28 research outputs found

    Evolutionary optimisation for Volt-VAR power quality control

    Get PDF
    With the more environmentally friendly smart grid initiatives during the past few years, intelligent operation and optimisation of the electricity distribution system have received an increasing attention in power system research worldwide. Power flow from the distribution substation to the customer can be optimised at Volt-Ampere-Reactive (VAR) level by reducing the reactive power. Distributed Generation (DG) and Renewable Energy Sources (RES) represent both the broadest potentials and the broadest challenges for intelligent distribution systems and smart grid control. In general, the flexibility envisaged by integrating RES during smart grid transformation is often surrounded by nonlinearities such as wave-form deformations caused by harmonic currents or voltages, which impliedly increase control system complexity. Therefore, conventional controllers presently implemented need to be re-engineered in order to solve power quality (PQ) problems therein. This work aims to improve the controllability of Distribution Static Compensators (DSTATCOMs) through the development of improved control systems using evolu- tionary computation enabled design automation and optimisation. The resultant Volt-VAR Control (VVC) optimises PQ in the presence of nonlinearities and uncertainties. It also aims at increasing overall system’s sensitivity to unconsidered parameters in the design stage like measurement noise, unmodelled dynamics and disturbances. This is otherwise known as the robustness of the system offering it with valuable potential for future smart grids control, which are anticipated to present more nonlinearities due to virtual power plant (VPP) configuration. According to European Project FENIX, a Virtual Power Plant (VPP) aggregates the capacity of many diverse Distributed Energy Resources (DER), it creates a single operating profile from a composite of the parameters characterizing each DER and can incorporate the impact of the network on aggregate DER output. To particularly solve PQ problems, two objectives are realised in this thesis. First, a non-deterministic evolutionary algorithm (EA) is adopted to generate optimum fuzzy logic controllers for DSTATCOMs. This design methodology extends the traditional computer-aided-design (CAD) to computer-automated-design (CAutoD), which provides a unified solution to diverse PQ problems automatically and efficiently. While realizing this objective, the prediction ability of the derivative term in a proportional and derivative (PD) controller is improved by placing a rerouted derivative filter in the feedback path to tame ensuing oscillations. This method is then replicated in a fuzzy PD scheme and is automated through the capability of a “generational” tuning using evolutionary algorithm. Fuzzy logic controllers (FLCs) are rule-based systems which are designed around a fuzzy rule base (RB) related through an inference engine by means of fuzzy implication and compositional procedures. RBs are normally formulated in linguistic terms, in the form of if ...then rules which can be driven through various techniques. Fundamentally, the correct choice of the membership functions of the linguistic set defines the performance of an FLC. In this context, a three rule-base fuzzy mapping using Macvicar-Whelan matrix has been incorporated in this scheme to reduce the computational cost, and to avoid firing of redundant rules. The EA-Fuzzy strategy is proven to overcome the limitation of conventional optimisation which may be trapped in local minima, as the optimisation problem is often multi-modal. The second objective of the thesis is the development of a novel advanced model-free predictive control (MFPC) system for DSTATCOMs through a deterministic non-gradient algorithm. The new method uses its “look-ahead” feature to predict and propose solutions to anticipated power quality problems before they occur. A describing function augmented DSTATCOM regime is so arranged in a closed-loop fashion to locate limit cycles for settling the systems nonlinearities in a model-free zone. Predictive control is performed upon the online generated input-output data-set through the power of a non-gradient simplex algorithm. The strategy is to boycott the usage of a system model which is often based on gradient information and may thus be trapped in a local optimum or hindered by noisy data. As a model-free technique, the resultant system offers the advantage of reduction in system modelling or identification, which is often inaccurate, and also in computational load, since it operates directly on raw data from a direct online procession while at the same time dealing with a partially known system normally encountered in a practical industrial problem. Steady-state and dynamic simulations of both control and simulation models in Matlab/Simulink environment demonstrate the superiority of the new model-free approach over the traditional trial-and-error based methods. The method has been varified to offer faster response speed and shorter settling time at zero overshoot when compared to existing methods. A SimPowerSystems software simulation model is also developed to check experimental validity of the designs. Where specific PQ problems such as harmonics distortion, voltage swells, voltage sags and flicker are solved. A noticeable record level of THD reduction to 0.04% and 0.05% has respectively been achieved. It is therefore safe to recommend to the industry the implementation of this model-free predictive control scheme at the distribution level. As the distribution system metamorphoses into decen- tralised smart grid featuring connectivity of virtual power plants mostly through power electronic converters, e.g., DSTATCOM, it stands to benefit from the full Volt-VAR automated controllability of the MFPCs low control rate. Based on CAutoD, the practical implementation of this technique is made possible through digital prototyping within the real-time workshop to automatically generate C or C++ codes from Simulink, which executes continuous and discrete time models directly on a vast range of computer applications. Its overall wired closed-loop structure with the DSTATCOM would offer reliable and competitive advantages over its PID and SVC (CAD-based) counterparts currently being implemented through physical prototyping, in terms of; quick product-to-market pace, reduced hardwire size, small footprint, maintenance free as it is model-free (and automated), where pickling the controller timers and model contingencies are unnecessary as would be with the conventional controllers. More importantly, the scheme performs the aforementioned control functions robustly at a high speed in the range of 0.005 → 0.01 seconds. High enough to capture and deal with any ensuing PQ problem emanating from changes in customer’s load and system disturbances in an environmentally friendly, but less grid-friendly renewable generators

    Performance Analysis of Photovoltaic Fed Distributed Static Compensator for Power Quality Improvement

    Get PDF
    Owing to rising demand for electricity, shortage of fossil fuels, reliability issues, high transmission and distribution losses, presently many countries are looking forward to integrate the renewable energy sources into existing electricity grid. This kind of distributed generation provides power at a location close to the residential or commercial consumers with low transmission and distribution costs. Among other micro sources, solar photovoltaic (PV) systems are penetrating rapidly due to its ability to provide necessary dc voltage and decreasing capital cost. On the other hand, the distribution systems are confronting serious power quality issues because of various nonlinear loads and impromptu expansion. The power quality issues incorporate harmonic currents, high reactive power burden, and load unbalance and so on. The custom power device widely used to improve these power quality issues is the distributed static compensator (DSTATCOM). For continuous and effective compensation of power quality issues in a grid connected solar photovoltaic distribution system, the solar inverters are designed to operate as a DSTATCOM thus by increasing the efficiency and reducing the cost of the system. The solar inverters are interfaced with grid through an L-type or LCL-type ac passive filters. Due to the voltage drop across these passive filters a high amount of voltage is maintained across the dc-link of the solar inverter so that the power can flow from PV source to grid and an effective compensation can be achieved. So in the thesis a new topology has been proposed for PV-DSTATCOM to reduce the dc-link voltage which inherently reduces the cost and rating of the solar inverter. The new LCLC-type PV-DSTATCOM is implemented both in simulation and hardware for extensive study. From the obtained results, the LCLC-type PV-DSTATCOM found to be more effective than L-type and LCL-type PV-DSTATCOM. Selection of proper reference compensation current extraction scheme plays the most crucial role in DSTATCOM performance. This thesis describes three time-domain schemes viz. Instantaneous active and reactive power (p-q), modified p-q, and IcosΦ schemes. The objective is to bring down the source current THD below 5%, to satisfy the IEEE-519 Standard recommendations on harmonic limits. Comparative evaluation shows that, IcosΦ scheme is the best PV-DSTATCOM control scheme irrespective of supply and load conditions. In the view of the fact that the filtering parameters of the PV-DSTATCOM and gains of the PI controller are designed using a linearized mathematical model of the system. Such a design may not yield satisfactory results under changing operating conditions due to the complex, nonlinear and time-varying nature of power system networks. To overcome this, evolutionary algorithms have been adopted and an algorithm-specific control parameter independent optimization tool (JAYA) is proposed. The JAYA optimization algorithm overcomes the drawbacks of both grenade explosion method (GEM) and teaching learning based optimization (TLBO), and accelerate the convergence of optimization problem. Extensive simulation studies and real-time investigations are performed for comparative assessment of proposed implementation of GEM, TLBO and JAYA optimization on PV-DSTATCOM. This validates that, the PV-DSTATCOM employing JAYA offers superior harmonic compensation compared to other alternatives, by lowering down the source current THD to drastically small values. Another indispensable aspect of PV-DSTATCOM is that due to parameter variation and nonlinearity present in the system, the reference current generated by the reference compensation current extraction scheme get altered for a changing operating conditions. So a sliding mode controller (SMC) based p-q theory is proposed in the dissertation to reduce these effects. To validate the efficacy of the implemented sliding mode controller for the power quality improvement, the performance of the proposed system with both linear and non-linear controller are observed and compared by taking total harmonic distortion as performance index. From the obtained simulation and experimentation results it is concluded that the SMC based LCLC-type PV-DSTATCOM performs better in all critical operating conditions

    Lightning search algorithm: a comprehensive survey

    Full text link
    The lightning search algorithm (LSA) is a novel meta-heuristic optimization method, which is proposed in 2015 to solve constraint optimization problems. This paper presents a comprehensive survey of the applications, variants, and results of the so-called LSA. In LSA, the best-obtained solution is defined to improve the effectiveness of the fitness function through the optimization process by finding the minimum or maximum costs to solve a specific problem. Meta-heuristics have grown the focus of researches in the optimization domain, because of the foundation of decision-making and assessment in addressing various optimization problems. A review of LSA variants is displayed in this paper, such as the basic, binary, modification, hybridization, improved, and others. Moreover, the classes of the LSA’s applications include the benchmark functions, machine learning applications, network applications, engineering applications, and others. Finally, the results of the LSA is compared with other optimization algorithms published in the literature. Presenting a survey and reviewing the LSA applications is the chief aim of this survey paper

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    A new supervisory energy managmement control strategy of a modified D-STATCOM configuration and dual DC source in distribution grids.

    Get PDF
    A microgrid is a state-of-the-art, next generation of electric distribution grid that provides a fundamental paradigm shift from passive grid networks to active networks. Power electronic technologies play a vital role in enabling microgrids to meet their system level requirements of power quality, reliability and demand response capability. A conventional distribution static compensator (D-STATCOM) is a power electronic converter which acts as a reactive power compensator and voltage controller at the point of common coupling in a grid system. However, these devices have limited ability to mitigate voltage fluctuations caused by active power disturbances. By integrating energy storage into the DC link of a D-STATCOM, controllable active power from the storage device can result in enhanced voltage compensating capability. The active and reactive power control between the D-STATCOM and AC power point is achieved by suitable tuning of the phase and magnitude of the output voltage of the D-STATCOM’s converter. Recent advances and innovations in energy storage systems such as super-capacitors and batteries allow the combination of battery-supercapacitor hybrid energy storage systems to act as an effective solution for energy management in smart grid operation. However, the concept and control of the hybridisation of energy storage are relatively new, and there are great challenges to the development of control management systems, for example, reduce battery current stresses. This study presents a novel approach in applying a fuzzy-PI controller to a D-STATCOM based energy storage unit to provide enhanced power quality and voltage stability in distribution grids. Full information is provided concerning the implementation of the system, and the dynamic controls devised during the research programme. A second novel approach is the use of sugeno fuzzy logic controller based decision making for power management of the D-STATCOM based HESS to achieve a robust and superior performance for voltage regulation. Recent developments in this field have tended to converge on intelligent control as the best approach to achieve an effective strategy for power sharing with HESSs by using a high-power storage unit (supercapacitor) and high energy storage unit (battery) in combination with the D-STATCOM to avoid the drawbacks of a single storage unit. This development is considered one of the main ways to upgrade energy storage technology, with gains of faster voltage regulation and decreased battery current peak value. Verification of the control designs has been achieved through simulation using MATLAB/SIMULINK based on the derived analytical model in state-space form. Comprehensive simulation results show that the proposed fuzzy controller demonstrates significant improvements over conventional controllers in supporting voltage stability in distribution networksPhD in Energy and Powe

    Hosting Capacity Analysis: A Review and a New Evaluation Method in Case of Parameters Uncertainty and Multi-Generator

    Get PDF
    The rapid growth of distributed energy resources exploitation can cause voltage violations and overloading on distribution grids due to the uncontrolled and unprogrammable power injections associated with dispersed generators. To overcome these issues, distributed system operators have to evaluate the maximum generation that can be hosted by distribution grids without violating the technical constraints and find the ways to increase it. In this paper, different methodologies for hosting capacity evaluation are reviewed, and a novel model to determine the hosting capacity considering grid parameters uncertainties and multi-generator connection is proposed

    Power quality improvement in low voltage distribution network utilizing improved unified power quality conditioner.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.The upgrade of the power system, network, and as it attained some complexity level, the voltage related problems and power loss has become frequently pronounced. The power quality challenges load at extreme end of the feeder like voltage sag and swell, and power loss at load centre due to peak load as not received adequate attention. Therefore, this research proposes a Power Angle Control PAC approach for enhancing voltage profile and mitigating voltage sag, voltage swell, and reduced power loss in low voltage radial distribution system (RDS). The amelioration of voltage sag, voltage swell, weak voltage profile, and power loss with a capable power electronics-based power controller device known as Improve Unified Power Quality Conditioner I-UPQC was conceived. Also, the same controller was optimally implemented using hybrid of genetic algorithm and improved particle swarm optimization GA-IPSO in RDS to mitigate the voltage issues, and power loss experienced at peak loading. A new control design-model of Power Angle Control (PAC) of the UPQC has been designed and established using direct, quadrature, and zero components dq0 and proportional integral (PI) controller method. The simulation was implemented in MATLAB/Simulink environment. The results obtained at steady-state condition and when the new I-UPQC was connected show that series inverter can participate actively in ameliorating in the process of mitigating sag and swell by maintaining a PAC of 25% improvement. It was observed that power loss reduced from 1.7% to 1.5% and the feeder is within the standard limit of ±5%. Furthermore, the interconnection of I-UPQC with photovoltaic solar power through the DC link shows a better voltage profile while the load voltage within the allowable range of ±5% all through the disturbance and power loss reduction is 1.3%. Lastly, results obtained by optimal allocation of I-UPQC in RDS using analytical and GA-IPSO show that reactive power injection improved the voltage related issues from 0.952 to 0.9989 p.u., and power loss was further reduced to 1.2% from 3.4%. Also, the minimum bus voltage profile, voltage sag, and power loss are within statutory limits of ±5 % and less than 2 %, respectively. The major contributions of this research are the reduction of sag impact and power loss on the sensitive load in RDS feeder.Publications on page iii

    An overview of power quality enhancement techniques applied to distributed generation in electrical distribution networks

    Get PDF
    It is obvious that power quality is an important characteristic of today's distribution power systems as loads become more sensitive on the other hand nonlinear loads are increasing in the electrical distribution system. Considering the distributed nature of harmonic loads, the need for distributed power quality improvement (PQI) is inevitable. From years ago, researchers have been working on various kinds of filters and devices to enhance the overall power quality of power system, but today the nature of distribution system has been changed and power electronic based DGs play an important role in distribution grids. In this paper, a thorough survey is done on power quality enhancement devices with emphasis on ancillary services of multi-functional DGs. A literature review is also done on microgrids concept, testbeds and related control methods. Although there were some applications of DGs for PQI improvement these applications were not defined multi-functional DGs. Various control methods are studied and categorized regarding different viewpoints in the literature. Finally, a couple of thorough comparisons are done between the available techniques considering the nature, capabilities, advantages and implementation costs

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Smart management strategies of utility-scale energy storage systems in power networks

    Get PDF
    Power systems are presently experiencing a period of rapid change driven by various interrelated issues, e.g., integration of renewables, demand management, power congestion, power quality requirements, and frequency regulation. Although the deployment of Energy Storage Systems (ESSs) has been shown to provide effective solutions to many of these issues, misplacement or non-optimal sizing of these systems can adversely affect network performance. This present research has revealed some novel working strategies for optimal allocation and sizing of utility-scale ESSs to address some important issues of power networks at both distribution and transmission levels. The optimization strategies employed for ESS placement and sizing successfully improved the following aspects of power systems: performance and power quality of the distribution networks investigated, the frequency response of the transmission networks studied, and facilitation of the integration of renewable generation (wind and solar). This present research provides effective solutions to some real power industry problems including minimizationof voltage deviation, power losses, peak demand, flickering, and frequency deviation as well as rate of change of frequency (ROCOF). Detailed simulation results suggest that ESS allocation using both uniform and non-uniform ESS sizing approaches is useful for improving distribution network performance as well as power quality. Regarding performance parameters, voltage profile improvement, real and reactive power losses, and line loading are considered, while voltage deviation and flickers are taken into account as power quality parameters. Further, the study shows that the PQ injection-based ESS placement strategy performs better than the P injection-based approach (in relation to performance improvement), providing more reactive power compensations. The simulation results also demonstrate that obtaining the power size of a battery ESS (MVA) is a sensible approach for frequency support. Hence, an appropriate sizing of grid-scale ESSs including tuning of parameters Kp and Tip (active part of the PQ controller) assist in improving the frequency response by providing necessary active power. Overall, the proposed ESS allocation and sizing approaches can underpin a transition plan from the current power grid to a future one
    corecore