David, R. Guerraoui, and V. Trigonakis. Everything you always wanted to know

about synchronization but were afraid to ask. In Proceedings of the Twenty-Fourth

ACM Symposium on Operating Systems Principles, SOSP ’13, 2013. URL: http:

//doi.acm.org/10.1145/2517349.2522714, doi:10.1145/2517349.2522714.

[DGY14] T. David, R. Guerraoui, and M. Yabandeh. Consensus inside. In Proceedings of

the 15th International Middleware Conference, Middleware ’14, 2014. URL: http:

//doi.acm.org/10.1145/2663165.2663321, doi:10.1145/2663165.2663321.

[DHW97] C. Dwork, M. Herlihy, and O. Waarts. Contention in shared memory algorithms. J.

ACM, 44(6):779–805, November 1997. URL: http://doi.acm.org/10.1145/268999.

269000, doi:10.1145/268999.269000.

[DM98] L. Dagum and R. Menon. OpenMP: an industry standard api for shared-memory

programming. Computational Science Engineering, IEEE, 5(1):46–55, Jan 1998.

doi:10.1109/99.660313.

[FK11] P. Fatourou and N. D. Kallimanis. A highly-efficient wait-free universal construc-

tion. In Proceedings of the 23rd ACM symposium on Parallelism in algorithms

and architectures, 2011. URL: http://doi.acm.org/10.1145/1989493.1989549,

doi:10.1145/1989493.1989549.

[FK12] P. Fatourou and N. D. Kallimanis. Revisiting the combining synchronization

technique. In Proceedings of the 17th ACM SIGPLAN symposium on Principles

and Practice of Parallel Programming, 2012. URL: http://doi.acm.org/10.1145/

2145816.2145849, doi:10.1145/2145816.2145849.

105

http://dx.doi.org/10.1109/PACT.2011.21
http://dx.doi.org/10.1109/PACT.2011.21
http://dx.doi.org/10.1109/HPCSim.2011.5999870
http://doi.acm.org/10.1145/2517349.2522714
http://doi.acm.org/10.1145/2517349.2522714
http://dx.doi.org/10.1145/2517349.2522714
http://doi.acm.org/10.1145/2663165.2663321
http://doi.acm.org/10.1145/2663165.2663321
http://dx.doi.org/10.1145/2663165.2663321
http://doi.acm.org/10.1145/268999.269000
http://doi.acm.org/10.1145/268999.269000
http://dx.doi.org/10.1145/268999.269000
http://dx.doi.org/10.1109/99.660313
http://doi.acm.org/10.1145/1989493.1989549
http://dx.doi.org/10.1145/1989493.1989549
http://doi.acm.org/10.1145/2145816.2145849
http://doi.acm.org/10.1145/2145816.2145849
http://dx.doi.org/10.1145/2145816.2145849

Bibliography

[FK14] P. Fatourou and N. Kallimanis. Brief announcement: The power of scheduling-

aware synchronization. In Proceedings of the 28th international conference on

Distributed computing, DISC ’14, 2014.

[GBPN03] R. Gupta, P. Balaji, D.K. Panda, and J. Nieplocha. Efficient collective operations

using remote memory operations on VIA-based clusters. In Proceedings of

International Parallel and Distributed Processing Symposium, 2003., 2003.

[GFB+04] E. Gabriel, G.E. Fagg, G. Bosilca, T. Angskun, J.J. Dongarra, J.M. Squyres, V. Sahay,

P. Kambadur, B. Barrett, A. Lumsdaine, et al. Open MPI: Goals, concept, and

design of a next generation MPI implementation. Recent Advances in Parallel

Virtual Machine and Message Passing Interface, 2004.

[GGT12] V. Gramoli, R. Guerraoui, and V. Trigonakis. TM2C: a software transactional

memory for many-cores. In Proceedings of the 7th ACM european conference on

Computer Systems, 2012. URL: http://doi.acm.org/10.1145/2168836.2168872,

doi:10.1145/2168836.2168872.

[GMTW08] D. Guniguntala, P.E. McKenney, J. Triplett, and J. Walpole. The read-copy-

update mechanism for supporting real-time applications on shared-memory

multiprocessor systems with Linux. IBM Systems Journal, 47(2):221–236, 2008.

doi:10.1147/sj.472.0221.

[Gus88] J. Gustafson. Reevaluating Amdahl’s law. Commun. ACM, 31(5):532–533, May

1988. URL: http://doi.acm.org/10.1145/42411.42415, doi:10.1145/42411.
42415.

[GVW89] J. Goodman, M. Vernon, and P. Woest. Efficient synchronization primitives

for large-scale cache-coherent multiprocessors. In Proceedings of the third

international conference on Architectural support for programming languages

and operating systems, 1989. URL: http://doi.acm.org/10.1145/70082.68188,

doi:10.1145/70082.68188.

[HB09] U. Hoelzle and L. A. Barroso. The Datacenter as a Computer: An Introduction to

the Design of Warehouse-Scale Machines. Morgan and Claypool Publishers, 1st

edition, 2009.

[HDH+10] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson,

N. Borkar, et al. A 48-core IA-32 message-passing processor with DVFS in 45nm

CMOS. In International IEEE Solid-State Circuits Conference Digest of Technical

Papers, 2010.

[Her91] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst.,

13(1):124–149, January 1991. URL: http://doi.acm.org/10.1145/114005.102808,

doi:10.1145/114005.102808.

106

http://doi.acm.org/10.1145/2168836.2168872
http://dx.doi.org/10.1145/2168836.2168872
http://dx.doi.org/10.1147/sj.472.0221
http://doi.acm.org/10.1145/42411.42415
http://dx.doi.org/10.1145/42411.42415
http://dx.doi.org/10.1145/42411.42415
http://doi.acm.org/10.1145/70082.68188
http://dx.doi.org/10.1145/70082.68188
http://doi.acm.org/10.1145/114005.102808
http://dx.doi.org/10.1145/114005.102808

Bibliography

[Her93] M. Herlihy. A Methodology for Implementing Highly Concurrent Data Ob-

jects. ACM Transactions Programming Languages and Systems, 15(5):745–

770, November 1993. URL: http://doi.acm.org/10.1145/161468.161469, doi:
10.1145/161468.161469.

[HIST10] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and the

synchronization-parallelism tradeoff. In Proceedings of the 22nd ACM sym-

posium on Parallelism in algorithms and architectures, 2010. URL: http://doi.

acm.org/10.1145/1810479.1810540, doi:10.1145/1810479.1810540.

[HLS95] M. Herlihy, B-H. Lim, and N. Shavit. Scalable concurrent counting. ACM

Transactions on Computer Systems, 13(4):343–364, November 1995. URL: http:

//doi.acm.org/10.1145/210223.210225, doi:10.1145/210223.210225.

[HM93] M. Herlihy and E. Moss. Transactional memory: Architectural support for

lock-free data structures. SIGARCH Comput. Archit. News, 21(2):289–300, May

1993. URL: http://doi.acm.org/10.1145/173682.165164, doi:10.1145/173682.
165164.

[HS08] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[HSR07] T. Hoefler, C. Siebert, and W. Rehm. A Practically Constant-Time MPI Broadcast

Algorithm for Large-Scale InfiniBand Clusters with Multicast. In IEEE Inter-

national Parallel and Distributed Processing Symposium (IPDPS 2007). IEEE,

2007.

[Int14] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual Com-

bined Volumes: 1, 2A, 2B, 2C, 3A, 3B, and 3C, February 2014. URL:

http://www.intel.com/content/dam/www/public/us/en/documents/

manuals/64-ia-32-architectures-software-developer-manual-325462.pdf.

[K+08] P. Kogge et al. Exascale Computing Study: Technology Challenges in Achieving

Exascale Systems. Technical report, DARPA, 2008.

[Kal14] Kalray. Kalray manycore processors. http://www.kalray.eu, 2014. Accessed:

09-12-2014.

[KK79] P. Kermani and L. Kleinrock. Virtual cut-through: A new computer communica-

tion switching technique. Computer Networks (1976), 3(4):267–286, 1979.

[KRGF12] A. Kohler, M. Radetzki, P. Gschwandtner, and T. Fahringer. Low-latency collec-

tives for the Intel SCC. In Cluster Computing (CLUSTER), 2012 IEEE International

Conference on, Sept 2012. doi:10.1109/CLUSTER.2012.58.

[KSSS93] R. Karp, A. Sahay, E. Santos, and K. Schauser. Optimal broadcast and summation

in the LogP model. In Proceedings of the Fifth Annual ACM Symposium on

107

http://doi.acm.org/10.1145/161468.161469
http://dx.doi.org/10.1145/161468.161469
http://dx.doi.org/10.1145/161468.161469
http://doi.acm.org/10.1145/1810479.1810540
http://doi.acm.org/10.1145/1810479.1810540
http://dx.doi.org/10.1145/1810479.1810540
http://doi.acm.org/10.1145/210223.210225
http://doi.acm.org/10.1145/210223.210225
http://dx.doi.org/10.1145/210223.210225
http://doi.acm.org/10.1145/173682.165164
http://dx.doi.org/10.1145/173682.165164
http://dx.doi.org/10.1145/173682.165164
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.kalray.eu
http://dx.doi.org/10.1109/CLUSTER.2012.58

Bibliography

Parallel Algorithms and Architectures, SPAA ’93, 1993. URL: http://doi.acm.org/

10.1145/165231.165250, doi:10.1145/165231.165250.

[KSW14] D. Klaftenegger, K. Sagonas, and K. Winblad. Brief announcement: Queue

delegation locking. In Proceedings of the 26th ACM Symposium on Parallelism in

Algorithms and Architectures, SPAA ’14, 2014. URL: http://doi.acm.org/10.1145/

2612669.2612714, doi:10.1145/2612669.2612714.

[LDT+12] J-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller. Remote core locking: mi-

grating critical-section execution to improve the performance of multithreaded

applications. In Proceedings of the 2012 USENIX conference on Annual Technical

Conference, 2012.

[LMP04] J. Liu, A.R. Mamidala, and D.K. Panda. Fast and scalable MPI-level broadcast

using infiniband’s hardware multicast support. In Parallel and Distributed Pro-

cessing Symposium, 2004. Proceedings. 18th International, 2004.

[LWK+03] J. Liu, J. Wu, S. Kini, P. Wyckoff, and D. Panda. High performance RDMA-based

MPI implementation over InfiniBand. In Proceedings of the 17th annual interna-

tional conference on Supercomputing, ICS ’03, 2003. URL: http://doi.acm.org/10.

1145/782814.782855, doi:http://doi.acm.org/10.1145/782814.782855.

[MA13] A. Morrison and Y. Afek. Fast concurrent queues for x86 processors. In Pro-

ceedings of the 18th ACM SIGPLAN symposium on Principles and practice of par-

allel programming, 2013. URL: http://doi.acm.org/10.1145/2442516.2442527,

doi:10.1145/2442516.2442527.

[McC08] M.D. McCool. Scalable programming models for massively multicore processors.

Proceedings of the IEEE, 96(5):816–831, May 2008. doi:10.1109/JPROC.2008.
917731.

[MCS91] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization

on shared-memory multiprocessors. ACM Transactions on Computer Systems,

9(1):21–65, February 1991. URL: http://doi.acm.org/10.1145/103727.103729,

doi:10.1145/103727.103729.

[MF98] C. Moritz and M. Frank. LoGPC: Modeling network contention in message-

passing programs. In Proceedings of the 1998 ACM SIGMETRICS Joint Interna-

tional Conference on Measurement and Modeling of Computer Systems, SIGMET-

RICS ’98/PERFORMANCE ’98, 1998. URL: http://doi.acm.org/10.1145/277851.

277933, doi:10.1145/277851.277933.

[MHS12] M. Martin, M. Hill, and D. Sorin. Why on-chip cache coherence is here to stay.

Communications of the ACM, 55(7):78–89, July 2012. URL: http://doi.acm.org/

10.1145/2209249.2209269, doi:10.1145/2209249.2209269.

108

http://doi.acm.org/10.1145/165231.165250
http://doi.acm.org/10.1145/165231.165250
http://dx.doi.org/10.1145/165231.165250
http://doi.acm.org/10.1145/2612669.2612714
http://doi.acm.org/10.1145/2612669.2612714
http://dx.doi.org/10.1145/2612669.2612714
http://doi.acm.org/10.1145/782814.782855
http://doi.acm.org/10.1145/782814.782855
http://dx.doi.org/http://doi.acm.org/10.1145/782814.782855
http://doi.acm.org/10.1145/2442516.2442527
http://dx.doi.org/10.1145/2442516.2442527
http://dx.doi.org/10.1109/JPROC.2008.917731
http://dx.doi.org/10.1109/JPROC.2008.917731
http://doi.acm.org/10.1145/103727.103729
http://dx.doi.org/10.1145/103727.103729
http://doi.acm.org/10.1145/277851.277933
http://doi.acm.org/10.1145/277851.277933
http://dx.doi.org/10.1145/277851.277933
http://doi.acm.org/10.1145/2209249.2209269
http://doi.acm.org/10.1145/2209249.2209269
http://dx.doi.org/10.1145/2209249.2209269

Bibliography

[MJ13] J. Matienzo and N.E. Jerger. Performance analysis of broadcasting algorithms

on the Intel Single-Chip Cloud computer. In Performance Analysis of Systems

and Software (ISPASS), 2013 IEEE International Symposium on, April 2013. doi:
10.1109/ISPASS.2013.6557167.

[MLH94] P. Magnusson, A. Landin, and E. Hagersten. Queue locks on cache coherent

multiprocessors. In Proceedings of the 8th International Symposium on Parallel

Processing, 1994.

[MS96] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and

blocking concurrent queue algorithms. In Proceedings of the fifteenth annual

ACM symposium on Principles of distributed computing, 1996. URL: http://doi.

acm.org/10.1145/248052.248106, doi:10.1145/248052.248106.

[MVDW10] T. Mattson and R. Van Der Wijngaart. RCCE: a Small Library for Many-Core

Communication. Intel Corporation, May, 2010.

[MVdWF08] T. Mattson, R. Van der Wijngaart, and M. Frumkin. Programming the Intel 80-

core network-on-a-chip terascale processor. In Proceedings of the 2008 ACM/IEEE

conference on Supercomputing, 2008.

[MZK12] Z. Metreveli, N. Zeldovich, and M. F. Kaashoek. CPHASH: a cache-partitioned

hash table. In Proceedings of the 17th ACM SIGPLAN symposium on Principles

and Practice of Parallel Programming, 2012. URL: http://doi.acm.org/10.1145/

2145816.2145874, doi:10.1145/2145816.2145874.

[Nis09] R. Nishtala. Automatically Tuning Collective Communication for One-Sided

Programming Models. PhD thesis, University of California at Berkeley, 2009.

[NTA96] M. Naimi, M. Trehel, and A. Arnold. A log (n) distributed mutual exclusion

algorithm based on path reversal. J. Parallel Distrib. Comput., 34(1):1–13,

April 1996. URL: http://dx.doi.org/10.1006/jpdc.1996.0041, doi:10.1006/jpdc.
1996.0041.

[ONH+96] K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The case for

a single-chip multiprocessor. In Proceedings of the Seventh International Con-

ference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS VII, 1996. URL: http://doi.acm.org/10.1145/237090.237140,

doi:10.1145/237090.237140.

[OSS09] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-TSO. In

Proceedings of the 22nd International Conference on Theorem Proving in Higher

Order Logics, 2009.

[OTY99] Y. Oyama, K. Taura, and A. Yonezawa. Executing parallel programs with synchro-

nization bottlenecks efficiently. In Proceedings of the International Workshop

109

http://dx.doi.org/10.1109/ISPASS.2013.6557167
http://dx.doi.org/10.1109/ISPASS.2013.6557167
http://doi.acm.org/10.1145/248052.248106
http://doi.acm.org/10.1145/248052.248106
http://dx.doi.org/10.1145/248052.248106
http://doi.acm.org/10.1145/2145816.2145874
http://doi.acm.org/10.1145/2145816.2145874
http://dx.doi.org/10.1145/2145816.2145874
http://dx.doi.org/10.1006/jpdc.1996.0041
http://dx.doi.org/10.1006/jpdc.1996.0041
http://dx.doi.org/10.1006/jpdc.1996.0041
http://doi.acm.org/10.1145/237090.237140
http://dx.doi.org/10.1145/237090.237140

Bibliography

on Parallel and Distributed Computing for Symbolic and Irregular Applications,

1999.

[PRS14] D. Petrović, T. Ropars, and A. Schiper. Leveraging hardware message passing

for efficient thread synchronization. In Proceedings of the 19th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP ’14, Or-

lando, Florida, USA, February 2014. URL: http://doi.acm.org/10.1145/2555243.

2555251.

[PRS15] D. Petrović, T. Ropars, and A. Schiper. On the performance of delegation over

cache-coherent shared memory. In Proceedings of the 16th International Confer-

ence on Distributed Computing and Networking, ICDCN ’15, Goa, India, January

2015. URL: http://dx.doi.org/10.1145/2684464.2684476.

[PSMR11] S. Peter, A. Schpbach, D. Menzi, and T. Roscoe. Early experience with the Bar-

relfish OS and the Single-Chip Cloud Computer. In 3rd Many-core Applications

Research Community (MARC) Symposium, Fraunhofer IOSB, Ettlingen, Germany,

2011.

[PSRS12a] D. Petrović, O. Shahmirzadi, T. Ropars, and A. Schiper. Asynchronous Broadcast

on the Intel SCC using Interrupts. In The 6th Many-core Applications Research

Community (MARC) Symposium, Toulouse, France, July 2012. URL: https://hal.

archives-ouvertes.fr/hal-00719022.

[PSRS12b] D. Petrović, O. Shahmirzadi, T. Ropars, and A. Schiper. High-performance RMA-

based Broadcast on the Intel SCC. In Proceedings of the 24th Annual ACM Sympo-

sium on Parallelism in Algorithms and Architectures, SPAA ’12, Pittsburgh, Penn-

sylvania, USA, June 2012. URL: http://doi.acm.org/10.1145/2312005.2312029.

[PYK+13] J. Park, R. Yoo, D. Khudia, C. Hughes, and D. Kim. Location-aware cache manage-

ment for many-core processors with deep cache hierarchy. In Proceedings of the

International Conference on High Performance Computing, Networking, Storage

and Analysis, SC ’13, 2013. URL: http://doi.acm.org/10.1145/2503210.2503224,

doi:10.1145/2503210.2503224.

[Rei07] J. Reinders. Intel Threading Building Blocks. O’Reilly & Associates, Inc., Se-

bastopol, CA, USA, first edition, 2007.

[RH13] S. Ramos and T. Hoefler. Modeling communication in cache-coherent smp

systems: A case-study with xeon phi. In Proceedings of the 22Nd International

Symposium on High-performance Parallel and Distributed Computing, HPDC

’13, 2013. URL: http://doi.acm.org/10.1145/2462902.2462916, doi:10.1145/
2462902.2462916.

[Rot11] R. Rotta. On Efficient Message Passing on the Intel SCC. In 3rd Many-core Appli-

cations Research Community (MARC) Symposium, Fraunhofer IOSB, Ettlingen,

Germany, 2011.

110

http://doi.acm.org/10.1145/2555243.2555251
http://doi.acm.org/10.1145/2555243.2555251
http://dx.doi.org/10.1145/2684464.2684476
https://hal.archives-ouvertes.fr/hal-00719022
https://hal.archives-ouvertes.fr/hal-00719022
http://doi.acm.org/10.1145/2312005.2312029
http://doi.acm.org/10.1145/2503210.2503224
http://dx.doi.org/10.1145/2503210.2503224
http://doi.acm.org/10.1145/2462902.2462916
http://dx.doi.org/10.1145/2462902.2462916
http://dx.doi.org/10.1145/2462902.2462916

Bibliography

[SA15] H. Sung and S. Adve. DeNovoSync: Efficient support for arbitrary synchro-

nization without writer-initiated invalidations. In Proceedings of the Twentieth

International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS ’15, 2015.

[SBM+05] S. Sur, U. Bondhugula, A. Mamidala, H.W. Jin, and D. Panda. High performance

RDMA based all-to-all broadcast for InfiniBand clusters. High Performance

Computing–HiPC 2005, 2005.

[SHW11] D. Sorin, M. Hill, and D. Wood. A Primer on Memory Consistency and Cache

Coherence. Synthesis Lectures on Computer Architecture, 6(3):1–212, 2011.

[SKA13] H. Sung, R. Komuravelli, and S. Adve. DeNovoND: Efficient hardware support

for disciplined non-determinism. In Proceedings of the Eighteenth International

Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’13, 2013. URL: http://doi.acm.org/10.1145/2451116.2451119,

doi:10.1145/2451116.2451119.

[SMQP10] M. A. Suleman, O. Mutlu, M. Qureshi, and Y. Patt. Accelerating Critical Section

Execution with Asymmetric Multicore Architectures. IEEE Micro, 30(1):60–70,

January 2010.

[SOHL+98] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI-The Com-

plete Reference, Volume 1: The MPI Core. MIT Press, Cambridge, MA, USA, 2nd.

(revised) edition, 1998.

[SST09] P. Sanders, J. Speck, and J. Träff. Two-tree algorithms for full bandwidth broadcast,

reduction and scan. Parallel Comput., 35(12):581–594, December 2009. URL:

http://dx.doi.org/10.1016/j.parco.2009.09.001, doi:10.1016/j.parco.2009.
09.001.

[ST95] N. Shavit and D. Touitou. Elimination trees and the construction of pools and

stacks: preliminary version. In Proceedings of the 7th annual ACM symposium on

Parallel algorithms and architectures, 1995. URL: http://doi.acm.org/10.1145/

215399.215419, doi:10.1145/215399.215419.

[SVDG00] M. Shroff and R.A. Van De Geijn. Collmark: MPI collective communication

benchmark. Technical report, 2000.

[SYK10] D. Sanchez, R. M. Yoo, and C. Kozyrakis. Flexible architectural support for

fine-grain scheduling. In Proceedings of the Fifteenth Edition of ASPLOS on Ar-

chitectural Support for Programming Languages and Operating Systems, ASPLOS

XV, 2010. URL: http://doi.acm.org/10.1145/1736020.1736055, doi:10.1145/
1736020.1736055.

[TA00] Infiniband Trade Association. InfiniBand Architecture Specification: Release 1.0.

InfiniBand Trade Association, 2000.

111

http://doi.acm.org/10.1145/2451116.2451119
http://dx.doi.org/10.1145/2451116.2451119
http://dx.doi.org/10.1016/j.parco.2009.09.001
http://dx.doi.org/10.1016/j.parco.2009.09.001
http://dx.doi.org/10.1016/j.parco.2009.09.001
http://doi.acm.org/10.1145/215399.215419
http://doi.acm.org/10.1145/215399.215419
http://dx.doi.org/10.1145/215399.215419
http://doi.acm.org/10.1145/1736020.1736055
http://dx.doi.org/10.1145/1736020.1736055
http://dx.doi.org/10.1145/1736020.1736055

Bibliography

[Til14] Tilera. Tilera manycore processors. http://www.tilera.com, 2014. Accessed:

09-12-2014.

[Tor09] J. Torrellas. Architectures for Extreme-Scale Computing. IEEE Computer,

42(11):28 –35, nov. 2009.

[Tre86] R. K. Treiber. Systems Programming: Coping with Parallelism. Technical Report

RJ 5118, IBM Almaden Research Center, April 1986.

[TRG05] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of Collective Com-

munication Operations in MPICH. International Journal of High Performance

Computing Applications, 19(1):49–66, 2005.

[vdWMH11] R.F. van der Wijngaart, T.G. Mattson, and W. Haas. Light-weight communica-

tions on Intel’s Single-Chip Cloud computer processor. ACM SIGOPS Operating

Systems Review, 45(1):73–83, 2011.

[VGvT+11] M. Verstraaten, C. Grelck, M.W. van Tol, R. Bakker, and C.R. Jesshope. Mapping

distributed S-Net on to the 48-core Intel SCC processor. In 3rd Many-core Appli-

cations Research Community (MARC) Symposium, Fraunhofer IOSB, Ettlingen,

Germany, 2011.

[vTBV+11] M.W. van Tol, R. Bakker, M. Verstraaten, C. Grelck, and C.R. Jesshope. Efficient

Memory Copy Operations on the 48-core Intel SCC Processor. In 3rd Many-

core Applications Research Community (MARC) Symposium, Fraunhofer IOSB,

Ettlingen, Germany, number 1098, 2011.

[WA09] D. Wentzlaff and A. Agarwal. Factored operating systems (fos): the case for a

scalable operating system for multicores. SIGOPS Operating Systems Review,

43(2):76–85, April 2009. URL: http://doi.acm.org/10.1145/1531793.1531805,

doi:10.1145/1531793.1531805.

112

http://www.tilera.com
http://doi.acm.org/10.1145/1531793.1531805
http://dx.doi.org/10.1145/1531793.1531805

Darko Petrović
Curriculum Vitae

Education and Research
2010–2015 Ph.D., Computer Science, EPFL, Lausanne.

{ thesis advisor : prof. André Schiper
{ title: Efficient Synchronization and Communication on Manycore Processors

2008–2010 Master, Embedded Systems Design, ALaRI, University of Lugano.
USImpresa Fund award for the highest GPA

2003–2008 Dipl.Ing., Computer Engineering, ETF, University of Belgrade, Serbia.

Industrial Experience
2013–2014 Research Intern, ABB Corporate Research, Baden-Dättwil, Switzerland.

2008 Software Developer, Merit Solutions, Belgrade, Serbia.
2007 Student Collaborator, ELSYS Eastern Europe, Belgrade, Serbia.

Lead-author Publications
ICDCN 2015 On the Performance of Delegation over Cache-Coherent Shared Memory.
PPoPP 2014 Leveraging Hardware Message Passing for Efficient Thread Synchronization,

invited to ACM TOPC (under review).
MARC 2012 Ansynchronous Broadcast on the Intel SCC using Interrupts.
SPAA 2012 High-Performance RMA-Based Broadcast on the Intel SCC.
AINA 2012 Implementing Virtual Machine Replication: a Case Study using Xen and KVM.

Languages
Serbo-Croatian – native
English – fluent
French – fluent
German – intermediate
Italian – conversational

113

	Title page
	Acknowledgements
	Preface
	Abstract (English/Français)
	Contents
	Opening Remarks
	Introduction
	Thesis Context
	Thesis Overview

	I Broadcast on a Message-Passing Processor: Algorithms and a Model
	Background and Preliminaries
	Motivation
	One-sided vs. Two-sided Communication
	The Intel SCC
	Contributions
	Related Work
	Broadcast in high-performance systems
	Asynchronous communication on the Intel SCC
	Modeling on-chip communication

	Outline

	Broadcast on the Intel SCC: Algorithms and Evaluation
	OC-Bcast: a Synchronous Broadcast Algorithm
	High-level description
	Detailed description

	Asynchronous Version of OC-Bcast
	Enabling asynchronous communication
	Managing concurrent broadcast
	Modified OC-Bcast
	Implementation

	Experimental Evaluation
	Setup
	Standard broadcast algorithms: binomial tree and scatter-algather
	Synchronous broadcast
	Asynchronous broadcast

	Summary

	Communication Model for the Intel SCC
	Modeling the put and get Primitives
	The model
	Model validation
	Contention issues

	Modeling Two-sided RCCE Communication
	Modeling Synchronous Broadcast Algorithms
	Latency of short messages
	Throughput of large messages

	Summary

	II Fast Mutual Exclusion on Standard and Emerging Processors
	Background and Preliminaries
	Motivation
	System Model
	Critical Section Execution on a Cache-Coherent Processor
	Classic locks
	Delegation

	Contributions
	Related Work
	Delegation
	Hardware extensions for synchronization

	Outline

	Leveraging Hardware Message Passing for Efficient Critical Section Execution
	Improved Mutual Exclusion Algorithms
	The classic lock (HybLock)
	The server approach (mp-server)
	The combiner approach (HybComb)

	Evaluation
	Platform
	Methodology and setup
	Microbenchmarks
	Queues and stacks
	Observations

	Additional Considerations
	Summary

	Optimizing Delegation on Processors without Message Passing
	Optimizing Delegation over CC Shared Memory
	Baseline algorithm
	Opportunities for optimization
	Proposed optimizations

	Evaluation
	Experimental setup
	Analysis of the optimization performance
	Concurrent data structures

	Discussion
	Summary
	Concluding Remarks and Bibliography
	Conclusions
	Bibliography
	Curriculum Vitae

	Bibliography
	Curriculum Vitae

