3,188 research outputs found

    Revisiting Explicit Negation in Answer Set Programming

    Get PDF
    [Abstract] A common feature in Answer Set Programming is the use of a second negation, stronger than default negation and sometimes called explicit, strong or classical negation. This explicit negation is normally used in front of atoms, rather than allowing its use as a regular operator. In this paper we consider the arbitrary combination of explicit negation with nested expressions, as those defined by Lifschitz, Tang and Turner. We extend the concept of reduct for this new syntax and then prove that it can be captured by an extension of Equilibrium Logic with this second negation. We study some properties of this variant and compare to the already known combination of Equilibrium Logic with Nelson’s strong negation.Ministerio de Economía y Competitividad; TIC2017-84453-PXunta de Galicia; GPC ED431B 2019/03Xunta de Galicia; 2016-2019 ED431G/01, CITICCentre International de Math´ematiques et d’Informatique de Toulouse; ANR-11-LABEX-004

    Characterizing and Extending Answer Set Semantics using Possibility Theory

    Full text link
    Answer Set Programming (ASP) is a popular framework for modeling combinatorial problems. However, ASP cannot easily be used for reasoning about uncertain information. Possibilistic ASP (PASP) is an extension of ASP that combines possibilistic logic and ASP. In PASP a weight is associated with each rule, where this weight is interpreted as the certainty with which the conclusion can be established when the body is known to hold. As such, it allows us to model and reason about uncertain information in an intuitive way. In this paper we present new semantics for PASP, in which rules are interpreted as constraints on possibility distributions. Special models of these constraints are then identified as possibilistic answer sets. In addition, since ASP is a special case of PASP in which all the rules are entirely certain, we obtain a new characterization of ASP in terms of constraints on possibility distributions. This allows us to uncover a new form of disjunction, called weak disjunction, that has not been previously considered in the literature. In addition to introducing and motivating the semantics of weak disjunction, we also pinpoint its computational complexity. In particular, while the complexity of most reasoning tasks coincides with standard disjunctive ASP, we find that brave reasoning for programs with weak disjunctions is easier.Comment: 39 pages and 16 pages appendix with proofs. This article has been accepted for publication in Theory and Practice of Logic Programming, Copyright Cambridge University Pres

    Revisiting Synthesis for One-Counter Automata

    Full text link
    We study the (parameter) synthesis problem for one-counter automata with parameters. One-counter automata are obtained by extending classical finite-state automata with a counter whose value can range over non-negative integers and be tested for zero. The updates and tests applicable to the counter can further be made parametric by introducing a set of integer-valued variables called parameters. The synthesis problem for such automata asks whether there exists a valuation of the parameters such that all infinite runs of the automaton satisfy some omega-regular property. Lechner showed that (the complement of) the problem can be encoded in a restricted one-alternation fragment of Presburger arithmetic with divisibility. In this work (i) we argue that said fragment, called AERPADPLUS, is unfortunately undecidable. Nevertheless, by a careful re-encoding of the problem into a decidable restriction of AERPADPLUS, (ii) we prove that the synthesis problem is decidable in general and in N2EXP for several fixed omega-regular properties. Finally, (iii) we give a polynomial-space algorithm for the special case of the problem where parameters can only be used in tests, and not updates, of the counter
    • …
    corecore