3,016 research outputs found

    Learning to Reason: Leveraging Neural Networks for Approximate DNF Counting

    Full text link
    Weighted model counting (WMC) has emerged as a prevalent approach for probabilistic inference. In its most general form, WMC is #P-hard. Weighted DNF counting (weighted #DNF) is a special case, where approximations with probabilistic guarantees are obtained in O(nm), where n denotes the number of variables, and m the number of clauses of the input DNF, but this is not scalable in practice. In this paper, we propose a neural model counting approach for weighted #DNF that combines approximate model counting with deep learning, and accurately approximates model counts in linear time when width is bounded. We conduct experiments to validate our method, and show that our model learns and generalizes very well to large-scale #DNF instances.Comment: To appear in Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20). Code and data available at: https://github.com/ralphabb/NeuralDNF

    Revisiting the limits of MAP inference by MWSS on perfect graphs

    Get PDF
    This is the author accepted manuscript. The final version is available from MIT Press via http://jmlr.org/proceedings/papers/v38/weller15.pdfA recent, promising approach to identifying a configuration of a discrete graphical model with highest probability (termed MAP inference) is to reduce the problem to finding a maximum weight stable set (MWSS) in a derived weighted graph, which, if perfect, allows a solution to be found in polynomial time. Weller and Jebara (2013) investigated the class of binary pairwise models where this method may be applied. However, their analysis made a seemingly innocuous assumption which simplifies analysis but led to only a subset of possible reparameterizations being considered. Here we introduce novel techniques and consider all cases, demonstrating that this greatly expands the set of tractable models. We provide a simple, exact characterization of the new, enlarged set and show how such models may be efficiently identified, thus settling the power of the approach on this class

    Density Evolution for Asymmetric Memoryless Channels

    Full text link
    Density evolution is one of the most powerful analytical tools for low-density parity-check (LDPC) codes and graph codes with message passing decoding algorithms. With channel symmetry as one of its fundamental assumptions, density evolution (DE) has been widely and successfully applied to different channels, including binary erasure channels, binary symmetric channels, binary additive white Gaussian noise channels, etc. This paper generalizes density evolution for non-symmetric memoryless channels, which in turn broadens the applications to general memoryless channels, e.g. z-channels, composite white Gaussian noise channels, etc. The central theorem underpinning this generalization is the convergence to perfect projection for any fixed size supporting tree. A new iterative formula of the same complexity is then presented and the necessary theorems for the performance concentration theorems are developed. Several properties of the new density evolution method are explored, including stability results for general asymmetric memoryless channels. Simulations, code optimizations, and possible new applications suggested by this new density evolution method are also provided. This result is also used to prove the typicality of linear LDPC codes among the coset code ensemble when the minimum check node degree is sufficiently large. It is shown that the convergence to perfect projection is essential to the belief propagation algorithm even when only symmetric channels are considered. Hence the proof of the convergence to perfect projection serves also as a completion of the theory of classical density evolution for symmetric memoryless channels.Comment: To appear in the IEEE Transactions on Information Theor

    MAP inference via Block-Coordinate Frank-Wolfe Algorithm

    Full text link
    We present a new proximal bundle method for Maximum-A-Posteriori (MAP) inference in structured energy minimization problems. The method optimizes a Lagrangean relaxation of the original energy minimization problem using a multi plane block-coordinate Frank-Wolfe method that takes advantage of the specific structure of the Lagrangean decomposition. We show empirically that our method outperforms state-of-the-art Lagrangean decomposition based algorithms on some challenging Markov Random Field, multi-label discrete tomography and graph matching problems

    Factor Graphs for Heterogeneous Bayesian Decentralized Data Fusion

    Full text link
    This paper explores the use of factor graphs as an inference and analysis tool for Bayesian peer-to-peer decentralized data fusion. We propose a framework by which agents can each use local factor graphs to represent relevant partitions of a complex global joint probability distribution, thus allowing them to avoid reasoning over the entirety of a more complex model and saving communication as well as computation cost. This allows heterogeneous multi-robot systems to cooperate on a variety of real world, task oriented missions, where scalability and modularity are key. To develop the initial theory and analyze the limits of this approach, we focus our attention on static linear Gaussian systems in tree-structured networks and use Channel Filters (also represented by factor graphs) to explicitly track common information. We discuss how this representation can be used to describe various multi-robot applications and to design and analyze new heterogeneous data fusion algorithms. We validate our method in simulations of a multi-agent multi-target tracking and cooperative multi-agent mapping problems, and discuss the computation and communication gains of this approach.Comment: 8 pages, 6 figures, 1 table, submitted to the 24th International Conference on Information Fusio
    • …
    corecore