7,180 research outputs found

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Sensors, SLAM and Long-term Autonomy: A Review

    Get PDF
    Simultaneous Localization and Mapping, commonly known as SLAM, has been an active research area in the field of Robotics over the past three decades. For solving the SLAM problem, every robot is equipped with either a single sensor or a combination of similar/different sensors. This paper attempts to review, discuss, evaluate and compare these sensors. Keeping an eye on future, this paper also assesses the characteristics of these sensors against factors critical to the long-term autonomy challenge

    Active SLAM: A Review On Last Decade

    Full text link
    This article presents a comprehensive review of the Active Simultaneous Localization and Mapping (A-SLAM) research conducted over the past decade. It explores the formulation, applications, and methodologies employed in A-SLAM, particularly in trajectory generation and control-action selection, drawing on concepts from Information Theory (IT) and the Theory of Optimal Experimental Design (TOED). This review includes both qualitative and quantitative analyses of various approaches, deployment scenarios, configurations, path-planning methods, and utility functions within A-SLAM research. Furthermore, this article introduces a novel analysis of Active Collaborative SLAM (AC-SLAM), focusing on collaborative aspects within SLAM systems. It includes a thorough examination of collaborative parameters and approaches, supported by both qualitative and statistical assessments. This study also identifies limitations in the existing literature and suggests potential avenues for future research. This survey serves as a valuable resource for researchers seeking insights into A-SLAM methods and techniques, offering a current overview of A-SLAM formulation.Comment: 34 pages, 8 figures, 6 table

    Towards Collaborative Simultaneous Localization and Mapping: a Survey of the Current Research Landscape

    Get PDF
    Motivated by the tremendous progress we witnessed in recent years, this paper presents a survey of the scientific literature on the topic of Collaborative Simultaneous Localization and Mapping (C-SLAM), also known as multi-robot SLAM. With fleets of self-driving cars on the horizon and the rise of multi-robot systems in industrial applications, we believe that Collaborative SLAM will soon become a cornerstone of future robotic applications. In this survey, we introduce the basic concepts of C-SLAM and present a thorough literature review. We also outline the major challenges and limitations of C-SLAM in terms of robustness, communication, and resource management. We conclude by exploring the area's current trends and promising research avenues.Comment: 44 pages, 3 figure

    A Review of Visual-LiDAR Fusion based Simultaneous Localization and Mapping

    Get PDF
    Autonomous navigation requires both a precise and robust mapping and localization solution. In this context, Simultaneous Localization and Mapping (SLAM) is a very well-suited solution. SLAM is used for many applications including mobile robotics, self-driving cars, unmanned aerial vehicles, or autonomous underwater vehicles. In these domains, both visual and visual-IMU SLAM are well studied, and improvements are regularly proposed in the literature. However, LiDAR-SLAM techniques seem to be relatively the same as ten or twenty years ago. Moreover, few research works focus on vision-LiDAR approaches, whereas such a fusion would have many advantages. Indeed, hybridized solutions offer improvements in the performance of SLAM, especially with respect to aggressive motion, lack of light, or lack of visual features. This study provides a comprehensive survey on visual-LiDAR SLAM. After a summary of the basic idea of SLAM and its implementation, we give a complete review of the state-of-the-art of SLAM research, focusing on solutions using vision, LiDAR, and a sensor fusion of both modalities

    SLAM for Visually Impaired People: A Survey

    Full text link
    In recent decades, several assistive technologies for visually impaired and blind (VIB) people have been developed to improve their ability to navigate independently and safely. At the same time, simultaneous localization and mapping (SLAM) techniques have become sufficiently robust and efficient to be adopted in the development of assistive technologies. In this paper, we first report the results of an anonymous survey conducted with VIB people to understand their experience and needs; we focus on digital assistive technologies that help them with indoor and outdoor navigation. Then, we present a literature review of assistive technologies based on SLAM. We discuss proposed approaches and indicate their pros and cons. We conclude by presenting future opportunities and challenges in this domain.Comment: 26 pages, 5 tables, 3 figure

    Implicit sampling for path integral control, Monte Carlo localization, and SLAM

    Get PDF
    The applicability and usefulness of implicit sampling in stochastic optimal control, stochastic localization, and simultaneous localization and mapping (SLAM), is explored; implicit sampling is a recently-developed variationally-enhanced sampling method. The theory is illustrated with examples, and it is found that implicit sampling is significantly more efficient than current Monte Carlo methods in test problems for all three applications
    • …
    corecore